
Yuying et al. Journal of Inequalities and Applications        (2018) 2018:327 
https://doi.org/10.1186/s13660-018-1898-1

R E V I E W Open Access

Extragradient subgradient methods for
solving bilevel equilibrium problems
Tadchai Yuying1, Bui Van Dinh2, Do Sang Kim3 and Somyot Plubtieng1,4*

*Correspondence:
somyotp@nu.ac.th
1Department of Mathematics,
Faculty of Science, Naresuan
University, Phitsanulok, Thailand
4Center of Excellence in Nonlinear
Analysis and Optimization, Faculty
of Science, Naresuan University,
Phitsanulok, Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper, we propose two algorithms for finding the solution of a bilevel
equilibrium problem in a real Hilbert space. Under some sufficient assumptions on
the bifunctions involving pseudomonotone and Lipschitz-type conditions, we obtain
the strong convergence of the iterative sequence generated by the first algorithm.
Furthermore, the strong convergence of the sequence generated by the second
algorithm is obtained without a Lipschitz-type condition.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H , and let f and g be
bifunctions from H × H to R such that f (x, x) = 0 and g(x, x) = 0 for all x ∈ H . The equi-
librium problem associated with g and C is denoted by EP(C, g) : Find x∗ ∈ C such that

g
(
x∗, y

) ≤ 0 for every y ∈ C. (1)

The solution set of problem (1) is denoted by Ω . The equilibrium problem is very impor-
tant because many problems arise in applied areas such as the fixed point problem, the
(generalized) Nash equilibrium problem in game theory, the saddle point problem, the
variational inequality problem, the optimization problem and others.

The basic method for solving the monotone equilibrium problem is the proximal
method (see [14, 16, 19]). In 2008, Tran et al. [25] proposed the extragradient algorithm
for solving the equilibrium problem by using the strongly convex minimization problem to
solve at each iteration. Furthermore, Hieu [9] introduced subgradient extragradient meth-
ods for pseudomonotone equilibrium problem and the other methods (see the details in
[1, 8, 10, 15, 17, 22, 28]).

In this paper, we consider the equilibrium problem whose constraints are the solution
sets of equilibrium problems (bilevel equilibrium problems) : Find x∗ ∈ Ω such that

f
(
x∗, y

) ≥ 0 for every y ∈ Ω . (2)
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The solution set of problem (2) is denoted by Ω∗. The bilevel equilibrium problems were
introduced by Chadli et al. [4] in 2000. This kind of problems is very important and inter-
esting because it is a generalization class of problems such as optimization problems over
equilibrium constraints, variational inequality over equilibrium constraints, hierarchical
minimization problems, and complementarity problems. Furthermore, the particular case
of the bilevel equilibrium can be applied to a real word model such as the variational in-
equality over the fixed point set of a firmly nonexpansive mapping applied to the power
control problem of CDMA networks which were introduced by Iiduka [11]. For more on
the relation of bilevel equilibrium with particular cases, see [7, 12, 21].

Methods for solving bilevel equilibrium problems have been studied extensively by many
authors. In 2010, Moudafi [20] introduced a simple proximal method and proved the weak
convergence to a solution of problem (2). In 2014, Quy [23] introduced the algorithm by
combining the proximal method with the Halpern method for solving bilevel monotone
equilibrium and fixed point problem. For more details and most recent works on the meth-
ods for solving bilevel equilibrium problems, we refer the reader to [2, 5, 24]. The authors
considered the method for monotone and pseudoparamonotone equilibrium problem. If
a bifunction is more generally monotone, we cannot use the above methods for solving
bilevel equilibrium problem, for example, the pseudomonotone property.

Inspired by the above work, in this paper, we propose a method for finding the solution
for bilevel equilibrium problems where f is strongly monotone and g is pseudomonotone
and Lipschitz-type continuous. Firstly, we obtain the convergent sequence by combining
an extragradient subgradient method with the Halpern method. Second, we obtain the
convergent sequence without Lipschitz-type continuity on bifunction g by combining an
Armijo line search with the extragradient subgradient method.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . Denote that xn ⇀ x
and xn → x are the weak convergence and the strong convergence of a sequence {xn} to x,
respectively. For every x ∈ H , there exists a unique element PCx defined by

PCx = inf
{‖x – y‖ : y ∈ C

}
.

It is also known that PC is a nonexpansive mapping from H onto C, i.e., ‖PC(x) – PC(y)‖ ≤
‖x – y‖ ∀x, y ∈ H . For every x ∈ H and y ∈ C, we have

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2 and 〈x – PCx, PCx – y〉 ≥ 0.

A bifunction ψ : H × H →R is called:
(i) β-strongly monotone on C if

ψ(x, y) + ψ(y, x) ≤ –β‖x – y‖2 ∀x, y ∈ C;

(ii) monotone on C if

ψ(x, y) + ψ(y, x) ≤ 0 ∀x, y ∈ C;
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(iii) pseudomonotone on C if

ψ(x, y) ≥ 0 ⇒ ψ(y, x) ≤ 0, ∀x, y ∈ C.

It is easy to check that the monotone bifunction implies the pseudomonotone bifunction.
On the other hand, if the bifunction is pseudomonotone, then we cannot guarantee that
the bifunction is monotone, for example, let φ(x, y) = 2y–x

1–x for all x, y ∈R. It follows that φ is
pseudomonotone on R

+ \ {0} but φ is not monotone on R
+ \ {0}. Let ψ(x, ·) be convex for

every x ∈ H . For each fixed x ∈ H , the subdifferential of ψ(x, .) at x, denoted by ∂2ψ(x, x),
is defined by

∂2ψ(x, x) =
{

w ∈ H : ψ(x, y) – ψ(x, x) ≥ 〈w, y – x〉 ∀y ∈ H
}

=
{

w ∈ H : ψ(x, y) ≥ 〈w, y – x〉 ∀y ∈ H
}

, (3)

studied in [13]. In this paper, we consider the bifunctions f and g under the following
conditions.

Condition A
(A1) f (x, ·) is convex, weakly lower semicontinuous and subdifferentiable on H for

every fixed x ∈ H .
(A2) f (·, y) is weakly upper semicontinuous on H for every fixed y ∈ H .
(A3) f is β-strongly monotone on H .
(A4) For each x, y ∈ H , there exists L > 0 such that

‖w – v‖ ≤ L‖x – y‖, ∀w ∈ ∂2f (x, x), v ∈ ∂2f (y, y).

(A5) The function x �→ ∂2f (x, x) is bounded on the bounded subsets of H .

Condition B
(B1) g(x, ·) is convex, weakly lower semicontinuous, and subdifferentiable on H for

every fixed x ∈ H .
(B2) g(·, y) is weakly upper semicontinuous on H for every fixed y ∈ H .
(B3) g is pseudomonotone on C with respect to Ω , i.e.,

g
(
x, x∗) ≤ 0, ∀x ∈ C, x∗ ∈ Ω .

(B4) g is Lipschitz-type continuous, i.e., there are two positive constants L1, L2 such
that g(x, y) + g(y, z) ≥ g(x, z) – L1‖x – y‖2 – L2‖y – z‖2, ∀x, y, z ∈ H .

(B5) g is jointly weakly continuous on H × H in the sense that, if x, y ∈ H and
{xn}, {yn} ∈ H converge weakly to x and y, respectively, then g(xn, yn) → g(x, y) as
n → +∞.

Example 2.1 Let f , g : R × R → R be defined by f (x, y) = 5y2 – 7x2 + 2xy and g(x, y) =
2y2 – 7x2 + 5xy. It follows that f and g satisfy Condition A and Condition B, respectively.

Lemma 2.2 ([3, Propositions 3.1, 3.2]) If the bifunction g satisfies Assumptions (B1), (B2),
and (B3), then the solution set Ω is closed and convex.
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Remark 2.3 Let the bifunction f satisfy Assumption A and the bifunction g satisfy B. If Ω �=
∅, then the bilevel equilibrium problem (2) has a unique solution, see the details in [23].

Lemma 2.4 ([6]) Let C be a nonempty closed convex subset of a real Hilbert space H and
φ : C → R be a convex, lower semicontinuous, and subdifferentiable function on C. Then
x∗ is a solution to the convex optimization problem min{φ(x) : x ∈ C} if and only if 0 ∈
∂φ(x∗) + NC(x∗), where ∂φ(·) denotes the subdifferential of φ and NC(x∗) is the normal cone
of C at x∗.

Lemma 2.5 ([27]) Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
in (0, 1), and {ξn} be a sequence in R satisfying the condition

an+1 ≤ (1 – αn)an + αnξn ∀n ≥ 0,

where
∑∞

n=0 αn = ∞ and lim supn→∞ ξn ≤ 0. Then limn→∞ an = 0.

Lemma 2.6 ([18]) Let {an} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {anj} of {an} such that

anj < anj+1 for all j ≥ 0.

Also consider the sequence of integers {τ (n)}n≥n0 defined, for all n ≥ n0, by

τ (n) = max{k ≤ n|ak < ak+1}.

Then {τ (n)}n≥n0 is a nondecreasing sequence verifying

lim
n→∞ τ (n) = ∞,

and, for all n ≥ n0, the following two estimates hold:

aτ (n) ≤ aτ (n)+1 and an ≤ aτ (n)+1.

Lemma 2.7 Suppose that f is β-strongly monotone on H and satisfies (A4). Let 0 < α < 1,
0 ≤ η ≤ 1 – α, and 0 < μ < 2β

L2 . For each x, y ∈ H , w ∈ ∂2f (x, x), and v ∈ ∂2f (y, y), we have

∥
∥(1 – η)x – αμw –

[
(1 – η)y – αμv

]∥∥ ≤ (1 – η – ατ )‖x – y‖,

where τ = 1 –
√

1 – μ(2β – μL2) ∈ (0, 1].

Proof Let x, y ∈ H , w ∈ ∂2f (x, x), and v ∈ ∂2f (y, y). Thus

∥∥(1 – η)x – αμw –
[
(1 – η)y – αμv

]∥∥

≤ ∥
∥(1 – η)(x – y) – αμ(w – v)

∥
∥

=
∥∥(1 – η – α)(x – y) + α

[
(x – y) – μ(w – v)

]∥∥

≤ (1 – η – α)‖x – y‖ + α
∥∥(x – y) – μ(w – v)

∥∥. (4)
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Since f : H × H →R is β-strongly monotone, w ∈ ∂2f (x, x), and v ∈ ∂2f (y, y), we have

–β‖x – y‖2 ≥ f (x, y) + f (y, x) ≥ –〈x – y, w – v〉. (5)

From (5) and (A4), we have

∥∥(x – y) – μ(w – v)
∥∥2 = ‖x – y‖2 – 2μ〈x – y, w – v〉 + μ2‖w – v‖2

≤ ‖x – y‖2 – 2μβ‖x – y‖2 + μ2L2‖x – y‖2

=
(
1 – 2μβ + μ2L2)‖x – y‖2.

This implies that

∥∥(x – y) – μ(w – v)
∥∥ ≤

√
1 – 2μβ + μ2L2‖x – y‖. (6)

By using (4) and (6), we can conclude that

∥
∥(1 – η)x – αμw –

[
(1 – η)y – αμv

]∥∥

≤ (1 – η – α)‖x – y‖ +
(
α
√

1 – 2μβ + μ2L2
)‖x – y‖

= (1 – η – ατ )‖x – y‖,

where τ = 1 –
√

1 – μ(2β – μL2) ∈ (0, 1]. �

3 The extragradient subgradient Halpern methods
In this section, we propose the algorithm for finding the solution of a bilevel equilibrium
problem under the strong monotonicity of f and the pseudomonotonicity and Lipschitz-
type continuous conditions on g .

Algorithm 1
Initialization: Choose x0 ∈ H , 0 < μ < 2β

L2 , the sequences {αn} ⊂ (0, 1), {ηn}, and {λn} are
such that

⎧
⎪⎪⎨

⎪⎪⎩

limn→∞ αn = 0,
∑∞

n=0 αn = ∞,

0 ≤ ηn ≤ 1 – αn ∀n ≥ 0, limn→∞ ηn = η < 1,

0 < λ ≤ λn ≤ λ < min( 1
2L1

, 1
2L2

).

Set n = 0 and go to Step 1.
Step 1. Compute

yn = arg min
y∈C

{
λng(xn, y) +

1
2
‖y – xn‖2

}
,

zn = arg min
y∈C

{
λng(yn, y) +

1
2
‖y – xn‖2

}
.

Step 2. Compute wn ∈ ∂2f (zn, zn) and

xn+1 = ηnxn + (1 – ηn)zn – αnμwn.

Set n = n + 1 and go back to Step 1.
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Theorem 3.1 Let bifunctions f and g satisfy Condition A and Condition B, respectively.
Assume that Ω �= ∅. Then the sequence {xn} generated by Algorithm 1 converges strongly to
the unique solution of the bilevel equilibrium problem (2).

Proof Under assumptions of two bifunctions f and g , we get the unique solution of the
bilevel equilibrium problem (2), denoted by x∗.

Step 1: Show that

∥
∥zn – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 – (1 – 2λnL1)‖xn – yn‖2 – (1 – 2λnL2)‖yn – zn‖2. (7)

The definition of yn and Lemma 2.4 imply that

0 ∈ ∂2

{
λng(xn, y) +

1
2
‖y – xn‖2

}
(yn) + NC(yn).

There are w ∈ ∂2g(xn, yn) and w̄ ∈ NC(yn) such that

λnw + yn – xn + w̄ = 0. (8)

Since w̄ ∈ NC(yn), we have

〈w̄, y – yn〉 ≤ 0 for all y ∈ C. (9)

By using (8) and (9), we obtain λn〈w, y – yn〉 ≥ 〈xn – yn, y – yn〉 for all y ∈ C. Since zn ∈ C,
we have

λn〈w, zn – yn〉 ≥ 〈xn – yn, zn – yn〉. (10)

It follows from w ∈ ∂2g(xn, yn) that

g(xn, y) – g(xn, yn) ≥ 〈w, y – yn〉 for all y ∈ H . (11)

By using (10) and (11), we get

λn
{

g(xn, zn) – g(xn, yn)
} ≥ 〈xn – yn, zn – yn〉. (12)

Similarly, the definition of zn implies that

0 ∈ ∂2

{
λng(yn, y) +

1
2
‖y – xn‖2

}
(zn) + NC(zn).

There are u ∈ ∂2g(yn, zn) and ū ∈ NC(zn) such that

λnu + zn – xn + ū = 0. (13)

Since ū ∈ NC(zn), we have

〈ū, y – zn〉 ≤ 0 for all y ∈ C. (14)



Yuying et al. Journal of Inequalities and Applications        (2018) 2018:327 Page 7 of 21

By using (13) and (14), we obtain λn〈u, y – zn〉 ≥ 〈xn – zn, y – zn〉 for all y ∈ C. Since x∗ ∈ C,
we have

λn
〈
u, x∗ – zn

〉 ≥ 〈
xn – zn, x∗ – zn

〉
. (15)

It follows from u ∈ ∂2g(yn, zn) that

g(yn, y) – g(yn, zn) ≥ 〈u, y – zn〉 for all y ∈ H . (16)

By using (15) and (16), we get

λn
{

g
(
yn, x∗) – g(yn, zn)

} ≥ 〈
xn – zn, x∗ – zn

〉
. (17)

Since x∗ ∈ Ω , we have g(x∗, yn) ≥ 0. If follows from the pseudomonotonicity of g on C with
respect to Ω that g(yn, x∗) ≤ 0. This implies that

〈
xn – zn, zn – x∗〉 ≥ λng(yn, zn). (18)

Since g is Lipschitz-type continuous, there exist two positive constants L1, L2 such that

g(yn, zn) ≥ g(xn, zn) – g(xn, yn) – L1‖xn – yn‖2 – L2‖yn – zn‖2. (19)

By using (18) and (19), we get

〈
xn – zn, zn – x∗〉 ≥ λn

{
g(xn, zn) – g(xn, yn)

}
– λnL1‖xn – yn‖2 – λnL2‖yn – zn‖2.

From (12) and the above inequality, we obtain

2
〈
xn – zn, zn – x∗〉 ≥ 2〈xn – yn, zn – yn〉 – λnL1‖xn – yn‖2 – λnL2‖yn – zn‖2. (20)

We know that

2
〈
xn – zn, zn – x∗〉 =

∥∥xn – x∗∥∥2 – ‖zn – xn‖2 –
∥∥zn – x∗∥∥2,

2〈xn – yn, zn – yn〉 = ‖xn – yn‖2 + ‖zn – yn‖2 – ‖xn – zn‖2.

From (20), we can conclude that

∥∥zn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 – (1 – 2λnL1)‖xn – yn‖2 – (1 – 2λnL2)‖yn – zn‖2.

Step 2: The sequences {xn}, {wn}, {yn}, and {zn} are bounded.
Since 0 < λn < a, where a = min( 1

2L1
, 1

2L2
), we have

(1 – 2λnL1) > 0 and (1 – 2λnL2) > 0.

It follows from (7) and the above inequalities that

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ for all n ∈N. (21)
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By Lemma 2.7 and (21), we obtain

∥∥xn+1 – x∗∥∥ =
∥∥ηnxn + (1 – ηn)zn – αnμwn – x∗ + ηnx∗ – ηnx∗ + αnμv – αnμv

∥∥

=
∥∥(1 – ηn)zn – αnμwn – (1 – ηn)x∗ + αnμv + η

(
xn – x∗) – αnμv

∥∥

≤ ∥∥(1 – ηn)zn – αnμwn –
[
(1 – ηn)x∗ – αnμv

]∥∥ + ηn
∥∥xn – x∗∥∥ + αnμ‖v‖

≤ (1 – ηn – αnτ )
∥
∥zn – x∗∥∥ + ηn

∥
∥xn – x∗∥∥ + αnμ‖v‖

≤ (1 – ηn – αnτ )
∥
∥xn – x∗∥∥ + ηn

∥
∥xn – x∗∥∥ + αnμ‖v‖

= (1 – αnτ )
∥∥xn – x∗∥∥ + αnμ‖v‖

= (1 – αnτ )
∥
∥xn – x∗∥∥ + αnτ

(
μ‖v‖

τ

)
, (22)

where wn ∈ ∂2f (zn, zn) and v ∈ ∂2f (x∗, x∗). This implies that

∥
∥xn+1 – x∗∥∥ ≤ max

{∥
∥xn – x∗∥∥,

μ‖v‖
τ

}
.

By induction, we obtain

∥∥xn – x∗∥∥ ≤ max

{∥∥x0 – x∗∥∥,
μ‖v‖

τ

}
.

Thus the sequence {xn} is bounded. By using (21), we have {zn}, and using Condition (A5),
we can conclude that {wn} is also bounded.

Step 3: Show that the sequence {xn} converges strongly to x∗.
Since x ∈ Ω∗, we have f (x∗, y) ≥ 0 for all y ∈ Ω . Thus x∗ is a minimum of the convex

function f (x∗, ·) over Ω . By Lemma 2.4, we obtain 0 ∈ ∂2f (x∗, x∗) + NΩ (x∗). Then there
exists v ∈ ∂2f (x∗, x∗) such that

〈
v, z – x∗〉 ≥ 0 for all z ∈ Ω . (23)

Note that

‖x – y‖2 ≤ ‖x‖2 – 2〈y, x – y〉 for all x, y ∈ H . (24)

From Lemma (2.7) and (24), we obtain

∥∥xn+1 – x∗∥∥2 =
∥∥ηnxn + (1 – ηn)zn – αnμwn – x∗∥∥2

=
∥∥(1 – ηn)zn – αnμwn –

[
(1 – ηn)x∗ – αnμv

]

+ ηn
(
xn – x∗) – αnμv

∥
∥2

≤ ∥
∥(1 – ηn)zn – αnμwn –

[
(1 – ηn)x∗ – αnμv

]

+ ηn
(
xn – x∗)∥∥2 – 2αnμ

〈
v, xn+1 – x∗〉

≤ {∥∥(1 – ηn)zn – αnμwn –
[
(1 – ηn)x∗ – αnμv

]

+ ηn‖
(
xn – x∗)∥∥}2 – 2αnμ

〈
v, xn+1 – x∗〉
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≤ [
(1 – ηn – αnτ )

∥∥zn – x∗∥∥ + ηn
∥∥xn – x∗∥∥]2 – 2αnμ

〈
v, xn+1 – x∗〉

≤ (1 – ηn – αnτ )
∥
∥zn – x∗∥∥2 + ηn

∥
∥xn – x∗∥∥2 – 2αnμ

〈
v, xn+1 – x∗〉

≤ (1 – ηn – αnτ )
∥∥xn – x∗∥∥2 + ηn

∥∥xn – x∗∥∥2 – 2αnμ
〈
v, xn+1 – x∗〉

= (1 – αnτ )
∥∥xn – x∗∥∥2 + 2αnμ

〈
v, x∗ – xn+1

〉
.

It follows that

∥∥xn+1 – x∗∥∥2 ≤ (1 – αnτ )
∥∥xn – x∗∥∥2 + 2αnμ

〈
v, x∗ – xn+1

〉
. (25)

Let us consider two cases.
Case 1: There exists n0 such that {‖xn – x∗‖} is decreasing for n ≥ n0. Therefore the limit

of sequence {‖xn – x∗‖} exists. By using (21) and (25), we obtain

0 ≤ ∥∥xn – x∗∥∥2 –
∥∥zn – x∗∥∥2

≤ –
αnτ

1 – ηn

∥∥zn – x∗∥∥2 –
2αnμ

1 – ηn

〈
v, xn+1 – x∗〉

+
1

1 – ηn

(∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2). (26)

Since limn→∞ ηn = η < 1, limn→∞ αn = 0 and the limit of {‖xn – x∗‖} exists, we have

lim
n→∞

(∥∥xn – x∗∥∥2 –
∥∥zn – x∗∥∥2) = 0. (27)

From 0 < λn < a and inequality (7), we get

(1 – 2a)‖xn – yn‖2 ≤ (1 – 2λnL1)‖xn – yn‖2 ≤ ∥∥xn – x∗∥∥2 –
∥∥zn – x∗∥∥2.

By using (27), we obtain limn→∞ ‖xn – yn‖ = 0. Next, we show that

lim sup
n→∞

〈
v, x∗ – xn+1

〉 ≤ 0. (28)

Take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
v, x∗ – xn+1

〉
= lim sup

k→∞

〈
v, x∗ – xnk

〉
.

Since {xnk } is bounded, we may assume that {xnk } converges weakly to some x̄ ∈ H . There-
fore

lim sup
n→∞

〈
v, x∗ – xn+1

〉
= lim sup

k→∞

〈
v, x∗ – xnk

〉
=

〈
v, x∗ – x̄

〉
. (29)

Since limn→∞ ‖xn – yn‖ = 0 and xnk ⇀ x̄, we have ynk ⇀ x̄. Since C is closed and convex,
it is also weakly closed and thus x̄ ∈ C. Next, we show that x̄ ∈ Ω . From the definition of
{yn} and Lemma 2.4, we obtain

0 ∈ ∂2

{
λng(xn, y) +

1
2
‖xn – yn‖2

}
(yn) + NC(yn).
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There exist w̄ ∈ NC(yn) and w ∈ ∂2g(xn, yn) such that

λnw + yn – xn + w̄ = 0. (30)

Since w̄ ∈ NC(yn), we have 〈w̄, y – yn〉 ≤ 0 for all y ∈ C. From (30), we obtain

λn〈w, y – yn〉 ≥ 〈xn – yn, y – yn〉 for all y ∈ C. (31)

Since w ∈ ∂2g(xn, yn), we have

g(xn, y) – g(xn, yn) ≥ 〈w, y – yn〉 for all y ∈ H . (32)

Combining (31) and (32), we get

λn
{

g(xn, y) – g(xn, yn)
} ≥ 〈xn – yn, y – yn〉 for all y ∈ C. (33)

Taking n = nk and k → ∞ in (33), the assumption of λn and (B5), we obtain g(x̄, y) ≥ 0 for
all y ∈ C. This implies that x̄ ∈ Ω . By inequality (23), we obtain 〈v, x̄ – x∗〉 ≥ 0. It follows
from (29) that

lim sup
n→∞

〈
v, x∗ – xn+1

〉 ≤ 0. (34)

We can write inequality (25) in the following form:

∥∥xn+1 – x∗∥∥2 ≤ (1 – αnτ )
∥∥xn – x∗∥∥2 – αnτξn,

where ξn = 2μ

τ
〈v, x∗ – xn+1〉. It follows from (34) that lim supn→∞ ξn ≤ 0. By Lemma 2.5, we

can conclude that limn→∞ ‖xn – x∗‖2 = 0. Hence xn → x∗ as n → ∞.
Case 2: There exists a subsequence {xnj} of {xn} such that ‖xnj – x∗‖ ≤ ‖xnj+1 – x∗‖ for

all j ∈ N. By Lemma 2.6, there exists a nondecreasing sequence {τ (n)} of N such that
limn→∞ τ (n) = ∞, and for each sufficiently large n ∈N, we have

∥
∥xτ (n) – x∗∥∥ ≤ ∥

∥xτ (n)+1 – x∗∥∥ and
∥
∥xn – x∗∥∥ ≤ ∥

∥xτ (n)+1 – x∗∥∥. (35)

Combining (22) and (35), we have

∥∥xτ (n) – x∗∥∥ ≤ ∥∥xτ (n)+1 – x∗∥∥

≤ (1 – ητ (n) – ατ (n)τ )‖zτ (n)–x∗‖ + ητ (n)
∥
∥xτ (n) – x∗∥∥ + ατ (n)μ‖v‖. (36)

From (21) and (36), we get

0 ≤ ∥∥xτ (n) – x∗∥∥ –
∥∥zτ (n) – x∗∥∥ ≤ –

ατ (n)τ

1 – ητ (n)

∥∥zτ (n) – x∗∥∥ +
ατ (n)μ

1 – ητ (n)
‖v‖. (37)

Since limn→∞ αn = 0, limn→∞ ηn = η < 1, {zn} is bounded, and (37), we have limn→∞(‖xτ (n) –
x∗‖ – ‖zτ (n) – x∗‖) = 0. It follows from the boundedness of {xn} and {zn} that

lim
n→∞

(∥∥xτ (n) – x∗∥∥2 –
∥∥zτ (n) – x∗∥∥2) = 0. (38)
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By using the assumption of {λn}, we get the following two inequalities:

1 – 2λτ (n)L1 > 1 – 2aL1 > 0 and 1 – 2λτ (n)L2 > 1 – 2aL2 > 0.

From (7), we obtain

∥∥zτ (n) – x∗∥∥2 ≤ ∥∥xτ (n) – x∗∥∥2 – (1 – 2λτ (n)L1)‖xτ (n) – yτ (n)‖2

– (1 – 2λτ (n)L2)‖yτ (n) – zτ (n)‖2

≤ ∥∥xτ (n) – x∗∥∥2 – (1 – 2aL1)‖xτ (n) – yτ (n)‖2

– (1 – 2aL2)‖yτ (n) – zτ (n)‖2.

This implies that

0 < (1 – 2aL1)‖xτ (n) – yτ (n)‖2 + (1 – 2aL2)‖yτ (n) – zτ (n)‖2

≤ ∥
∥xτ (n) – x∗∥∥2 –

∥
∥zτ (n) – x∗∥∥2.

It follows from (38) and the above inequality that

lim
n→∞‖xτ (n) – yτ (n)‖ = 0 and lim

n→∞‖yτ (n) – zτ (n)‖ = 0. (39)

Note that ‖xτ (n) – zτ (n)‖ ≤ ‖xτ (n) – yτ (n)‖ + ‖yτ (n) – zτ (n)‖. From (39), we have

lim
n→∞‖xτ (n) – zτ (n)‖ = 0. (40)

By using the definition of xn+1 and Lemma 2.7, we obtain

‖xτ (n)+1 – xτ (n)‖ =
∥
∥ητ (n)xτ (n) + (1 – ητ (n))zτ (n) – ατ (n)μtτ (n) – xτ (n)

∥
∥

=
∥
∥(1 – ητ (n))zτ (n) – ατ (n)μtτ (n)

–
[
(1 – ητ (n))xτ (n) – ατ (n)wτ (n)

]
– ατ (n)wτ (n)

∥
∥

≤ ∥∥(1 – ητ (n))zτ (n) – ατ (n)tτ (n)

–
[
(1 – ητ (n))xτ (n) – ατ (n)wτ (n)

]∥∥ + ατ (n)‖wτ (n)‖
≤ (1 – ητ (n) – ατ (n)τ )‖zτ (n) – xτ (n)‖ + ατ (n)‖wτ (n)‖
≤ ‖zτ (n) – xτ (n)‖ + ατ (n)‖wτ (n)‖,

where tτ (n) ∈ ∂2f (zτ (n), zτ (n)) and wτ (n) ∈ ∂2f (xτ (n), xτ (n)). Since limn→∞ αn = 0, the bounded-
ness of {wτ (n)} and (40), we have limn→∞ ‖xτ (n)+1 – xτ (n)‖ = 0. As proved in the first case,
we can conclude that

lim sup
n→∞

〈
v, x∗ – xτ (n)+1

〉
= lim sup

k→∞

〈
v, x∗ – xτ (n)

〉 ≤ 0. (41)
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Combining (25) and (35), we obtain

∥∥xτ (n)+1 – x∗∥∥2 ≤ (1 – ατ (n)τ )
∥∥xτ (n) – x∗∥∥2 + 2ατ (n)μ

〈
v, x∗ – xτ (n)+1

〉

≤ (1 – ατ (n)τ )
∥
∥xτ (n)+1 – x∗∥∥2 + 2ατ (n)μ

〈
v, x∗ – xτ (n)+1

〉
.

By using (35) again, we have

∥∥xn – x∗∥∥2 ≤ ∥∥xτ (n)+1 – x∗∥∥2 ≤ 2μ

τ

〈
v, x∗ – xτ (n)+1

〉
. (42)

From (41), we can conclude that lim supn→∞ ‖xn – x∗‖2 ≤ 0. Hence xn → x∗ as n → ∞.
This completes the proof. �

4 The extragradient subgradient methods with line searches
In this section, we introduce the algorithm for finding the solution of a bilevel equilibrium
problem without the Lipschitz condition for the bifunction g .

Algorithm 2
Initialization: Choose x0 ∈ C, 0 < μ < 2β

L2 , ρ ∈ (0, 2), γ ∈ (0, 1), the sequences {λn}, {ξn},
and {αn} ⊂ (0, 1) such that

⎧
⎨

⎩
limn→∞ αn = 0,

∑∞
n=0 αn = ∞,

∑∞
n=0 α2

n < ∞,

λn ∈ [λ,λ] ⊂ (0,∞), ξn ∈ [ξ , ξ ] ⊂ (0, 2).

Set n = 0, and go to Step 2.
Step 1. Compute

yn = arg min
y∈C

{
λng(xn, y) +

1
2
‖y – xn‖2

}
.

If yn = xn, then set un = xn and go to Step 4. Otherwise, go to Step 2.
Step 2. (Armijo line search rule) Find m as the smallest positive integer number satisfying

⎧
⎨

⎩
zn,m = (1 – γ m)xn + γ myn,

g(zn,m, xn) – g(zn,m, yn) ≥ ρ

2λn
‖xn – yn‖2.

Set zn = zn,m and γn = γ m.
Step 3. Choose tn ∈ ∂2g(zn, xn) and compute un = PC(xn – ξnσntn) where σn = g(zn ,xn)

‖tn‖2

Step 4. Compute wn ∈ ∂2f (un, un) and

xn+1 = PC(un – αnμwn).

Set n = n + 1, and go back to Step 1.

Lemma 4.1 ([26]) Suppose that yn �= xn for some n ∈N. Then the line search corresponding
to xn and yn (Step 2) is well defined, g(zn, xn) > 0, and 0 /∈ ∂2g(zn, xn).
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Lemma 4.2 ([26]) Let g : Θ × Θ → ∞ be a bifunction satisfying conditions (B1) on C and
(B5) on Θ , where Θ is an open convex set containing C. Let x̄, ȳ ∈ Θ and {xn}, {yn} be two
sequences in Θ converging weakly to x̄, ȳ ∈ Θ , respectively. Then, for any ε > 0, there exist
η > 0 and nε ∈N such that

∂2g(xn, yn) ⊂ ∂2g(x̄, ȳ) +
ε

η
B

for all n ≥ nε , where B denotes the closed unit ball in H .

Lemma 4.3 ([8]) Let the bifunction g satisfy assumption (B1) on C × C, (B5) on Θ × Θ .
Suppose that {xn} is a bounded sequence in C,ρ > 0 and {yn} is a sequence such that

yn = arg min
y∈C

{
g(xn, y) +

ρ

2
‖y – xn‖2

}
.

Then {yn} is also bounded.

Theorem 4.4 Let the bifunction f satisfy Condition A and g satisfy Conditions (B1)–(B3)
and (B5). Assume that Ω �= ∅. Then the sequences {xn} generated by Algorithm 2 converge
strongly to the unique solution of the bilevel equilibrium problem (2).

Proof Let x∗ be the unique solution of the bilevel equilibrium problem (2). Then we have
x∗ ∈ Ω and there exists v ∈ ∂2f (x∗, x∗) such that

〈
v, z – x∗〉 ≥ 0 for all z ∈ Ω . (43)

Step 1: Show that

∥∥un – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 – ξn(2 – ξ2)
(
σn‖tn‖

)2. (44)

By the definition of un, we have

∥
∥un – x∗∥∥2 ≤ ∥

∥PC(xn – ξnσntn) – PC
(
x∗)∥∥2

≤ ∥
∥xn – ξnσntn – x∗∥∥2

=
∥∥xn – x∗∥∥2 – 2ξnσn

〈
tn, xn – x∗〉 +

(
ξnσn‖tn‖

)2. (45)

Since tn ∈ ∂2g(zn, xn) and g(zn, ·) is convex on C, we have g(zn, x∗) – g(zn, xn) ≥ 〈tn, x∗ – xn〉.
It follows that

〈
tn, xn – x∗〉 ≥ g(zn, xn) – g

(
zn, x∗). (46)

Since g is pseudomonotone on C with respect to Ω , we have g(zn, x∗) ≤ 0. It follows from
(46) and the definition of σn that

〈
tn, xn – x∗〉 ≥ g(zn, xn) = σn‖tn‖2. (47)
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Combining (45) with (47), we obtain

∥
∥un – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 – 2ξnσn
(
σn‖tn‖2) +

(
ξnσn‖tn‖

)2

=
∥
∥xn – x∗∥∥2 – 2ξn

(
σn‖tn‖

)2 + ξn
2(σn‖tn‖

)2

=
∥
∥xn – x∗∥∥2 – ξn(2 – ξn)

(
σn‖tn‖

)2.

Step 2: The sequences {xn}, {yn}, {un}, and {wn} are bounded.
Since ξn ∈ [ξ , ξ ] ⊂ (0, 2) and (44), we have

∥
∥un – x∗∥∥ ≤ ∥

∥xn – x∗∥∥. (48)

By the definition of xn+1, we get

∥
∥xn+1 – x∗∥∥ =

∥
∥PC(un – αnμwn) – PC

(
x∗)∥∥

≤ ∥
∥un – αnμwn – x∗∥∥

≤ ∥
∥(

un – x∗) – αnμ(wn – v) – αnμv
∥
∥

=
∥
∥(

un – x∗) – αnμ(wn – v)
∥
∥ + αnμ‖v‖. (49)

From Lemma 2.7, (48), and (49), we can conclude that

∥
∥xn+1 – x∗∥∥ = (1 – αnτ )

∥
∥un – x∗∥∥ + αnμ‖v‖

≤ (1 – αnτ )
∥∥xn – x∗∥∥ + αnτ

(
μ‖v‖

τ

)
. (50)

This implies that

∥∥xn+1 – x∗∥∥ ≤ max

{∥∥xn – x∗∥∥,
μ‖v‖

τ

}
.

By induction, we obtain

∥∥xn – x∗∥∥ ≤ max

{∥∥x0 – x∗∥∥,
μ‖v‖

τ

}
.

Thus the sequence {xn} is bounded. Hence we can conclude from (48) and Lemma 4.3
that {yn} and {un} are bounded, respectively. From condition (A4), we have {wn} is also
bounded.

Step 3: We show that if there is a subsequence {xnk } of {xn} converging weakly to x̄ and
limk→∞(σnk ‖tnk ‖) = 0, then we have x̄ ∈ Ω .

Firstly, we will show that {tnk } is bounded. Since {zn} is bounded, there is a subsequence
{znk } of {zn} converging weakly to z̄ By using Lemma 4.2, for any ε > 0, there exist η > 0
and k0 such that

∂2g(znk , xnk ) ⊂ ∂2g(z̄, x̄) +
ε

η
B
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for all k ≥ k0. Since {tnk } ∈ ∂2g(znk , xnk ), we have {tnk } is bounded. Next, we show that
‖xnk – ynk ‖ → 0. Without loss of generality, we can assume that xnk �= ynk for all k ∈ N. By
Lemma 4.1, we obtain g(znk , xnk ) > 0 and tnk �= 0. Since limk→∞(σnk ‖tnk ‖) = 0 and {tnk } is
bounded, we have

lim
k→∞

g(znk , xnk ) = lim
k→∞

(
σnk ‖tnk ‖

)‖tnk ‖ = 0. (51)

It follows from the convexity of g(znk , ·) that

γnk g(znk , ynk ) + (1 – γnk )g(znk , xnk ) ≥ g(znk , znk ) = 0.

This implies that

γnk

[
g(znk , xnk ) – g(znk , ynk )

] ≤ g(znk , xnk ). (52)

By the Armijo line search, we get ρ

2λn
‖xn – yn‖2 ≤ g(znk , xnk ) – g(znk , ynk ), and (52) implies

that

ργnk

2λnk

‖xn – yn‖2 ≤ γnk

[
g(znk , xnk ) – g(znk , ynk )

] ≤ g(znk , xnk ). (53)

Combining (51) with (53), we obtain

lim
k→∞

γnk ‖xn – yn‖2 = 0. (54)

Then we consider two cases.
Case 1. lim supk→∞ γnk > 0. There exist γ̄ > 0 and a subsequence of {γnk } denoted again

by {γnk } such that γnk > γ̄ for all k. So we get from (54) that

lim
k→∞

‖xnk – ynk ‖ = 0. (55)

Since xnk ⇀ x̄ and (55), we have ynk ⇀ x̄. On the other hand, by the definition of ynk , we
have

λnk

{
g(xnk , y) – g(xnk , ynk )

} ≥ 〈xnk – ynk , y – ynk 〉 for all y ∈ C. (56)

Therefore

λnk

{
g(xnk , y) – g(xnk , ynk )

} ≥ –‖xnk – ynk ‖‖y – ynk ‖ for all y ∈ C.

Letting k → ∞ in the above inequality, using (55) and the jointly weak continuity of g , we
have g(x̄, y) – g(x̄, x̄) ≥ 0 for all y ∈ C. So, g(x̄, y) ≥ 0 for all y ∈ C. Hence x̄ ∈ Ω .

Case 2. lim supk→∞ γnk = 0. From the boundedness of {yn}, there exists {ynk } ⊆ {yn} such
that ynk ⇀ ȳ. Let {mk} be the sequence of the smallest non-negative integers such that
znk = (1 – γ mk )xnk + γ mk ynk and

g(znk , xnk ) – g(znk , ynk ) ≥ ρ

2λnk

‖xnk – ynk ‖2.
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Since γ mk → 0, we have mk > 0. It follows from the Armijo line search that, for mk – 1, we
have z̄nk = (1 – γ mk –1)xnk + γ mk –1ynk and

g(z̄nk , xnk ) – g(z̄nk , ynk ) <
ρ

2λnk

‖xnk – ynk ‖2. (57)

On the other hand, by the definition of yn, we have

λn
{

g(xn, y) – g(xn, yn)
} ≥ 〈xn – yn, y – yn〉 for all y ∈ C. (58)

Letting n = nk and y = xnk in (58), we get

–λnk g(xnk , ynk ) ≥ ‖xnk – ynk ‖2. (59)

Combining (57) with (59), we obtain

g(z̄nk , xnk ) – g(z̄nk , ynk ) < –
ρ

2
g(xnk , ynk ). (60)

Since xnk ⇀ x̄, ynk ⇀ ȳ, and γnk → 0, we have z̄nk ⇀ x̄. From (60) and g is jointly weakly
continuous on H × H , we get –g(x̄, ȳ) < – ρ

2 g(x̄, ȳ). Since ρ ∈ (0, 2), we have g(x̄, ȳ) ≥ 0.
Taking k → ∞ in (59), we obtain limk→∞ ‖xnk – ynk ‖ = 0. By Case 1, it is immediate that
x̄ ∈ Ω .

Step 4: Show that the sequence {xn} converges strongly to x∗. By using the definition of
xn+1 and (44), we obtain

∥∥xn+1 – x∗∥∥2 =
∥∥PC

(
un – αnμwn – PC

(
x∗))∥∥2

≤ ∥∥un – αnμwn – x∗∥∥2

=
∥∥un – x∗∥∥2 – 2αnμ

〈
wn, un – x∗〉 +

(
αnμ‖wn‖

)2

≤ ∥∥xn – x∗∥∥2 – ξn(2 – ξn)
(
σn‖tn‖

)2

– 2αnμ
〈
wn, un – x∗〉 +

(
αnμ‖wn‖

)2

≤ ∥
∥xn – x∗∥∥2 –

(
σn‖tn‖

)2 – 2αnμ
〈
wn, un – x∗〉 (61)

+
(
αnμ‖wn‖

)2.

Setting an = ‖xn – x∗‖2. It follows from the boundedness of {wn} and {un} that

∣∣〈wn, un – x∗〉∣∣ ≤ M1 and ‖wn‖2 ≤ M2. (62)

Combining (61), (62) with the definition of an, we get

an+1 – an +
(
σn‖tn‖

)2 ≤ 2αnμM1 + α2
nμ

2M2. (63)

Let us consider two cases.
Case 1: There exists n0 such that {an} is decreasing for n ≥ n0. Therefore the limit of {an}

exists, denoted by a. It follows that limn→∞(an+1 – an) = 0. From (63) and the definition of
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αn, we have

lim
n→∞

(
σn‖tn‖

)
= 0. (64)

By the definitions of xn+1 and un, we obtain

‖un – xn‖2 =
∥
∥PC(xn – σntn) – PC(xn)

∥
∥

≤ ‖xn – σntn – xn‖
= σn‖tn‖. (65)

It follows that limn→∞ ‖un – xn‖2 = 0, which implies that

lim
n→∞

∥
∥un – x∗∥∥2 = a. (66)

Since {un} ⊆ C is bounded, there exists a subsequence {unk } of {un} that converges weakly
to some ū ∈ C and satisfies the equality

lim inf
n→∞

〈
un – x∗, v

〉
= lim

k→∞
〈
unk – x∗, v

〉
.

Since unk ⇀ ū ∈ C and (43), we have

lim inf
n→∞

〈
un – x∗, v

〉
= lim

k→∞
〈
unk – x∗, v

〉
=

〈
ū – x∗, v

〉 ≥ 0. (67)

Since wn ∈ ∂2f (un, un), v ∈ ∂2f (x∗, x∗) and f is β-strongly monotone on C, we have

〈
wn, x∗ – un

〉 ≤ f
(
un, x∗) ≤ –β

∥
∥un – x∗∥∥2 – f

(
x∗, un

)

= –β
∥∥un – x∗∥∥2 –

〈
un – x∗, v

〉
.

This implies that 〈wn, un – x∗〉 ≥ β‖un – x∗‖2 + 〈un – x∗, v〉. Combining (66), (67) with the
above inequality, we get

lim inf
n→∞

〈
wn, un – x∗〉 ≥ βa. (68)

Assume that a > 0. Choose ε = 1
2βa. There exists n0 such that

〈
un – x∗, wn

〉 ≥ βa – ε =
1
2
βa for all n ≥ n0.

It follows from (61) and the above inequality that an+1 –an ≤ –αnμβa2 +α2
nμM2. Summing

this inequality from n0 to n, we obtain

an+1 – an0 ≤ –μβa2
n∑

k=n0

αk + μM2

n∑

k=n0

α2
n. (69)

Since
∑∞

k=n0
αk = ∞ and

∑∞
k=n0

α2
n < ∞, we can conclude from (69) that lim infn→∞ an =

–∞, which is a contradiction. So, a = 0, and we can conclude that limn→∞ ‖xn – x∗‖2 = 0.
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Case 2: There exists a subsequence {anj} of {an} such that anj ≤ anj+1 for all j ∈ N. Let
{τ (n)} be a nondecreasing sequence defined in Lemma 2.6. Thus

aτ (n) ≤ aτ (n)+1 and an ≤ aτ (n)+1. (70)

From (63) and the definition of αn, we have

lim
n→∞στ (n)‖tτ (n)‖ = 0. (71)

By the definition of uτ (n), we obtain

‖uτ (n) – xτ (n)‖2 =
∥
∥PC(xτ (n) – στ (n)tτ (n)) – PC(xτ (n))

∥
∥

≤ ‖xτ (n) – στ (n)tτ (n) – xτ (n)‖
= στ (n)‖tτ (n)‖. (72)

This implies that limn→∞ ‖uτ (n) – xτ (n)‖2 = 0. Since {xτ (n)} is bounded, there exists a subse-
quence {xτ (n)k } ⊆ {xτ (n)} such that xτ (n)k ⇀ x̄ ∈ C and thus uτ (n)k ⇀ x̄ ∈ C. From (71) and
Step 3 of this proof, we get x̄ ∈ Ω . Next, we will show that uτ (n)k → x∗. It follows from (61)
that

2ατ (n)k μ
〈
wτ (n)k , uτ (n)k – x∗〉 ≤ aτ (n)k – aτ (n)k+1 –

(
στ (n)k ‖tτ (n)k ‖

)2

+
(
ατ (n)k μ‖wτ (n)k ‖

)2 ≤ (ατ (n)k μ)2M2.

This implies that

〈
wτ (n)k , uτ (n)k – x∗〉 ≤ ατ (n)k μM2

2
. (73)

Since f is β-strongly monotone on C and wτ (n) ∈ ∂2f (uτ (n)k , uτ (n)k ), we have

〈
x∗ – uτ (n)k , wτ (n)k

〉 ≤ f
(
uτ (n)k , x∗) ≤ –β

∥∥uτ (n)k – x∗∥∥2 – f
(
x∗, uτ (n)k

)
.

It follows from (73) and the above inequality that

∥∥uτ (n)k – x∗∥∥2 ≤ 1
β

[〈
wτ (n)k , uτ (n)k – x∗〉 – f

(
x∗, uτ (n)k

)]

≤ 1
β

[
ατ (n)k μM2

2
– f

(
x∗, uτ (n)k

)
]

. (74)

Taking k → ∞, by using uτ (n)k ⇀ x̄ and ατ (n)k → 0, we get

lim sup
k→∞

∥∥uτ (n)k – x∗∥∥2 ≤ –f
(
x∗, x̄

) ≤ 0.

Therefore limk→∞ ‖uτ (n)k – x∗‖2 = 0. Then, it is easy to see that limn→∞ ‖uτ (n) – x∗‖2 = 0.
By the definition of xn+1, we have

∥
∥xτ (n)+1 – x∗∥∥ ≤ ∥

∥uτ (n) – ατ (n)μwτ (n) – x∗∥∥

≤ ∥∥uτ (n) – x∗∥∥ + ατ (n)μ‖wτ (n)‖. (75)
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Since {wτ (n)} is bounded, and from the definition of ατ (n), we have limn→∞ ‖xτ (n)+1 – x∗‖2 =
0. This means that limn→∞ aτ (n)+1 = 0. It follows from (50) that limn→∞ an = 0. Hence
limn→∞ ‖xn – x∗‖2 = 0. This completes the proof. �

5 Numerical examples
Let H = R

n and C = {x ∈ R
n : –5 ≤ xi ≤ 5,∀i ∈ {1, 2, . . . , n}}. Let the bifunction g : Rn ×

R
n →R be defined by

g(x, y) = 〈Px + Qy, y – x〉 for all x, y ∈R
n,

where P and Q are randomly symmetric positive semidefinite matrices such that P – Q is
positive semidefinite. Then g is pseudomonotone on R

n. Indeed, let g(x, y) ≥ 0 for every
x, y ∈R

n, we have

g(y, x) ≤ g(x, y) + g(y, x) = 〈Px + Qy, y – x〉 + 〈Py + Qx, x – y〉
= –

〈
(P – Q)(x – y), x – y

〉 ≤ 0.

Next, we obtain that g is Lipschitz-type continuous with L1 = L2 = 1
2‖P – Q‖. Indeed, for

each x, y, z ∈R
n,

g(x, y) + g(y, z) – g(x, z) = 〈Px + Qy, y – x〉 + 〈Py + Qz, z – y〉 – 〈Px + Qz, z – x〉
=

〈
(P – Q)(x – y), y – z

〉

≥ –2
‖P – Q‖

2
‖x – y‖‖y – z‖

≥ –
‖P – Q‖

2
‖x – y‖2 –

‖P – Q‖
2

‖y – z‖2,

where ‖P – Q‖ is the spectral norm of the matrix ‖P – Q‖, that is, the square root of the
largest eigenvalue of the positive semidefinite matrix (P – Q)T (P – Q). It is easy to check
that Ω �= ∅. Furthermore, we define the bifunction f : Rn ×R

n →R as

f (x, y) = 〈Ax + By, y – x〉 for all x, y ∈R
n,

with A and B being positive definite matrices defined by

B = NT N + nIn and A = B + MT M + nIn,

where M, N are randomly n × n matrices and In is the identity matrix. Then we have f is
n-strongly monotone on R

n. Indeed, let x, y ∈R
n, we get

f (x, y) + f (y, x) = 〈Ax + By, y – x〉 + 〈Ay + Bx, x – y〉
= –

〈
(A – B)(x – y), x – y

〉

= –
〈
MT M + nIn(x – y), x – y

〉

= –
〈
MT M(x – y), x – y

〉
–

〈
nIn(x – y), x – y

〉
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Table 1 The results computed on Algorithm 1

n N.P. Average iteration Average times

5 10 72 0.7219
10 10 255 2.3859
50 10 1224 12.6235
100 10 1541 37.8766
500 10 1910 465.510

= –
∥
∥M(x – y)

∥
∥2 – n‖x – y‖2

≤ –n‖x – y‖2.

Moreover, ∂2f (x, x) = {(A + B)x} and ‖(A + B)x – (A + B)y‖ ≤ ‖A + B‖‖x – y‖ for all x, y ∈R
n.

Thus the mapping x → ∂2g(x, x) is bounded and ‖A + B‖-Lipschitz continuous on every
bounded subset of H . In this example, we consider the quadratic optimization

min
x∈C

{
1
2

xT Hx + f T x
}

, (76)

where H is a matrix, f and x are vectors. From the subproblem of solving yk and zk in
Algorithm 1, we can consider problem (76).

We have tested for this example where n = 5, 10, 50, 100, and 500. Starting point x0 is a
randomly initial point. Take the parameters

αk =
1

k + 4
, ηk =

k + 1
3(k + 4)

, λk =
1

2‖P – Q‖ , μ =
2

‖A + B‖2 .

We have implemented Algorithm 1 for this problem in Matlab R2015 running on a Desk-
top with Intel(R) Core(TM) i5-7200u CPU 2.50 GHz, and 4 GB RAM, and we used the
stopping criteria ‖xk+1 – xk‖ < ε with ε = 0.001 is a tolerance to cease the algorithm. De-
note that

• N.P: the number of the tested problems.
• Average iteration: the average number of iterations.
• Average times: the average CPU-computation times (in s).

The computation results are reported in the following tables.
From the numerical result Table 1, we see that the sequence generated by our algorithms

is convergent and effective for solving the solution of bilevel equilibrium problems.

6 Conclusions
We have proposed two iterative algorithms for finding the solution of a bilevel equilib-
rium problem in a real Hilbert space. The sequence generated by our algorithms con-
verges strongly to the solution. Furthermore, we reported the numerical result to support
our algorithm.

Acknowledgements
The first author would like to thank the Thailand Research Fund through the Royal Golden Jubilee PH.D. Program for
supporting by grant fund under Grant No. PHD/0032/2555 and Naresuan University.

Funding
This research was supported by the Thailand Research Fund through the Royal Golden Jubilee PH.D. Program (Grant No.
PHD/0032/2555) and Naresuan University.



Yuying et al. Journal of Inequalities and Applications        (2018) 2018:327 Page 21 of 21

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand. 2Faculty of Information
Technology, Le Quy Don Technical University, Hanoi, Vietnam. 3Department of Applied Mathematics, Pukyong National
University, Busan, Korea. 4Center of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan
University, Phitsanulok, Thailand.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 July 2018 Accepted: 5 November 2018

References
1. Anh, P.N., Anh, T.T.H., Hien, N.D.: Modified basic projection methods for a class of equilibrium problems. Numer.

Algorithms https://doi.org/10.1007/s11075-017-0431-9
2. Bento, G.C., Cruz Neto, J.X., Lopes, J.O., Soares, P.A. Jr, Soubeyran, A.: Generalized proximal distances for bilevel

equilibrium problems. SIAM J. Optim. 26, 810–830 (2016)
3. Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90,

31–43 (1996)
4. Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to

variational inequalities. J. Optim. Theory Appl. 105, 299–323 (2000)
5. Chbani, Z., Riahi, H.: Weak and strong convergence of proximal penalization and proximal splitting algorithms for

two-level hierarchical Ky Fan minimax inequalities. Optimization 64, 1285–1303 (2015)
6. Daniele, P., Giannessi, F., Maugeri, A.: Equilibrium Problems and Variational Models. Kluwer Academic, Norwell (2003)
7. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium

constraints. Optimization 52, 333–359 (2003)
8. Dinh, B.V., Kim, D.S.: Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings.

Optim. Lett. https://doi.org/10.1007/s11590-016-1025-5
9. Hieu, D.V.: Weak and strong convergence of subgradient extragradient methods for pseudomonotone equilibrium.

Commun. Korean Math. Soc. 31, 879–893 (2016)
10. Hieu, D.V., Moudafi, A.: A barycentric projected-subgradient algorithm for equilibrium problems. J. Nonlinear Var.

Anal. 1, 43–59 (2017)
11. Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math.

Program. 133, 227–242 (2012)
12. Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point

set of a nonexpansive mapping. SIAM J. Optim. 19, 1881–1893 (2009)
13. Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18, 489–503 (2011)
14. Jusem, A.N., Nasri, M.: Inexact proximal point methods for equilibrium problems in Banach spaces. Numer. Funct.

Anal. Optim. 28, 1279–1308 (2007)
15. Kim, D.S., Dinh, B.V.: Parallel extragradient algorithms for multiple set split equilibrium problems in Hilbert spaces.

Numer. Algorithms 77, 741–761 (2018)
16. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory

Appl. 119, 317–333 (2003)
17. Liu, Y.: A modified hybrid method for solving variational inequality problems in Banach spaces. J. Nonlinear Funct.

Anal. 2017, Article ID 31 (2017)
18. Mainge, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex

minimization. Set-Valued Anal. 16, 899–912 (2008)
19. Moudafi, A.: Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 15, 91–100 (1999)
20. Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Glob. Optim. 47, 287–292

(2010)
21. Muu, L.D., Oettli, W.: Optimization over equilibrium sets. Optimization 49, 179–189 (2000)
22. Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a

Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142, 185–204 (2009)
23. Quy, N.V.: An algorithm for a bilevel problem with equilibrium and fixed point constraints. Optimization 64, 1–17

(2014)
24. Thuy, L.Q., Hai, T.N.: A projected subgradient algorithm for bilevel equilibrium problems and applications. J. Optim.

Theory Appl. https://doi.org/10.1007/s10957-017-1176-2
25. Tran, D.Q., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57,

749–776 (2008)
26. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan

inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627 (2013)
27. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
28. Yao, Y., Petrusel, A., Qin, X.: An improved algorithm based on Korpelevich’s method for variational inequalities in

Banach spaces. J. Nonlinear Convex Anal. 19, 397–406 (2018)

https://doi.org/10.1007/s11075-017-0431-9
https://doi.org/10.1007/s11590-016-1025-5
https://doi.org/10.1007/s10957-017-1176-2

	Extragradient subgradient methods for solving bilevel equilibrium problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	The extragradient subgradient Halpern methods
	The extragradient subgradient methods with line searches
	Numerical examples
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


