
Zheng et al. Journal of Inequalities and Applications        (2018) 2018:310 
https://doi.org/10.1186/s13660-018-1907-4

R E S E A R C H Open Access

Quantitative unique continuation for the
heat equations with inverse square potential
Guojie Zheng1*, Keqiang Li1 and Yuanyuan Zhang2

*Correspondence:
guojiezheng@whu.edu.cn
1College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we investigate the unique continuation properties for
multi-dimensional heat equations with inverse square potential in a bounded convex
domain � of Rd . We establish observation estimates for solutions of equations. Our
result shows that the value of the solutions can be determined uniquely by their
value on an open subset ω of � at any given positive time L.

MSC: 35K67

Keywords: Heat equations; Singular potential; Unique continuation; Frequency
function

1 Introduction
In this paper, we consider the quantitative unique continuation for multi-dimensional heat
equations with a singular potential term. The heat equations studied in this article are
described by

⎧
⎪⎪⎨

⎪⎪⎩

∂tϕ(x, t) – �ϕ(x, t) – V (x)ϕ(x, t) = 0 in � × (0, L],

ϕ(x, t) = 0 on ∂� × (0, L],

ϕ(x, 0) = ϕ0(x) in �,

(1.1)

where L is a positive number, � ⊂ R
d (d ≥ 3) is a convex and bounded domain with

smooth boundary ∂� and x = 0 ∈ �. The potential function is

V (x) =
μ

|x|2 , μ < μ∗ =
(d – 2)2

4
. (1.2)

The well-posedness theory of these equations have mainly been studied in recent years.
For the existence and other properties of solutions to equation (1.1), we refer to [2, 3, 7,
13, 19]. In particular, in [3], authors proved that if a non-negative initial value ϕ0 ∈ L2(�)
is prescribed, then there exists a unique global weak solution for equation (1.1) un-
der assumption (1.2), but as μ > μ∗, the local solution may not exist. In [19], the well-
posedness of equation (1.1) without the sign restriction for the solution is thoroughly
discussed. In summary, for any initial value ϕ0 ∈ L2(�), there exists a unique solution
ϕ ∈ C([0, T]; L2(�)) ∩ L2(0, T ; H1

0 (�)) for equation (1.1) with (1.2). Throughout the paper,
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we use ‖ · ‖ and 〈·, ·〉 to denote the usual norm and the inner product in the space L2(�),
respectively. Besides, variables x and t for functions of (x, t) and variable x for functions
of x will be omitted, provided that it is not going to cause any confusion.

The main results are presented as follows.

Theorem 1.1 Suppose that ω is a non-empty open subset of �, 0 ∈ ω, and ϕ0 ∈ L2(�).
Then there exist two positive numbers α = α(�,ω), C = C(�,ω) such that, for each L > 0,

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

C
L

(∫

�

|ϕ0|2 dx
)1–α(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α

. (1.3)

Moreover, if ϕ0 �= 0, then

‖ϕ0‖2
H–1(�) ≤ C exp

(
C
L

+ CL
‖ϕ(x, 0)‖2

L2(�)

‖ϕ(x, 0)‖2
H–1(�)

)∫

ω

∣
∣ϕ(L)

∣
∣2 dx. (1.4)

Remark 1.1
(i) The mathematical model (1.1) is a special case where potential term V (x) = λ/|x|2.

The singular potentials occur in many physical phenomena. In non-relativistic
quantum mechanics, the harmonic oscillator and the Coulomb central potential are
typical examples of such kind (see [12]). In particular, it can also be found in the
study of quantum scattering theory (see [17]). Thus, it is very significant to study
the properties of equation (1.1).

(ii) The constant C in (1.3) or (1.4) stands for a positive constant only depending on �

and ω. Specifically, it depends on the size of ω and �, and the distance from ω to
∂�.

(iii) These results demonstrate that solutions of (1.1) can be uniquely determined by its
value on an open subset ω, which contains zero, at any given positive time L.

The study of unique continuation for the solutions of PDEs began at the beginning of
the last century. It plays an important role in PDEs theory, inverse problems, and con-
trol theory. To the best of our knowledge, the first result for strong unique continuation of
parabolic equations was derived in 1974 in [10]. In [10], the authors established the unique
continuation for parabolic equations with time independent coefficients by the properties
of eigenfunctions of the corresponding elliptic operator, and this approach cannot be ap-
plied to parabolic equations with time dependent coefficients. From 1980s, there have
been more results of unique continuation for parabolic equations, and we refer the read-
ers to [5, 8, 9, 11, 14–16] and rich references cited therein. In our paper, we mainly study
this property for the heat equations with the inverse square potential. The main difficulty
in proving Theorem 1.1 lies in the singular potential terms. This difficulty is overcome by
setting up a new norm for H1

0 (�) in terms of the Hardy–Poincaré inequality. With the aid
of the frequency function, we can obtain those quantitative estimates.

We organize this paper as follows: In Sect. 2, we give some preliminary results; Sect. 3
is devoted to the proof of Theorem 1.1.

2 Preliminary results
We suppose that � ⊂ R

d (d ≥ 3) is an open domain with a smooth boundary ∂� and
0 ∈ �. Let us first recall the well-known Hardy–Poincaré inequality that there exists a
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positive constant C(�), which only depends on �, such that

∫

�

[
∣
∣∇v(x)

∣
∣2 – μ∗

v2(x)
|x|2

]

dx ≥ C(�)
∫

�

v2(x) dx, ∀v ∈ H1
0 (�), (2.1)

where μ∗ is provided in (1.2). The proof for inequality (2.1) can be found in [4, 13]. Fur-
thermore, as μ < μ∗,

∫

�

[
∣
∣∇v(x)

∣
∣2 –μ

v2(x)
|x|2

]

dx ≥ C(�)
(

1–
μ

μ∗

)∫

�

∣
∣∇v(x)

∣
∣2 dx+

C(�)μ
μ∗

∫

�

v2(x) dx. (2.2)

By (2.2), we can equip H1
0 (�) with the following inner product:

〈f , g〉H1
0 (�) =

∫

�

[∇f (x) · ∇g(x) – V (x)f (x)g(x)
]

dx, ∀f , g ∈ H1
0 (�), (2.3)

and the norm ‖f ‖H1
0 (�) = (

∫

�
(|∇f |2 – V (x)v2) dx) 1

2 is equivalent to the standard norm in
H1

0 (�). Taking L2(�) as a pivot space, we have the following compact embeddings (see
[18]):

H1
0 (�) ↪→ L2(�) ↪→ H–1(�)

and

〈f , g〉H–1(�),H1
0 (�) = 〈f , g〉L2(�), ∀f ∈ L2(�), g ∈ H1

0 (�). (2.4)

For each λ > 0, we define the following weight function over Rd × [0, L]:

Gλ(x, t) =
1

(L – t + λ)d/2 e– |x|2
4(L–t+λ) . (2.5)

Then, for each t ∈ [0, L], we define the following three functions over the interval [0, L]:

Hλ(t) =
∫

�

∣
∣ϕ(x, t)

∣
∣2Gλ(x, t) dx, (2.6)

Dλ(t) =
∫

�

[
∣
∣∇ϕ(x, t)

∣
∣2 –

μ|ϕ(x, t)|2
|x|2

]

Gλ(x, t) dx, (2.7)

and

Nλ(t) =
2Dλ(t)
Hλ(t)

, (2.8)

where ϕ(x, t) is the solution of equation (1.1). The function Nλ(t) was first discussed in [1].
It was called frequency function (see also [5, 6], and [16]). In this article, we define a dif-
ferent frequency function based on the new norm of H1

0 (�). We always suppose Hλ(t) �= 0.
Now, we will discuss the properties for the functions Gλ(x, t).
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Lemma 2.1 For each λ > 0, the function Gλ given in (2.5) has the following identities over
R

d × [0, L]:

∂tGλ(x, t) + �Gλ(x, t) = 0, (2.9)

∇Gλ(x, t) =
–x

2(L – t + λ)
Gλ(x, t), (2.10)

∂2
i Gλ(x, t) =

–1
2(L – t + λ)

Gλ(x, t) +
|xi|2

4(L – t + λ)2 Gλ(x, t), (2.11)

and for i �= j,

∂i∂jGλ(x, t) =
xixj

4(L – t + λ)2 Gλ(x, t). (2.12)

Next, we will study the properties for derivatives of the functions Hλ(t), Dλ(t), and Nλ(t)
in the following lemmas.

Lemma 2.2 For any λ > 0, the following identity holds:

H ′
λ(t) = –2Dλ(t), (2.13)

and

H ′
λ(t) = 2

∫

�

ϕ

(

∂tϕ – ∇ϕ
x

2(L – t + λ)

)

Gλ dx. (2.14)

Proof By direct computation, we obtain

H ′
λ(t) = 2

∫

�

ϕ∂tϕGλ dx +
∫

�

|ϕ|2∂tGλ dx

= 2
∫

�

ϕ∂tϕGλ dx –
∫

�

|ϕ|2�Gλ dx

= 2
∫

�

ϕ(∂tϕ – �ϕ)Gλ dx – 2
∫

�

|∇ϕ|2Gλ dx

= –2
∫

�

(

∇|ϕ|2 –
μϕ2

|x|2
)

Gλ dx = –2Dλ(t). (2.15)

Second,

H ′
λ(t) = 2

∫

�

ϕ∂tϕGλ dx –
∫

�

|ϕ|2�Gλ dx

= 2
∫

�

ϕ∂tϕGλ dx +
∫

�

∇|ϕ|2∇Gλ dx

= 2
∫

�

ϕ

(

∂tϕ – ∇ϕ
x

2(L – t + λ)

)

Gλ dx. (2.16)

This completes the proof of this lemma. �
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Remark 2.1 By Lemma 2.2, we have

Dλ(t) = –
∫

�

ϕ

(

∂tϕ – ∇ϕ
x

2(L – t + λ)

)

Gλ dx.

Lemma 2.3 For any λ > 0, the following identity holds:

D′
λ(t) = –θ – 2

∫

�

(

∂tϕ –
x

2(L – t + λ)
∇ϕ

)2

Gλ dx +
1

L – t + λ
Dλ(t), (2.17)

where

θ =
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ – 2

∫

∂�

∂ϕ

∂ν
(∇ϕ∇Gλ) dσ ≥ 0.

Here and in what follows, ν is the outward unit normal vector of the surface ∂�.

Proof By the fact ϕ = 0 on ∂�, we first derive that

D′
λ(t) = 2

∫

�

∇ϕ∇∂tϕGλ dx –
∫

�

2μϕ∂tϕ

|x|2 Gλ dx +
∫

�

[

|∇ϕ|2 –
μϕ2

|x|2
]

∂tGλ dx

= 2
∫

�

div(∂tϕ∇ϕGλ) dx – 2
∫

�

∂tϕ div(∇ϕGλ) dx

– 2
∫

�

μϕ∂tϕ

|x|2 –
∫

�

[

|∇ϕ|2 –
μϕ2

|x|2
]

�Gλ dx

= –2
∫

�

∂tϕ�ϕGλ dx – 2
∫

�

∂tϕ∇ϕ∇Gλ dx

– 2
∫

�

∂tϕ
μϕ

|x|2 Gλ dx –
∫

�

[

|∇ϕ|2 –
μϕ2

|x|2
]

�Gλ dx

= –2
∫

�

∂tϕ

(

�ϕ +
μϕ

|x|2
)

Gλ dx – 2
∫

�

∂tϕ∇ϕ
–x

2(L – t + λ)
Gλ dx

–
∫

�

[

|∇ϕ|2 –
μϕ2

|x|2
]

�Gλ dx

= –2
∫

�

(∂tϕ)2Gλ dx – 2
∫

�

∂tϕ∇ϕ
–x

2(L – t + λ)
Gλ dx

–
∫

�

[

|∇ϕ|2 –
μϕ2

|x|2
]

�Gλ dx. (2.18)

Now, we deal with the last term in (2.18). In fact,
∫

�

|∇ϕ|2�Gλ dx =
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ –

∫

�

∇|∇ϕ|2∇Gλ dx

=
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ – 2

∫

�

∇ϕ∇(∇ϕ∇Gλ) dx

+ 2
d∑

i=1

∫

�

∂iϕ(∇ϕ∂i∇Gλ) dx

=
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ – 2

∫

�

div
[∇ϕ(∇ϕ∇Gλ)

]
dx



Zheng et al. Journal of Inequalities and Applications        (2018) 2018:310 Page 6 of 13

+ 2
∫

�

�ϕ(∇ϕ∇Gλ) dx + 2
d∑

i=1

∫

�

∂iϕ(∇ϕ∂i∇Gλ)

=
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ – 2

∫

∂�

∂ϕ

∂ν
(∇ϕ∇Gλ) dσ

+ 2
∫

�

�ϕ(∇ϕ∇Gλ) dx + 2
d∑

i=1

∫

�

∂iϕ(∇ϕ∂i∇Gλ).

Thus,

∫

�

|∇ϕ|2�Gλ dx = θ + 2
∫

�

�ϕ(∇ϕ∇Gλ) dx + 2
d∑

i=1

∫

�

∂iϕ(∇ϕ∂i∇Gλ)

= θ + 2
∫

�

�ϕ(∇ϕ∇Gλ) dx –
∫

�

|∇ϕ|2 1
L – t + λ

Gλ dx

+ 2
∫

�

(
x

2(L – t + λ)
∇ϕ

)2

Gλ dx, (2.19)

where

θ =
∫

∂�

|∇ϕ|2 ∂Gλ

∂ν
dσ – 2

∫

∂�

∂ϕ

∂ν
(∇ϕ∇Gλ) dσ . (2.20)

Meanwhile,

∫

�

μϕ2

|x|2 �Gλ dx = –
∫

�

∇ μϕ2

|x|2 ∇Gλ dx

= –
∫

�

2μϕ∇ϕ

|x|2 ∇Gλ dx +
∫

�

2μϕ2x
|x|4 ∇Gλ dx

= –
∫

�

2μϕ∇ϕ

|x|2 ∇Gλ dx –
1

L – t + λ

∫

�

μϕ2

|x|2 Gλ dx. (2.21)

Combining it with (2.18), (2.19), (2.21) indicates

D′
λ(t) = –2

∫

�

(∂tϕ)2Gλ dx – 2
∫

�

∂tϕ∇ϕ
–x

2(L – t + λ)
Gλ dx

– θ – 2
∫

�

�ϕ(∇ϕ∇Gλ) dx – 2
∫

�

(
x

2(L – t + λ)
∇ϕ

)2

Gλ dx

+
∫

�

|∇ϕ|2 1
L – t + λ

Gλ dx

–
∫

�

2μϕ∇ϕ

|x|2 ∇Gλ dx –
1

L – t + λ

∫

�

μϕ2

|x|2 Gλ dx

= –2
∫

�

(∂tϕ)2Gλ dx – 4
∫

�

∂tϕ∇ϕ
–x

2(L – t + λ)
Gλ dx

– 2
∫

�

(
x

2(L – t + λ)
∇ϕ

)2

Gλ dx – θ +
1

L – t + λ
Dλ(t)

= –θ – 2
∫

�

(

∂tϕ –
x

2(L – t + λ)
∇ϕ

)2

Gλ dx +
1

L – t + λ
Dλ(t). (2.22)
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Next, we will prove θ ≥ 0. Since ϕ = 0 on ∂ϕ, it holds that ∇ϕ = ∂ϕ

∂ν
ν . For the domain �

is convex and 0 ∈ �, we have x · ν ≥ 0. This, together with (2.7) and (2.20), shows that

θ = –
1

2(L – t + λ)

∫

∂�

|∇ϕ|2(x · ν)Gλ dσ +
1

L – t + λ

∫

∂�

∣
∣
∣
∣
∂ϕ

∂ν

∣
∣
∣
∣

2

(x · ν)Gλ dσ

=
1

2(L – t + λ)

∫

∂�

|∇ϕ|2(x · ν)Gλ dσ ≥ 0.

This completes the proof of this lemma. �

The frequency function Nλ(t) satisfies the following lemma.

Lemma 2.4 For any λ > 0,

λNλ(L) ≤ (L – t + λ)Nλ(t) ≤ (L + λ)Nλ(0), t ∈ [0, L]. (2.23)

Proof By Lemmas 2.2, 2.3, and Remark 2.1, we derive

N ′
λ(t) =

2
H2

λ(t)
{

D′
λ(t)Hλ(t) – H ′

λ(t)Dλ(t)
}

=
2

H2
λ(t)

{[

–θ – 2
∫

�

(

∂tϕ –
x

2(L – t + λ)
∇ϕ

)2

Gλ dx +
1

L – t + λ
Dλ(t)

]

×
∫

�

ϕ2Gλ dx + 2
(∫

�

ϕ

(

∂tϕ – ∇ϕ
x

2(L – t + λ)

)

Gλ dx
)2}

≤ 1
L – t + λ

Nλ. (2.24)

The last step is based on the Cauchy–Schwarz inequality. It shows that

[
(L – t + λ)Nλ(t)

]′ ≤ 0. (2.25)

Thus, (L – t + λ)Nλ(t) is a decreasing function, and

λNλ(L) ≤ (L – t + λ)Nλ(t) ≤ (L + λ)Nλ(0), t ∈ [0, L]. (2.26)

This completes the proof of this lemma. �

Letting m = supx∈� ‖x‖2
Rd , we have the following.

Lemma 2.5 For any λ > 0,

λNλ(L) ≤
(

1 +
λ

L

)[
m
L

+ 2 ln

∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L)|2 dx

]

. (2.27)

Proof We first have

L
2
λNλ(L) =

∫ L
2

0
λNλ(L) dt.
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It follows from Lemma 2.4 that

L
2
λNλ(L) ≤ (L + λ)

∫ L
2

0
Nλ(t) dt = (L + λ)

∫ L
2

0

2Dλ(t)
Hλ(t)

dt.

By Lemma 2.2,

L
2
λNλ(L) ≤ –(L + λ)

∫ L
2

0

H ′
λ(t)

Hλ(t)
dt = (L + λ) ln

Hλ(0)
Hλ( L

2 )
.

Since

Hλ(0)
Hλ( L

2 )
≤

∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L

2 )|2 dx
( L

2 + λ)d/2

(L + λ)d/2 e
m

4( L
2 +λ) ≤ e

m
2L

∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L

2 )|2 dx
.

Therefore,

L
2
λNλ(L) ≤ (L + λ)

[
m
2L

+ ln

∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L

2 )|2 dx

]

. (2.28)

By direct computation, we obtain

d
dt

(
1
2
‖ϕ‖2

L2(�)

)

= –‖ϕ‖2
H1

0 (�) ≤ 0. (2.29)

Thus, the solution of (1.1) satisfies that

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤

∫

�

∣
∣
∣
∣ϕ

(

x,
L
2

)∣
∣
∣
∣

2

dx. (2.30)

We obtain (2.27). This completes the proof of this lemma. �

Since 0 ∈ ω, we can get a positive number r such that Br ≡ {x ∈R
d : ‖x‖

Rd ≤ r} ⊂ ω. The
following lemma plays a key role in the proof of the main results.

Lemma 2.6 There exists a positive number C > 1 such that, for any λ > 0,

[

1 –
8Cλ

r2

(
λ

L
+ 1

)

K(L)
]∫

�

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ dx

≤ 8Cλ

(
λ

L
+ 1

)

K(L)
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx, (2.31)

where

K(L) ≡ m
L

+ 2 ln

∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L)|2 dx

+
d
2

. (2.32)

Proof For any f (x) ∈ H1
0 (�), it holds that

0 ≤
∫

�

∣
∣
∣
∣∇

(

f (x) exp

(

–
|x|2
8λ

))∣
∣
∣
∣

2

dx. (2.33)
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By direct computation, we get

∫

�

|x|2
8λ

∣
∣f (x)

∣
∣2e– |x|2

4λ dx ≤ 2λ

∫

�

∣
∣∇f (x)

∣
∣2e– |x|2

4λ dx +
d
2

∫

�

∣
∣f (x)

∣
∣2e– |x|2

4λ dx. (2.34)

Recall that, for any g ∈ H1
0 (�), the norm ‖g‖1 = (

∫

�
(|∇g|2 – V (x)g2) dx) 1

2 is equivalent to
the standard norm in H1

0 (�). Thus, there exists a positive number C > 1 such that

∫

�

|∇g|2 dx ≤ C
∫

�

(|∇g|2 – V (x)g2)dx for any g ∈ H1
0 (�).

This, combined with (2.34), shows

∫

�

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ dx

≤ 8λ

(

2λC
∫

�

[
∣
∣∇ϕ(x, L)

∣
∣2 –

μ|ϕ(x, L)|2
|x|2

]

e– |x|2
4λ dx +

d
2

∫

�

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx
)

≤ 8λ

(

λCNλ(L) +
d
2

)∫

�

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx

≤ 8λ

(

λCNλ(L) +
d
2

)(∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx +
1
r2

∫

�\Br

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ

)

≤ 8Cλ

(
λ

L
+ 1

)

K(L)
(∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx +
1
r2

∫

�\Br

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ

)

.

Therefore,

(

1 –
8Cλ

r2

(
λ

L
+ 1

)

K(L)
)∫

�

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ

≤ 8C
(

λ

L
+ 1

)

λK(L)
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx.

This completes the proof of this lemma. �

3 Proof of the main result

Proof We first prove (1.3). By taking λ > 0 in estimate (2.31) to be such that

8Cλ

r2

(
λ

L
+ 1

)

K(L) =
1
2

. (3.1)

By direct computation, we have

λ =
1
2

(

–L +

√

L2 +
Lr2

4CK(L)

)

.
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Since m
L ≤K(L), it follows that

1
λ

= 2
L +

√

L2 + Lr2
4CK(L)

Lr2
4CK(L)

= 8C
(

L +

√

L2 +
Lr2

4CK(L)

)
1

Lr2 K(L)

≤ 8C
(

2L +

√
Lr2

4CK(L)

)
1

Lr2 K(L)

≤
(

16 +
4r√
Cm

)
C
r2 K(L).

Therefore, it holds that

e
m
4λ ≤ e(4m+r

√ m
C ) C

r2 K(L)

≤ e(4m+r
√ m

C ) 1
r2

d
2 e(4m+r

√ m
C ) 1

r2
m
L

(∫

�
(|ϕ(x, 0)|2) dx

∫

�
(|ϕ(x, L)|2) dx

)2C(4m+r
√ m

C )/r2

. (3.2)

By Lemma 2.6, we get

∫

�

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ dx ≤ r2
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx.

It indicates that
∫

�

∣
∣ϕ(x, L)

∣
∣2e– m

4λ dx ≤
∫

�

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx

=
∫

�\Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx +
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx

≤ 1
r2

∫

�

|x|2∣∣ϕ(x, L)
∣
∣2e– |x|2

4λ dx +
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx

≤ 2
∫

Br

∣
∣ϕ(x, L)

∣
∣2e– |x|2

4λ dx ≤ 2
∫

Br

∣
∣ϕ(x, L)

∣
∣2 dx.

Thus,
∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ 2e

m
4λ

∫

Br

∣
∣ϕ(x, L)

∣
∣2 dx

≤ 2e(4m+r
√ m

C ) 1
r2

d
2 e(4m+r

√ m
C ) 1

r2
m
L

(∫

�
(|ϕ(x, 0)|2) dx

∫

�
(|ϕ(x, L)|2) dx

)2C(4m+r
√ m

C )/r2

×
∫

Br

∣
∣ϕ(x, L)

∣
∣2 dx. (3.3)

This shows that

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

C
r2 e

C
Lr2

(∫

�
|ϕ(x, 0)|2 dx

∫

�
|ϕ(x, L)|2 dx

)C/r2 ∫

Br

∣
∣ϕ(x, L)

∣
∣2 dx,
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which is equivalent to the following inequality:

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

C
L

(∫

�

∣
∣ϕ(x, 0)

∣
∣2 dx

) C
r2+C

(∫

Br

∣
∣ϕ(x, L)

∣
∣2 dx

) r2
r2+C

≤ Ce
C
L

(∫

�

∣
∣ϕ0(x)

∣
∣2 dx

) C
r2+C

(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

) r2
r2+C

.

Let α = r2

r2+C , then the above inequality can be written as

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

C
L

(∫

�

∣
∣ϕ0(x)

∣
∣2 dx

)1–α(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α

. (3.4)

Conclusion (1.3) then follows.
In order to prove (1.4), we will prove the following estimate:

∥
∥ϕ(x, 0)

∥
∥2

H–1(�) ≤ exp

(

CL
‖ϕ(x, 0)‖2

H–1(�)

‖ϕ(x, 0)‖2
H–1(�)

)
∥
∥ϕ(x, L)

∥
∥2

H–1(�). (3.5)

We define a function �(t) as follows:

�(t) =
‖ϕ(x, t)‖2

L2(�)

‖ϕ(x, t)‖2
H–1(�)

.

By direct computation, we obtain

d
dt

(
1
2
‖ϕ‖2

H–1(�)

)

= –‖ϕ‖2
L2(�). (3.6)

This, together with (2.4) and (2.29), indicates

d
dt

�(t) =
(‖ϕ‖2

L2(�))
′(‖ϕ‖2

H–1(�)) – (‖ϕ‖2
L2(�))(‖ϕ‖2

H–1(�))
′

(‖ϕ‖2
H–1(�))

2

=
2

(‖ϕ‖2
H–1(�))

2

{
–‖ϕ‖2

H1
0 (�)‖ϕ‖2

H–1(�) + ‖ϕ‖4
L2(�)

} ≤ 0.

Thus, �(t) is a decreasing function, and

�(L) ≤ �(0).

It follows from (2.29) and (3.6) that

0 =
1
2

d
dt

(‖ϕ‖2
H–1(�)

)
+ ‖ϕ‖2

L2(�)

≤ 1
2

d
dt

(‖ϕ‖2
H–1(�)

)
+ �(0)‖ϕ‖2

H–1(�). (3.7)

Integrating (3.7) on (0, L), we get the desired estimate
∥
∥ϕ(x, 0)

∥
∥2

H–1(�) ≤ e2�(0)L∥∥ϕ(x, L)
∥
∥2

H–1(�).

With the aid of (3.5), we can get (1.4). This completes the proof. �
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Corollary 3.1 Suppose that ω is a non-empty open subset of �, 0 ∈ ω, and ϕ0 ∈ L2(�).
Then there exist two positive numbers α = α(�,ω), C = C(�,ω) such that, for each L > 0
and �̃ � �,

∫

�̃

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

2C
L Lα–1(∥∥ϕ(x, s)

∥
∥

L2(�×(0,L))

)1–α

(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α

. (3.8)

Proof For any s ∈ [0, L
2 ], we take z(x, t) = ϕ(x, t + s), where t ∈ [0, L – s], x ∈ �. Then z(t, x)

satisfies the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂tz(x, t) – �z(x, t) – V (x)z(x, t) = 0 in � × (0, L – s],

z(x, t) = 0 on ∂� × (0, L – s],

z(x, 0) = ϕ(s, x) in �.

By the same argument as that in the proof of Theorem 1.1, we also get

∫

�

∣
∣z(x, L – s)

∣
∣2 dx ≤ Ce

C
L–s

(∫

�

∣
∣z(x, 0)

∣
∣2 dx

)1–α(∫

ω

∣
∣z(x, L – s)

∣
∣2 dx

)α

,

where the constant C is a positive constant only depending on � and ω.
Thus,

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ≤ Ce

C
L–s

(∫

�

∣
∣ϕ(x, s)

∣
∣2 dx

)1–α(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α

.

Then we have

L
2

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx =

∫ L
2

0

∫

�

∣
∣ϕ(x, L)

∣
∣2 dx ds

≤
∫ L

2

0
Ce

C
L–s

(∫

�

∣
∣ϕ(x, s)

∣
∣2 dx

)1–α(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α

ds

≤ Ce
2C
L

(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α ∫ L
2

0

(∫

�

∣
∣ϕ(x, s)

∣
∣2 dx

)1–α

ds

≤ Ce
2C
L

(
L
2

)α(∫

ω

∣
∣ϕ(x, L)

∣
∣2 dx

)α(∥
∥ϕ(x, s)

∥
∥

L2(�×(0, L
2 ))

)1–α . (3.9)

The last step is obtained by Hölder’s inequality. Therefore, we can get (3.8). This completes
the proof. �
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