
Hu Journal of Inequalities and Applications        (2018) 2018:316 
https://doi.org/10.1186/s13660-018-1901-x

R E S E A R C H Open Access

Central limit theorems for sub-linear
expectation under the Lindeberg condition
Cheng Hu1*

*Correspondence:
chenghusdu@126.com
1School of Mathematics and
Statistics, Shandong Normal
University, Jinan, China

Abstract
In this paper, we investigate the central limit theorems for sub-linear expectation for a
sequence of independent random variables without assumption of identical
distribution. We first give a bound on the distance between the normalized sum
distribution and G-normal distribution which can be used to derive the central limit
theorem for sub-linear expectation under the Lindeberg condition. Then we obtain
the central limit theorem for capacity under the Lindeberg condition. We also get the
central limit theorem for capacity for summability methods under the Lindeberg
condition.
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1 Introduction
Peng [15] put forward the theory of sub-linear expectation to describe the probability un-
certainties in statistics and economics which are difficult to be handled by classical prob-
ability theory. There has been increasing interest in sub-linear expectation (see, for exam-
ple, [1, 2, 4, 11, 18, 26]).

The classical central limit theorem (CLT for short) is a fundamental result in probabil-
ity theory. Peng [16] initiated the CLT for sub-linear expectation for a sequence of i.i.d.
random variables with finite (2 + α)-moments for some α > 0. The CLT for sub-linear ex-
pectation has gotten considerable development. Hu and Zhang [10] obtained a CLT for
capacity. Li and Shi [13] got a CLT for sub-linear expectation without assumption of iden-
tical distribution. Hu [9] extended Peng’s CLT by weakening the assumptions of test func-
tions. Zhang and Chen [21] derived a weighted CLT for sub-linear expectation. Hu and
Zhou [12] presented some multi-dimensional CLTs without assumption of identical dis-
tribution. Li [14] proved a CLT for sub-linear expectation for a sequence of m-dependent
random variables. Rokhlin [19] gave a CLT under the Lindeberg condition under classical
probability with variance uncertainty. Zhang [22] gained a CLT for sub-linear expectation
under a moment condition weaker than (2 + α)-moments. Zhang [23] established a mar-
tingale CLT and functional CLT for sub-linear expectation under the Lindeberg condition.

The purpose of this paper is to investigate the CLTs for sub-linear expectation for a se-
quence of independent random variables without assumption of identical distribution. We
first give a bound on the distance between the normalized sum distribution E[ϕ( Sn

Bn
)] and
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G-normal distribution˜E[ϕ(ξ )], where ξ ∼N ({0}; [σ 2, 1]). It can be used to derive the CLT
for sub-linear expectation under the Lindeberg condition directly, which coincides with
the result in Zhang [23]. Different from the classical case, when choosing Bn as the nor-
malizing factor, we can also obtain a bound on the distance between the normalized sum
distribution E[ϕ( Sn

Bn
)] and the corresponding G-normal random variable E[ϕ(η)] where

η ∼N ({0}; [1,σ 2]). Secondly, we obtain a CLT for capacity under the Lindeberg condition
which extends the CLT for capacity for a sequence of i.i.d. random variables in Hu and
Zhang [10]. We also study the CLT for capacity for summability methods under the Lin-
deberg condition. The regular summability method is an important subject in functional
analysis. In recent years it has been found that summability method plays an important
role in the study of statistical convergence (see [5–7, 20]). So it is meaningful to investigate
the CLT for capacity for summability methods.

This paper is organized as follows. In Sect. 2, we recall some basic concepts and lemmas
related to the main results. In Sect. 3, we give a bound on the distance between the normal-
ized sum distribution and G-normal distribution. In Sect. 4, we prove a CLT for capacity
under the Lindeberg condition. In Sect. 5, we show a CLT for capacity for summability
methods under the Lindeberg condition.

2 Basic concepts and lemmas
This paper is studied under the sub-linear expectation framework established by Peng
[15–18]. Let (Ω ,F ) be a given measurable space. Let H be a linear space of real func-
tions defined on Ω such that if X1, X2, . . . , Xn ∈ H then ϕ(X1, X2, . . . , Xn) ∈ H for each
ϕ ∈ Cl,Lip(Rn) where Cl,Lip(Rn) denotes the linear space of local Lipschitz continuous func-
tions ϕ satisfying

∣

∣ϕ(x) – ϕ(y)
∣

∣≤ C
(

1 + |x|m + |y|m)|x – y|, ∀x, y ∈R
n,

for some C > 0, m ∈ N depending on ϕ. H contains all IA where A ∈ F . We also denote
Cb,Lip(Rn) as the linear space of bounded Lipschitz continuous functions ϕ satisfying

∣

∣ϕ(x) – ϕ(y)
∣

∣≤ C|x – y|, ∀x, y ∈ R
n,

for some C > 0.

Definition 2.1 A functional E: H →R is said to be a sub-linear expectation if it satisfies:
for ∀X, Y ∈H,

(a) Monotonicity: X ≥ Y implies E[X] ≥ E[Y ].
(b) Constant preserving: E[c] = c, ∀c ∈ R.
(c) Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0.
(d) Sub-additivity: E[X + Y ] ≤ E[X] + E[Y ] whenever E[X] + E[Y ] is well defined.
The triple (Ω ,H,E) is called a sub-linear expectation space.

Remark 2.1 The sub-linear expectation E[·] satisfies translation invariance: E[X + c] =
E[X] + c, ∀c ∈ R.
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Definition 2.2 ([3]) A set function V : F → [0, 1] is called a capacity if it satisfies
(a) V (∅) = 0, V (Ω) = 1.
(b) V (A) ≤ V (B), A ⊂ B, A, B ∈F .

Definition 2.3 For a capacity V , a set A is a polar set if V (A) = 0. And we say a property
holds “quasi-surely” (q.s.) if it holds outside a polar set.

Definition 2.4 A sub-linear expectation E : H →R is said to be continuous if it satisfies:
(1) continuity from below: Xn ↑ X implies E[Xn] ↑ E[X], where 0 ≤ Xn, X ∈H.
(2) continuity from above: Xn ↓ X implies E[Xn] ↓ E[X], where 0 ≤ Xn, X ∈H.
A capacity V : F → [0, 1] is said to be continuous if it satisfies:
(1) continuity from below: An ↑ A implies V (An) ↑ V (A), where An, A ∈F .
(2) continuity from above: An ↓ A implies V (An) ↓ V (A), where An, A ∈F .

The conjugate expectation E of sub-linear expectation E is defined by

E[X] := –E[–X], ∀X ∈H.

Obviously, for all X ∈ H, E[X] ≤ E[X]. A pair of capacities can be induced as follows:
V(A) := E[IA], v(A) := E[IA] = 1 – V(Ac), ∀A ∈F .

Definition 2.5 ([15–18]) (Independence) Y = (Y1, . . . , Yn) (Yi ∈ H) is said to be indepen-
dent of X = (X1, . . . , Xm) (Xi ∈H) if, for each test function ϕ ∈ Cl,Lip(Rm ×R

n),

E
[

ϕ(X, Y)
]

= E
[

E
[

ϕ(x, Y)
]|x=X

]

,

whenever the sub-linear expectations are finite.
{Xn}∞n=1 is said to be a sequence of independent random variables if Xn+1 is independent

of (X1, . . . , Xn) for each n ≥ 1.

Let X be an n-dimensional random variable on a sub-linear expectation space (Ω ,H,E).
We define a functional on Cl,Lip(Rn) such that

FX [ϕ] := E
[

ϕ(X)
]

, ϕ ∈ Cl,Lip
(

R
n)→R.

Then FX [·] can be regarded as the distribution of X under E and it characterizes the un-
certainty of the distribution of X .

Definition 2.6 ([15–18]) (Identical distribution) Two n-dimensional random variables
X1, X2 on respective sub-linear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2) are called
identically distributed, denoted by X1

d= X2, if

E1
[

ϕ(X1)
]

= E2
[

ϕ(X2)
]

, ∀ϕ ∈ Cl,Lip
(

R
n),

whenever the sub-linear expectations are finite.
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Definition 2.7 ([15–18]) A one-dimensional random variable ξ on sub-linear expectation
(Ω ,H,E) is said to be G-normal distributed, denoted by ξ ∼ N (0, [σ 2,σ 2]), if for any ϕ ∈
Cl,Lip(R) the following function defined by

u(t, x) := E
[

ϕ(x +
√

tξ )
]

, (t, x) ∈ [0,∞) ×R,

is the unique viscosity solution of the following parabolic partial differential equation
(PDE) defined on [0,∞) × R:

⎧

⎨

⎩

∂tu – G(∂xxu) = 0,

u|t=0 = ϕ,

where G(a) = 1
2 a+σ 2 – 1

2 a–σ 2, a ∈R.

Remark 2.2 The G-normal distributed random variable ξ satisfies: aξ + bξ
d=

√
a2 + b2ξ ,

∀a, b ≥ 0, where ξ
d= ξ and ξ is independent of ξ . This implies E[ξ ] = E[–ξ ] = 0.

Next we recall the definition of G-expectation. Let ˜Ω = C[0,∞) be a space of all R-
valued continuous paths (ωt)t≥0 with ω0 = 0, equipped with distance

ρ
(

ω1,ω2) :=
∞
∑

i=1

2–i
[(

max
t∈[0,i]

∣

∣ω1
t – ω2

t
∣

∣

)

∧ 1
]

.

Denote Wt(ω) := ωt for each ω ∈ ˜Ω and

Lip(˜Ω) :=
{

ϕ(Wt1 , . . . , Wtk ) : k ∈ N, t1, . . . , tk ∈ [0,∞),ϕ ∈ Cb,Lip
(

R
k)}.

For each given monotonic and sub-linear function G(a) = 1
2 a+σ 2 – 1

2 a–σ 2, 0 ≤ σ ≤ σ < ∞,
a ∈R, let the canonical process (Wt)t≥0 be G-Brownian motion on a G-expectation space
(˜Ω , Lip(˜Ω),˜E). That is,

˜E
[

ϕ(Wt1 , . . . , Wtn–1 , Wtn – Wtn–1 )
]

=˜E
[

ψ(Wt1 , . . . , Wtn–1 )
]

,

where ψ(x1, . . . , xn–1) =˜E[ϕ(x1, . . . , xn–1,
√

tn – tn–1W1)], W1 ∼N ({0}; [σ 2,σ 2]).
For each p ≥ 1, we denote Lp

G(˜Ω) as the completion of Lip(˜Ω) under the norm ‖X‖Lp
G

:=
(˜E[|X|p])1/p. Then the G-expectation ˜E can be continuously extended to (˜Ω , Lp

G(˜Ω)). We
still denote the extended G-expectation space by (˜Ω , Lp

G(˜Ω),˜E).

Proposition 2.1 ([4, 11]) There exists a weakly compact set of probability measures P on
(˜Ω ,B(˜Ω)) such that

˜E[X] = sup
P∈P

EP[X] for any X ∈ L1
G(˜Ω),

where B(˜Ω) denotes the Borel σ -algebra of ˜Ω . We say that P represents˜E.
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Given a G-expectation space (˜Ω , L1
G(˜Ω),˜E), we can define a pair of capacities:

˜V(A) := sup
P∈P

P(A) =˜E[IA], ṽ(A) := inf
P∈P

P(A) = 1 –˜V
(

Ac), A ∈ B(˜Ω).

Obviously, by Proposition 2.1,˜E[·] and ˜V(·) are continuous from below.

Definition 2.8 A sub-linear expectation E is said to be regular if, for each sequence
{Xn}∞n=1 satisfying Xn ↓ 0, we have E[Xn] ↓ 0.

Lemma 2.1 ([4, 11])
(1) For any closed sets Fn ↓ F , it holds that ˜V(Fn) ↓˜V(F).
(2) G-expectation˜E[·] is regular.

Hu et al. [11] indicated that G-Brownian motion does not converge to any single point
in probability under capacity ˜V as follows.

Lemma 2.2 Given a G-expectation space (˜Ω , L2
G(˜Ω),˜E), for any fixed a ∈R, it holds that

lim
ε↘0

sup
a∈R
˜V
(|Wt – a| ≤ ε

)

= 0, ∀t > 0.

In particular, the above equation holds for G-normal distribution W1.

Lemma 2.3 ([8]) E[|X|] < ∞ implies |X| < ∞ q.s., i.e., V(|X| = ∞) = 0.

The following Rosenthal’s inequality under sub-linear expectation was obtained by
Zhang [24].

Proposition 2.2 Assume that {Xn}∞n=1 is a sequence of independent random variables. De-
note Sn :=

∑n
i=1 Xi. Then, for any p ≥ 2, we have

E

[

max
i≤n

|Si|p
]

≤ Cp

{ n
∑

i=1

E
[|Xi|p

]

+

( n
∑

i=1

E
[|Xi|2

]

)
p
2

+

( n
∑

i=1

[(

E[Xi]
)+ +

(

E[Xi]
)–]
)p}

, (2.1)

where Cp is a positive constant depending on p.

Lemma 2.4 Assume that E is continuous from below and limn→∞ Xn = X. Then

E[X] ≤ lim inf
n→∞ E[Xn].

If we further assume that E is continuous, then

E[X] = lim
n→∞E[Xn].
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Proof Since infi≥n Xi is non-decreasing in n, we have

E[X] = E

[

lim inf
n→∞ Xn

]

= E

[

lim
n→∞ inf

i≥n
Xi

]

= lim
n→∞E

[

inf
i≥n

Xi

]

= lim inf
n→∞ E

[

inf
i≥n

Xi

]

≤ lim inf
n→∞ E[Xn].

If E is continuous, by noting that supi≥n Xi is non-increasing in n, we have

E[X] = E

[

lim sup
n→∞

Xn

]

= E

[

lim
n→∞ sup

i≥n
Xi

]

= lim
n→∞E

[

sup
i≥n

Xi

]

= lim sup
n→∞

E

[

sup
i≥n

Xi

]

≥ lim sup
n→∞

E[Xn] ≥ lim inf
n→∞ E[Xn] ≥ E[X].

Thus limn→∞ E[Xn] = E[X]. �

Lemma 2.5 Assume that E is continuous from below and regular. Let {Xn}∞n=1 be a se-
quence of independent random variables with E[Xn] = E[Xn] = 0 for any n ≥ 1 and
∑∞

i=1 E[X2
i ] < ∞. Then S :=

∑∞
i=1 Xi convergence q.s. under capacity V and, for any p ≥ 2,

we have

E
[|S|p]≤ Cp

{ ∞
∑

i=1

E
[|Xi|p

]

+

( ∞
∑

i=1

E
[|Xi|2

]

)
p
2
}

. (2.2)

Proof One can refer to Zhang and Lin [25] for the proof of the convergence of S. Now we
prove (2.2). By E[Xn] = E[Xn] = 0, taking lim supn→∞ on both sides of (2.1), we have

lim sup
n→∞

E

[

max
i≤n

|Si|p
]

≤ Cp

{ ∞
∑

i=1

E
[|Xi|p

]

+

( ∞
∑

i=1

E
[|Xi|2

]

)
p
2
}

.

On the other hand,

E

[

max
i≤n

|Si|p
]

≥ E
[|Sn|p

]

.

Note that limn→∞ Sn = S. By Lemma 2.4 we have

lim inf
n→∞ E

[

max
i≤n

|Si|p
]

≥ lim inf
n→∞ E

[|Sn|p
]≥ E

[|S|p].

Combining the above inequalities, we have

E
[|S|p]≤ Cp

{ ∞
∑

i=1

E
[|Xi|p

]

+

( ∞
∑

i=1

E
[|Xi|2

]

)
p
2
}

. �

Throughout the rest of this paper, let {Xn}∞n=1 be a sequence of independent random
variables on a sub-linear expectation space (Ω ,H,E) with E[Xn] = E[Xn] = 0, E[X2

n] = σ 2
n,

E[X2
n] = σ 2

n, 0 < σ n ≤ σ n < ∞. Denote Sn :=
∑n

i=1 Xi, B2
n :=

∑n
i=1 σ 2

i , and B2
n :=

∑n
i=1 σ 2

i . The
symbol C presents an arbitrary positive constant and may take different values in different
positions.
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Zhang [23] obtained the following CLT for sub-linear expectation under the Lindeberg
condition as a corollary of the martingale CLT for sub-linear expectation.

Theorem 2.1 Let ξ be G-normal distributed on a G-expectation space (˜Ω , L2
G(˜Ω),˜E) with

ξ ∼N ({0}; [σ 2, 1]), 0 < σ ≤ 1. Assume that
(1)

lim
n→∞

1

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ = 0. (2.3)

(2) For any ε > 0,

lim
n→∞

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

= 0. (2.4)

Then, for any ϕ ∈ Cb,Lip(R),

lim
n→∞E

[

ϕ

(

Sn

Bn

)]

=˜E
[

ϕ(ξ )
]

. (2.5)

3 The bound on the distance between the normalized sum distribution and
G-normal distribution

The following theorem gives a bound on the distance between the normalized sum distri-
bution E[ϕ( Sn

Bn
)] and G-normal distribution˜E[ϕ(ξ )] where ξ ∼N ({0}; [σ 2, 1]).

Theorem 3.1 Let ξ be G-normal distributed on a G-expectation space (˜Ω , L2
G(˜Ω),˜E) with

ξ ∼N ({0}; [σ 2, 1]), 0 < σ ≤ 1.
Then, for any fixed ϕ ∈ Cb,Lip(R) and any h > 0, 0 < ε < 1, there exist some 0 < α < 1, C > 0,

and Ch > 0 (a positive constant depending on h) such that

∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

–˜E
[

ϕ(ξ )
]

∣

∣

∣

∣

≤ Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ +
Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

+ Ch

(

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

+ Chε
α + C(

√
h +

√
1 + h – 1). (3.1)

Remark 3.1 By Theorem 3.1 we can derive Theorem 2.1. If (2.3) and (2.4) hold, taking
n → ∞, ε → 0, and h → 0 in turn on both sides of (3.1), we can get (2.5).

Proof For any fixed ϕ ∈ Cb,Lip(R) and any h > 0, let V (t, x) =˜E[ϕ(x +
√

1 + h – tξ )]. By Def-
inition 2.7, we have that V is the unique viscosity solution of the following parabolic PDE:

⎧

⎨

⎩

∂tV + 1
2 (∂xxV )+ – 1

2 (∂xxV )–σ 2 = 0,

V |t=1+h = ϕ.
(3.2)
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Let X(n)
i = (–Bn) ∨ (Xi ∧ Bn), S(n)

i = 1
Bn

∑i
j=1 X(n)

j , S(n)
0 = 0, δ(n)

i = 1
B2

n

∑i
j=1 σ 2

j , δ
(n)
0 = 0 for each

i = 1, 2, . . . , n. Then we have

∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

–˜E
[

ϕ(ξ )
]

∣

∣

∣

∣

≤
∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

– E
[

ϕ
(

S(n)
n
)]

∣

∣

∣

∣

+
∣

∣E
[

ϕ
(

S(n)
n
)]

–˜E
[

ϕ(ξ )
]∣

∣

=
∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

– E
[

ϕ
(

S(n)
n
)]

∣

∣

∣

∣

+
∣

∣E
[

V
(

1 + h, S(n)
n
)]

– V (h, 0)
∣

∣

≤
∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

– E
[

ϕ
(

S(n)
n
)]

∣

∣

∣

∣

+
∣

∣E
[

V
(

1 + h, S(n)
n
)]

– E
[

V
(

1, S(n)
n
)]∣

∣

+
∣

∣E
[

V
(

1, S(n)
n
)]

– V (0, 0)
∣

∣ +
∣

∣V (0, 0) – V (h, 0)
∣

∣.

Since ϕ ∈ Cb,Lip(R), for any 0 < ε < 1, it holds that

∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

– E
[

ϕ
(

S(n)
n
)]

∣

∣

∣

∣

≤ C
Bn

n
∑

i=1

E
[∣

∣Xi – X(n)
i
∣

∣

]≤ C
Bn

n
∑

i=1

E
[|Xi|I

(|Xi| > Bn
)]

≤ C

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > Bn
)]≤ C

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

,

∣

∣E
[

V
(

1 + h, S(n)
n
)]

– E
[

V
(

1, S(n)
n
)]∣

∣

≤ sup
x

∣

∣V (1 + h, x) – V (1, x)
∣

∣ = sup
x

∣

∣ϕ(x) –˜E
[

ϕ(x +
√

hξ )
]∣

∣

≤ sup
x
˜E
[∣

∣ϕ(x) – ϕ(x +
√

hξ )
∣

∣

]≤ C
√

h˜E
[|ξ |]≤ C

√
h,

and

∣

∣V (0, 0) – V (h, 0)
∣

∣ =
∣

∣˜E
[

ϕ(
√

1 + hξ )
]

–˜E
[

ϕ(ξ )
]∣

∣

≤ C(
√

1 + h – 1)˜E
[|ξ |]≤ C(

√
1 + h – 1).

Then

∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

–˜E
[

ϕ(ξ )
]

∣

∣

∣

∣

≤ ∣∣E[V (1, S(n)
n
)]

– V (0, 0)
∣

∣ +
C

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

+ C(
√

h +
√

1 + h – 1). (3.3)

So it is sufficient to get the bound of |E[V (1, S(n)
n )] – V (0, 0)|.

V
(

1, S(n)
n
)

– V (0, 0)

=
n–1
∑

i=0

[

V
(

δ
(n)
i+1, S(n)

i+1
)

– V
(

δ
(n)
i , S(n)

i
)]
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=
n–1
∑

i=0

[(

V
(

δ
(n)
i+1, S(n)

i+1
)

– V
(

δ
(n)
i , S(n)

i+1
))

+
(

V
(

δ
(n)
i , S(n)

i+1
)

– V
(

δ
(n)
i , S(n)

i
))]

:=
n–1
∑

i=0

(

I(n)
i + J (n)

i
)

,

where I(n)
i and J (n)

i are obtained by Taylor expansion:

I(n)
i =

σ 2
i+1

B2
n

∂tV
(

δ
(n)
i , S(n)

i
)

+
1

2B2
n

∂xxV
(

δ
(n)
i , S(n)

i
)∣

∣X(n)
i+1
∣

∣

2 +
1

Bn
∂xV

(

δ
(n)
i , S(n)

i
)

X(n)
i+1

=
(

σ 2
i+1

B2
n

∂tV
(

δ
(n)
i , S(n)

i
)

+
1

2B2
n

∂xxV
(

δ
(n)
i , S(n)

i
)

X2
i+1 +

1
Bn

∂xV
(

δ
(n)
i , S(n)

i
)

Xi+1

)

+
(

1

2B2
n

∂xxV
(

δ
(n)
i , S(n)

i
)(∣

∣X(n)
i+1
∣

∣

2 – X2
i+1
)

+
1

Bn
∂xV

(

δ
(n)
i , S(n)

i
)(

X(n)
i+1 – Xi+1

)

)

:= I(n)
1,i + I(n)

2,i .

J (n)
i =

σ 2
i+1

B2
n

[

∂tV
(

δ
(n)
i , S(n)

i+1
)

– ∂tV
(

δ
(n)
i , S(n)

i
)]

+
σ 2

i+1

B2
n

∫ 1

0

[

∂tV
(

δ
(n)
i + β · σ 2

i+1

B2
n

, S(n)
i+1

)

– ∂tV
(

δ
(n)
i , S(n)

i+1
)

]

dβ

+
∫ 1

0

∫ 1

0

[

∂xxV
(

δ
(n)
i , S(n)

i + γβ
X(n)

i+1

Bn

)

– ∂xxV
(

δ
(n)
i , S(n)

i
)

] |X(n)
i+1|2
B2

n

γ dβ dγ .

Since Xi+1 is independent of S(n)
i , we have

E
[

∂xV
(

δ
(n)
i , S(n)

i
)

Xi+1
]

= E
[

E[r · Xi+1]|r=∂xV (δ(n)
i ,S(n)

i )

]

= E
[(

∂xV
(

δ
(n)
i , S(n)

i
))+

E[Xi+1] –
(

∂xV
(

δ
(n)
i , S(n)

i
))–E[Xi+1]

]

= 0.

Similarly, we can also have E[–∂xV (δ(n)
i , S(n)

i )Xi+1] = 0. It follows that

E
[

I(n)
1,i
]

= E

[

σ 2
i+1

B2
n

∂tV
(

δ
(n)
i , S(n)

i
)

+
1

2B2
n

∂xxV
(

δ
(n)
i , S(n)

i
)

X2
i+1

]

=
1

B2
n

E

[

E

[

σ 2
i+1p +

1
2

qX2
i+1

]∣

∣

∣

∣

p=∂tV (δ(n)
i ,S(n)

i ),q=∂xxV (δ(n)
i ,S(n)

i )

]

=
1

B2
n

E

[

σ 2
i+1p +

1
2

q+
E
[

X2
i+1
]

–
1
2

q–E
[

X2
i+1
]

∣

∣

∣

∣

p=∂tV (δ(n)
i ,S(n)

i ),q=∂xxV (δ(n)
i ,S(n)

i )

]

=
1

B2
n

E

[

∂tV
(

δ
(n)
i , S(n)

i
)

σ 2
i+1 +

1
2
(

∂xxV
(

δ
(n)
i , S(n)

i
))+

σ 2
i+1

–
1
2
(

∂xxV
(

δ
(n)
i , S(n)

i
))–

σ 2
i+1

]

≤ σ 2
i+1

B2
n

E

[

∂tV
(

δ
(n)
i , S(n)

i
)

+
1
2
(

∂xxV
(

δ
(n)
i , S(n)

i
))+ –

1
2
(

∂xxV
(

δ
(n)
i , S(n)

i
))–

σ 2
]
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+
1

2B2
n

E
[

∂xxV
(

δ
(n)
i , S(n)

i
)–

σ 2 · σ 2
i+1 – ∂xxV

(

δ
(n)
i , S(n)

i
)–

σ 2
i+1
]

≤ 1

2B2
n

∣

∣σ 2 · σ 2
i+1 – σ 2

i+1
∣

∣ ·E[∣∣∂xxV
(

δ
(n)
i , S(n)

i
)∣

∣

]

.

By the interior regularity of V (see Peng [18]), it holds that

‖V‖
C1+ α

2 ,2+α ([0,1]×R)
< ∞ for some α ∈ (0, 1),

which implies ∂tV , ∂xV , and ∂xxV are uniformly α
2 -Hölder continuous in t and α-Hölder

continuous in x on [0, 1] ×R. For any n ≥ 1 and i ≤ n, it holds that

E
[∣

∣∂xxV
(

δ
(n)
i , S(n)

i
)∣

∣

]≤ ∣∣∂xxV (0, 0)
∣

∣ + Ch
(∣

∣δ
(n)
i
∣

∣

α
2 + E

[∣

∣S(n)
i
∣

∣

α])

≤ Ch
(

1 +
(

E
[∣

∣S(n)
i
∣

∣

2]) α
2
)

.

By Proposition 2.2, we have

E
[∣

∣S(n)
i
∣

∣

2]≤ C

B2
n

n
∑

i=1

E
[∣

∣X(n)
i
∣

∣

2] +
C

B2
n

( n
∑

i=1

[(

E
[

X(n)
i
])+ +

(

E
[

–X(n)
i
])+]

)2

≤ C

B2
n

n
∑

i=1

E
[|Xi|2

]

+
C

B2
n

( n
∑

i=1

E
[∣

∣Xi – X(n)
i
∣

∣

]

)2

≤ C + C

(

1
Bn

n
∑

i=1

E
[|Xi|I

(|Xi| > Bn
)]

)2

≤ C + C

(

1

B2
n

n
∑

i=1

E
[|Xi|2

]

)2

≤ C.

So we have E[|∂xxV (δ(n)
i , S(n)

i )|] ≤ Ch. Similarly E[|∂xV (δ(n)
i , S(n)

i )|] ≤ Ch. Then

E

[ n–1
∑

i=0

I(n)
1,i

]

≤
n–1
∑

i=0

E
[

I(n)
1,i
]≤ Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣.

On the other hand,

E

[ n–1
∑

i=0

I(n)
1,i

]

= E

[ n–2
∑

i=0

I(n)
1,i +

σ 2
n

B2
n

∂tV
(

δ
(n)
n–1, S(n)

n–1
)

+
1

2B2
n

∂xxV
(

δ
(n)
n–1, S(n)

n–1
)

X2
n

+
1

Bn
∂xV

(

δ
(n)
n–1, S(n)

n–1
)

Xn

]

= E

[ n–2
∑

i=0

I(n)
1,i +

σ 2
n

B2
n

∂tV
(

δ
(n)
n–1, S(n)

n–1
)

+
1

2B2
n

∂xxV
(

δ
(n)
n–1, S(n)

n–1
)

X2
n

]
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= E

[ n–2
∑

i=0

I(n)
1,i +

σ 2
n

B2
n

∂tV
(

δ
(n)
n–1, S(n)

n–1
)

+
1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))+

σ 2
n –

1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–

σ 2
n

]

= E

[ n–2
∑

i=0

I(n)
1,i +

σ 2
n

B2
n

(

∂tV
(

δ
(n)
n–1, S(n)

n–1
)

+
1
2
(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))+

–
1
2
(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–

σ 2
)

+
1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–

σ 2 · σ 2
n –

1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–

σ 2
n

]

= E

[ n–2
∑

i=0

I(n)
1,i +

1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–(

σ 2 · σ 2
n – σ 2

n
)

]

≥ E

[ n–2
∑

i=0

I(n)
1,i

]

– E

[

–
1

2B2
n

(

∂xxV
(

δ
(n)
n–1, S(n)

n–1
))–(

σ 2 · σ 2
n – σ 2

n
)

]

≥ E

[ n–2
∑

i=0

I(n)
1,i

]

–
Ch

B2
n

∣

∣σ 2 · σ 2
n – σ 2

n
∣

∣

≥ –
Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣.

So we have

∣

∣

∣

∣

∣

E

[ n–1
∑

i=0

I(n)
1,i

]∣

∣

∣

∣

∣

≤ Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣. (3.4)

Since |X(n)
i+1|2 – X2

i+1 is independent of ∂xxV (δ(n)
i , S(n)

i ) and X(n)
i+1 – Xi+1 is independent of

∂xV (δ(n)
i , S(n)

i ), we have

n–1
∑

i=0

E
[∣

∣I(n)
2,i
∣

∣

]≤
n–1
∑

i=0

{

1

2B2
n

E
[∣

∣∂xxV
(

δ
(n)
i , S(n)

i
)∣

∣

]

E
[∣

∣

∣

∣X(n)
i+1
∣

∣

2 – X2
i+1
∣

∣

]

+
1

Bn
E
[∣

∣∂xV
(

δ
(n)
i , S(n)

i
)∣

∣

]

E
[∣

∣X(n)
i+1 – Xi+1

∣

∣

]

}

≤ Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > Bn
)]

+
Ch

Bn

n
∑

i=1

E
[|Xi|I

(|Xi| > Bn
)]

≤ Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

. (3.5)

On the other hand,

∣

∣

∣

∣

σ 2
i+1

B2
n

[

∂tV
(

δ
(n)
i , S(n)

i+1
)

– ∂tV
(

δ
(n)
i , S(n)

i
)]

∣

∣

∣

∣

≤ Ch · σ 2
i+1

B2
n

·
( |X(n)

i+1|
Bn

)α

,
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∣

∣

∣

∣

σ 2
i+1

B2
n

∫ 1

0

[

∂tV
(

δ
(n)
i + β · σ 2

i+1

B2
n

, S(n)
i+1

)

– ∂tV
(

δ
(n)
i , S(n)

i+1
)

]

dβ

∣

∣

∣

∣

≤ Ch · σ 2
i+1

B2
n

·
(

σ 2
i+1

B2
n

) α
2

,

∣

∣

∣

∣

∫ 1

0

∫ 1

0

[

∂xxV
(

δ
(n)
i , S(n)

i + γβ
X(n)

i+1

Bn

)

– ∂xxV
(

δ
(n)
i , S(n)

i
)

] |X(n)
i+1|2
B2

n

γ dβ dγ

∣

∣

∣

∣

≤ Ch · |X(n)
i+1|2
B2

n

·
( |X(n)

i+1|
Bn

)α

.

Then

n–1
∑

i=0

E
[∣

∣J (n)
i
∣

∣

]≤ Ch

B2+α

n

n
∑

i=1

σ 2
i E
[∣

∣X(n)
i
∣

∣

α] +
Ch

B2+α

n

n
∑

i=1

σ 2+α
i +

Ch

B2+α

n

n
∑

i=1

E
[∣

∣X(n)
i
∣

∣

2+α]. (3.6)

For any 0 < ε < 1, we have

1

B2+α

n

n
∑

i=1

E
[∣

∣X(n)
i
∣

∣

2+α]

=
1

B2+α

n

n
∑

i=1

E
[|Xi|2+αI

(|Xi| ≤ Bn
)

+ B2+α

n I
(|Xi| > Bn

)]

≤ 1

B2+α

n

n
∑

i=1

E
[|Xi|2+αI

(|Xi| ≤ εBn
)]

+
1

B2+α

n

n
∑

i=1

E
[|Xi|2+αI

(

εBn < |Xi| ≤ Bn
)]

+
1

B2+α

n

n
∑

i=1

E
[|Xi|2Bα

nI
(|Xi| > Bn

)]

≤ 1

B2+α

n

n
∑

i=1

εαBα

nE
[|Xi|2

]

+
1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

+
1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > Bn
)]

≤ εα +
C

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

. (3.7)

By Hölder’s inequality under sub-linear expectation, we have

1

B2+α

n

n
∑

i=1

σ 2+α
i

=
1

B2+α

n

n
∑

i=1

(

E
[|Xi|2I

(|Xi| ≤ εBn
)

+ |Xi|2I
(|Xi| > εBn

)])1+ α
2

≤ C

B2+α

n

n
∑

i=1

(

E
[|Xi|2I

(|Xi| ≤ εBn
)])1+ α

2 +
C

B2+α

n

n
∑

i=1

(

E
[|Xi|2I

(|Xi| > εBn
)])1+ α

2

≤ C

B2+α

n

n
∑

i=1

E
[|Xi|2+αI

(|Xi| ≤ εBn
)]

+
C

B2+α

n

n
∑

i=1

(

E
[|Xi|2I

(|Xi| > εBn
)])1+ α

2
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≤ Cεα + C

(

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

. (3.8)

1

B2+α

n

n
∑

i=1

σ 2
i E
[∣

∣X(n)
i
∣

∣

α]

≤ 1

B2+α

n

n
∑

i=1

σ 2
i E
[|Xi|α

]≤ 1

B2+α

n

n
∑

i=1

σ 2+α
i

≤ Cεα + C

(

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

. (3.9)

Combining (3.7), (3.8), and (3.9), we have

n–1
∑

i=0

E
[∣

∣J (n)
i
∣

∣

] ≤ Chε
α +

Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

+ Ch

(

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

. (3.10)

By (3.4), (3.5), and (3.10), it holds that

∣

∣E
[

V
(

1, S(n)
n
)]

– V (0, 0)
∣

∣≤
∣

∣

∣

∣

∣

E

[ n–1
∑

i=0

I(n)
1,i

]∣

∣

∣

∣

∣

+
n–1
∑

i=0

E
[∣

∣I(n)
2,i
∣

∣

]

+
n–1
∑

i=0

E
[∣

∣J (n)
i
∣

∣

]

≤ Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ + Chε
α

+
Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

+ Ch

(

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

.

Thus we obtain (3.1). �

By a similar method, we can obtain a bound on the distance between the normalized
sum distribution E[ϕ( Sn

Bn
)] and the corresponding G-normal distribution E[ϕ(η)]. And it

can also be used to derive the CLT for normalizing factor Bn. We only give the theorem
and omit the proof.

Theorem 3.2 Let η be G-normal distributed on a G-expectation space (˜Ω , L2
G(˜Ω),˜E) with

η ∼N ({0}; [1,σ 2]), σ ≥ 1.
Then, for any fixed ϕ ∈ Cb,Lip(R) and any h > 0, 0 < ε < 1, there exist some 0 < α < 1, C > 0,

and Ch > 0 (a constant depending on h) such that
∣

∣

∣

∣

E

[

ϕ

(

Sn

Bn

)]

–˜E
[

ϕ(η)
]

∣

∣

∣

∣

≤ Ch

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ +
Ch

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]
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+ Ch

(

1
B2

n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

)1+ α
2

+ Chε
α + C(

√
h +

√
1 + h – 1).

If we further assume that
(1)

lim
n→∞

1
B2

n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ = 0.

(2) For any ε > 0,

lim
n→∞

1
B2

n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

= 0.

Then, for any ϕ ∈ Cb,Lip(R),

lim
n→∞E

[

ϕ

(

Sn

Bn

)]

=˜E
[

ϕ(η)
]

.

4 Central limit theorem for capacity
The following theorem is the CLT for capacity under the Lindeberg condition.

Theorem 4.1 Assume that
(1) ξ is G-normal distributed on a G-expectation space (˜Ω , L2

G(˜Ω),˜E) with
ξ ∼N ({0}; [σ 2, 1]), 0 < σ ≤ 1, and

lim
n→∞

1

B2
n

n
∑

i=1

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ = 0. (4.1)

(2) For any ε > 0,

lim
n→∞

1

B2
n

n
∑

i=1

E
[|Xi|2I

(|Xi| > εBn
)]

= 0. (4.2)

Then, for any a ∈R,

lim
n→∞V

(

Sn

Bn
≤ a
)

=˜V(ξ ≤ a), lim
n→∞ v

(

Sn

Bn
≤ a
)

= ṽ(ξ ≤ a). (4.3)

Proof For any fixed ε > 0, define

f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ≤ a,

– 1
ε
(x – a – ε), a < x ≤ a + ε,

0, x > a + ε,
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and

g(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ≤ a – ε,

– 1
ε
(x – a), a – ε < x ≤ a,

0, x > a.

It is easy to verify that f , g ∈ Cb,Lip(R) and g(x) ≤ I(x ≤ a) ≤ f (x). It follows that

∣

∣

∣

∣

V

(

Sn

Bn
≤ a
)

–˜V(ξ ≤ a)
∣

∣

∣

∣

=
∣

∣

∣

∣

E

[

I
(

Sn

Bn
≤ a
)]

–˜E
[

I(ξ ≤ a)
]

∣

∣

∣

∣

≤
∣

∣

∣

∣

E

[

f
(

Sn

Bn

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

∨
∣

∣

∣

∣

E

[

g
(

Sn

Bn

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

≤
{∣

∣

∣

∣

E

[

f
(

Sn

Bn

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

+
∣

∣˜E
[

f (ξ )
]

–˜E
[

g(ξ )
]∣

∣

}

∨
{∣

∣

∣

∣

E

[

g
(

Sn

Bn

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

+
∣

∣˜E
[

g(ξ )
]

–˜E
[

f (ξ )
]∣

∣

}

≤
∣

∣

∣

∣

E

[

f
(

Sn

Bn

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

∨
∣

∣

∣

∣

E

[

g
(

Sn

Bn

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

+˜E
[∣

∣f (ξ ) – g(ξ )
∣

∣

]

.

By Theorem 2.1 we have

lim
n→∞

∣

∣

∣

∣

E

[

f
(

Sn

Bn

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

= 0, lim
n→∞

∣

∣

∣

∣

E

[

g
(

Sn

Bn

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

= 0.

Then

lim sup
n→∞

∣

∣

∣

∣

V

(

Sn

Bn
≤ a
)

–˜V(ξ ≤ a)
∣

∣

∣

∣

≤˜E[∣∣f (ξ ) – g(ξ )
∣

∣

]

.

Note that

0 ≤ f (x) – g(x) ≤ I(a – ε < x ≤ a + ε),

which implies

˜E
[∣

∣f (ξ ) – g(ξ )
∣

∣

]≤˜V(a – ε < ξ ≤ a + ε).

By the arbitrariness of ε > 0 and Lemma 2.2, we have

lim
n→∞

∣

∣

∣

∣

V

(

Sn

Bn
≤ a
)

–˜V(ξ ≤ a)
∣

∣

∣

∣

= 0,

which implies

lim
n→∞V

(

Sn

Bn
≤ a
)

=˜V(ξ ≤ a).
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Similarly, we can also obtain

lim
n→∞V

(

Sn

Bn
≥ a
)

=˜V(ξ ≥ a).

That is,

lim
n→∞ v

(

Sn

Bn
≤ a
)

= ṽ(ξ ≤ a). �

Remark 4.1 By a similar method, we can also obtain the CLT for capacity for the normal-
ized sum Sn/Bn. We omit the details here.

5 Central limit theorem for summability methods
Let ci(λ) be continuous functions on (0,∞) or λ only valued in N

∗. Assume that 0 ≤ ci(λ) ≤
1 and, for any λ > 0,

∞
∑

i=1

ci(λ) = 1 + θ (λ),

where limλ→∞ θ (λ) = 0. Denote B2
λ =
∑∞

i=1 ci(λ)2σ 2
i , B2

λ =
∑∞

i=1 ci(λ)2σ 2
i , where B2

λ < ∞ for
any λ > 0. Assume that E is continuous from below and regular, then by Lemma 2.5, Sλ :=
∑∞

i=1 ci(λ)Xi is well defined q.s. under capacity V.

Theorem 5.1 Given a sub-linear expectation space (Ω ,H,E), E is continuous from below
and regular. Assume that

(1) ξ is G-normal distributed on a G-expectation space (˜Ω , L2
G(˜Ω),˜E) with

ξ ∼N ({0}; [σ 2, 1]), 0 < σ ≤ 1, and

lim
λ→∞

1

B2
λ

∞
∑

i=1

c2
i (λ)

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ = 0. (5.1)

(2) For any ε > 0,

lim
λ→∞

1

B2
λ

∞
∑

i=1

c2
i (λ)E

[|Xi|2I
(

ci(λ)|Xi| > εBλ

)]

= 0. (5.2)

Then, for any a ∈R,

lim
λ→∞V

(

Sλ

Bλ

≤ a
)

=˜V(ξ ≤ a), lim
λ→∞ v

(

Sλ

Bλ

≤ a
)

= ṽ(ξ ≤ a). (5.3)

Proof Denote

Sλ,N =
N
∑

i=1

ci(λ)Xi, S∗
λ,N =

∞
∑

i=N+1

ci(λ)Xi, B2
λ,N =

N
∑

i=1

c2
i (λ)σ 2

i .

Note that limN→∞ B2
λ,N = B2

λ. For any k > 1, we can choose N sufficiently large such that
B2

λ,N ≥ B2
λ/k2.
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For any a > 0, t > 0, and X, Y ∈H, it holds that

{X + Y ≤ a} ⊂ {X ≤ a + t} ∪ {|Y | ≥ t
}

.

Then

V(X + Y ≤ a) ≤ V(X ≤ a + t) + V
(|Y | ≥ t

)

.

Hence

V

(

Sλ

Bλ

≤ a
)

= V

(

Sλ,N

Bλ

+
S∗

λ,N

Bλ

≤ a
)

≤ V

(

Sλ,N

Bλ

≤ a + t
)

+ V

( |S∗
λ,N |
Bλ

≥ t
)

≤ V

(

Sλ,N

Bλ,N
≤ k(a + t)

)

+ V
(∣

∣S∗
λ,N
∣

∣≥ tBλ

)

.

For any η > 0, let

f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ≤ k(a + t),

– 1
η

(x – k(a + t) – η), k(a + t) < x ≤ k(a + t) + η,

0, x > k(a + t) + η,

and

g(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ≤ k(a + t) – η,

– 1
η

(x – k(a + t)), k(a + t) – η < x ≤ k(a + t),

0, x > k(a + t).

It is easy to verify that f , g ∈ Cb,Lip(R) and g(x) ≤ I(x ≤ k(a + t)) ≤ f (x). By the proof process
of Theorem 4.1, we have

V

(

Sλ,N

Bλ,N
≤ k(a + t)

)

≤˜V(ξ ≤ k(a + t)
)

+
∣

∣

∣

∣

E

[

f
(

Sλ,N

Bλ,N

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

∨
∣

∣

∣

∣

E

[

g
(

Sλ,N

Bλ,N

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

+˜V
(

k(a + t) – η < ξ ≤ k(a + t) + η
)

.

By (3.1), for any 0 < ε < 1, we have

∣

∣

∣

∣

E

[

f
(

Sλ,N

Bλ,N

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

∨
∣

∣

∣

∣

E

[

g
(

Sλ,N

Bλ,N

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

≤ Ch

B2
λ,N

N
∑

i=1

c2
i (λ)

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ +
Ch

B2
λ,N

N
∑

i=1

c2
i (λ)E

[|Xi|2I
(

ci(λ)|Xi| > εBλ,N
)]
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+ Ch

(

1

B2
λ,N

N
∑

i=1

c2
i (λ)E

[|Xi|2I
(

ci(λ)|Xi| > εBλ,N
)]

)1+ α
2

+ Chε
α + C(

√
h +

√
1 + h – 1).

Note that B2
λ,N ≥ B2

λ/k2, we have

∣

∣

∣

∣

E

[

f
(

Sλ,N

Bλ,N

)]

–˜E
[

f (ξ )
]

∣

∣

∣

∣

∨
∣

∣

∣

∣

E

[

g
(

Sλ,N

Bλ,N

)]

–˜E
[

g(ξ )
]

∣

∣

∣

∣

≤ k2Ch

B2
λ

∞
∑

i=1

c2
i (λ)

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ +
k2Ch

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

+ Ch

(

k2

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

)1+ α
2

+ Chε
α + C(

√
h +

√
1 + h – 1).

In addition, by Lemma 2.5 we have

E
[∣

∣S∗
λ,N
∣

∣

2] = E

[∣

∣

∣

∣

∣

∞
∑

i=N+1

ci(λ)Xi

∣

∣

∣

∣

∣

2]

≤ C
∞
∑

i=N+1

c2
i (λ)E

[|Xi|2
]↘ 0 as N → ∞.

Let t = (E[|S∗
λ,N |2]) 1

3 . We have limN→∞ t = 0 and

V
(∣

∣S∗
λ,N
∣

∣≥ tBλ

)≤ 1

t2B2
λ

E
[∣

∣S∗
λ,N
∣

∣

2] =
1

B2
λ

(

E
[∣

∣S∗
λ,N
∣

∣

2]) 1
3 → 0 as N → ∞.

So we have

V

(

Sλ

Bλ

≤ a
)

≤˜V(ξ ≤ k(a + t)
)

+˜V
(

k(a + t) – η < ξ ≤ k(a + t) + η
)

+
1

t2B2
λ

E
[∣

∣S∗
λ,N
∣

∣

2]

+
k2Ch

B2
λ

∞
∑

i=1

c2
i (λ)

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ +
k2Ch

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

+ Ch

(

k2

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

)1+ α
2

+ Chε
α

+ C(
√

h +
√

1 + h – 1).

By (5.1), (5.2), Lemma 2.1, and Lemma 2.2, letting t = (E[|S∗
λ,N |2]) 1

3 , N → ∞, λ → ∞,
ε → 0, and η → 0 in turn, we have

lim sup
λ→∞

V

(

Sλ

Bλ

≤ a
)

≤˜V(ξ ≤ ka) + C(
√

h +
√

1 + h – 1).
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By the arbitrariness of k > 1 and h > 0, we get

lim sup
λ→∞

V

(

Sλ

Bλ

≤ a
)

≤˜V(ξ ≤ a). (5.4)

On the other hand, for any a > 0, 0 < t < a, and X, Y ∈H,

{X + Y ≤ a} ⊃ {X ≤ a – t}\{|Y | ≥ t
}

.

Then

V(X + Y ≤ a) ≥ V(X ≤ a – t) – V
(|Y | ≥ t

)

.

Hence

V

(

Sλ

Bλ

≤ a
)

= V

(

Sλ,N

Bλ

+
S∗

λ,N

Bλ

≤ a
)

≥ V

(

Sλ,N

Bλ

≤ a – t
)

– V

( |S∗
λ,N |
Bλ

≥ t
)

≥ V

(

Sλ,N

Bλ,N
≤ a – t

)

– V
(∣

∣S∗
λ,N
∣

∣≥ tBλ

)

.

By the same method as before, we have

V

(

Sλ

Bλ

≤ a
)

≥˜V(ξ ≤ a – t) –˜V(a – t – η < ξ ≤ a – t + η) –
1

t2B2
λ

E
[∣

∣S∗
λ,N
∣

∣

2]

–
Ch

B2
λ

∞
∑

i=1

c2
i (λ)

∣

∣σ 2 · σ 2
i – σ 2

i
∣

∣ –
Ch

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

– Ch

(

1

B2
λ

∞
∑

i=1

c2
i (λ)E

[

|Xi|2I
(

ci(λ)|Xi| >
ε

k
Bλ

)]

)1+ α
2

– Chε
α – C(

√
h +

√
1 + h – 1).

Letting t = (E[|S∗
λ,N |2]) 1

3 , N → ∞, λ → ∞, ε → 0, and η → 0 in turn, we have

lim inf
λ→∞ V

(

Sλ

Bλ

≤ a
)

≥˜V(ξ ≤ a) – C(
√

h +
√

1 + h – 1).

By the arbitrariness of h > 0, we have

lim inf
λ→∞ V

(

Sλ

Bλ

≤ a
)

≥˜V(ξ ≤ a). (5.5)

Combining (5.5) with (5.4), we obtain

lim
λ→∞V

(

Sλ

Bλ

≤ a
)

=˜V(ξ ≤ a).
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Similarly, we can also have

lim
λ→∞V

(

Sλ

Bλ

≥ a
)

=˜V(ξ ≥ a).

This is equivalent to

lim
λ→∞ v

(

Sλ

Bλ

≤ a
)

= ṽ(ξ ≤ a). �
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