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Abstract
The Jensen inequality for convex functions holds under the assumption that all of the
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1 Introduction
Let I ⊂R be an interval. It is well known that if a function f : I →R is convex, then

f

( n∑
i=1

pixi

)
≤

n∑
i=1

pif (xi) (1.1)

for all n ∈ N, x1, . . . , xn ∈ I , and p1, . . . , pn > 0 with p1 + · · · + pn = 1. If f is strictly convex,
then (1.1) is strict unless all xi are equal [7, p. 43]. This classical Jensen inequality is one
of the most important inequalities in convex analysis, and it has various applications in
mathematics, statistics, economics, and engineering sciences.

It is also known that the assumption p1, . . . , pn > 0 can be relaxed at the expense of re-
stricting x1, . . . , xn more severely [9]. Namely, if p = (p1, . . . , pn) is a real n-tuple such that
for every k ∈ {1, . . . , n}

0 ≤ p1 + · · · + pk ≤ p1 + · · · + pn = 1, (1.2)

then for any monotonic n-tuple x = (x1, . . . , xn) ∈ In (increasing or decreasing) we get

x = p1x1 + · · · + pnxn ∈ I,

and for any function f convex on I (1.1) still holds. Under such assumptions (1.1) is called
the Jensen–Steffensen inequality for convex functions and (1.2) are called Steffensen’s con-
ditions due to J. F. Steffensen. Again, for a strictly convex function f , (1.1) remains strict
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under certain additional assumptions on x and p [1]. It is needless to say that a mathemat-
ical mind has to question the limitation p1, . . . , pn > 0 even if in the usual practice we can
cope with it.

Variants of the Jensen inequality are proved for various classes of generalized convex
functions, and the class of strongly convex functions is among them. Recall that a function
f : I →R is called strongly convex with modulus c > 0 if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y) – ct(1 – t)(x – y)2 (1.3)

for all x, y ∈ I and t ∈ [0, 1] [8]. Strongly convex functions are useful in optimization the-
ory, mathematical economics and approximation theory, and an interested reader can find
more about them in an excellent survey paper [5].

As we can easily see, strong convexity is a strengthening of the notion of convexity, and
some properties of strongly convex functions are just “stronger versions” of analogous
properties of convex functions (for more details, see [5]). One example of such a stronger
version is the Jensen inequality for strongly convex functions (see [4] or [5]). If f : I → R,
I ⊂R, is strongly convex with modulus c, then

f

( n∑
i=1

pixi

)
≤

n∑
i=1

pif (xi) – c
n∑

i=1

pi(xi – x̄)2 (1.4)

for all x1, . . . , xn ∈ I and all p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1. If we compare (1.4) with
(1.1), we see that (1.4) provides a better upper bound for f (x̄) since the term c

∑n
i=1 pi(xi –

x̄)2 is always nonnegative. Of course, if c = 0, we go right back to convex functions and
(1.1).

We must emphasize here that proving a Jensen type inequality for some class of gener-
alized convex functions does not necessarily mean that such inequality holds under Stef-
fensen’s conditions. The goal of this paper is to prove that for the class of strongly convex
functions this is not the case.

2 Main result
Strongly convex functions have a very useful characterization: they always have a specific
convex representation. This is stated in the following theorem (see [3] or [6]).

Theorem 1 Let I be an interval in R. A function f : I → R is strongly convex with modulus
c if and only if the function g = f – c(·)2 is convex.

The Jensen inequality for strongly convex functions can be proved either using Theo-
rem 1 and the Jensen inequality for convex functions or (for I open) directly, using the “sup-
port parabola” property [5, Theorem 1]. In this section we prove the Jensen–Steffensen
inequality for strongly convex functions using Theorem 1.

In the rest of the paper we use the following notation related to the n-tuples x =
(x1, . . . , xn) and p = (p1, . . . , pn), n ∈N:

x̄ = p1x1 + · · · + pnxn,

Pk = p1 + · · · + pk , k ∈ {1, 2, . . . , n},
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Pk = pk + · · · + pn, k ∈ {1, 2, . . . , n}.

Theorem 2 Let I be an interval in R. If f : I → R is a strongly convex function with
modulus c, then for every monotonic n-tuple x = (x1, . . . , xn) ∈ In and every real n-tuple
p = (p1, . . . , pn) such that, for every i ∈ {1, 2, . . . , n},

0 ≤ Pi ≤ Pn = 1

the following inequality holds:

f

( n∑
i=1

pixi

)
≤

n∑
i=1

pif (xi) – c
n∑

i=1

pi(xi – x̄)2.

Proof Suppose that x is increasing (for x decreasing the proof is analogous). It can be easily
seen that Steffensen’s conditions yield

Pk ≥ 0, k ∈ {1, 2, . . . , n},

and

xn – x̄ = Pn(xn – x̄) =
n–1∑
i=1

Pi(xi+1 – xi) ≥ 0,

hence we obtain x̄ ≤ xn. Analogously,

x̄ – x1 = Pn(x̄ – x1) =
n∑

i=2

Pi(xi – xi–1) ≥ 0,

and x1 ≤ x̄. From that we may conclude x̄ ∈ [x1, xn] ⊂ I , which means that g(x̄) =
g(

∑n
i=1 pixi) is defined.

Using the convex representation g = f – c(·)2 as in Theorem 1 and applying the Jensen–
Steffensen inequality for convex functions, we obtain

g

( n∑
i=1

pixi

)
≤

n∑
i=1

pig(xi).

Returning back to f , we get

f

( n∑
i=1

pixi

)
– c

( n∑
i=1

pixi

)2

≤
n∑

i=1

pi
(
f (xi) – cx2

i
)

=
n∑

i=1

pif (xi) – c
n∑

i=1

pix2
i ,

or written differently

f

( n∑
i=1

pixi

)
≤

n∑
i=1

pif (xi) – c

[ n∑
i=1

pix2
i –

( n∑
i=1

pixi

)2]
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=
n∑

i=1

pif (xi) – c

[ n∑
i=1

pix2
i – x̄2

]

=
n∑

i=1

pif (xi) – c

[ n∑
i=1

pix2
i – 2x̄2 + x̄2

]

=
n∑

i=1

pif (xi) – c

[ n∑
i=1

pix2
i – 2x̄

n∑
i=1

pixi + x̄2
n∑

i=1

pi

]

=
n∑

i=1

pif (xi) – c
n∑

i=1

pi(xi – x̄)2. �

3 Alternative reproach
What would happen if we try to prove (1.4) under Steffensen’s conditions directly using
the support parabola property? The question is not without sense since in the case of the
Jensen inequality for strongly convex functions both ways produce the same inequality
as in (1.4) but, generally speaking, any negative weights in p can at some place interrupt
the chain of conclusions in a proof. This is exactly the reason why it is considerably more
difficult to prove (1.1) under Steffensen’s conditions. We will see what happens in this case
in the next theorem, but first we need the following lemma which basically says that the
support parabola in x0 can be “shifted up” from x0 to y and still remain “under” f (x) if
x ≤ y ≤ x0.

Lemma 1 Let I ⊂ R be an open interval, let f : I → R be a strongly convex function with
modulus c, and for x0 ∈ I let

y = f (x0) + λ(x – x0) + c(x – x0)2 (3.1)

be the support parabola for f in x0. Then for every x, y ∈ I such that x ≤ y ≤ x0

f (x) – f (y) ≥ λ(x – y) + c(x – y)2, (3.2)

and for x, y ∈ I such that x0 ≤ x ≤ y

f (y) – f (x) ≥ λ(y – x) + c(y – x)2. (3.3)

Proof Since (3.1) is a support parabola for f in x0, it follows that for every x ∈ I

f (x) – f (x0) ≥ λ(x – x0) + c(x – x0)2. (3.4)

Let x, y ∈ I be such that x < y < x0. The middle element y can be represented as a convex
combination of x and z in the following way:

y =
x0 – y
x0 – x

x +
y – x
x0 – x

x0.

From the definition of strong convexity we have

f (y) ≤ x0 – y
x0 – x

f (x) +
y – x
x0 – x

f (x0) – c
x0 – y
x0 – x

y – x
x0 – x

(x – x0)2,
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and since

x0 – y
x0 – x

+
y – x
x0 – x

= 1,

we can write

f (y) =
x0 – y
x0 – x

f (y) +
y – x
x0 – x

f (y)

≤ x0 – y
x0 – x

f (x) +
y – x
x0 – x

f (x0) – c
x0 – y
x0 – x

y – x
x0 – x

(x – x0)2.

After a simple calculation we obtain

(x0 – y)
(
f (x) – f (y)

) ≥ (x – y)
(
f (x0) – f (y)

)
+ c

(x0 – y)(y – x)
x0 – x

(x – x0)2

and

f (x) – f (y)
x – y

≤ f (x0) – f (y)
x0 – y

– c(x0 – x). (3.5)

The support parabola property (3.4) gives

f (y) – f (x0) ≥ λ(y – x0) + c(y – x0)2,

and since y – x0 < 0

f (x0) – f (y)
x0 – y

≤ λ – c(x0 – y).

Using the above inequality and (3.5), we obtain

f (x) – f (y)
x – y

≤ f (x0) – f (y)
x0 – y

– c(x0 – x)

≤ λ – c(x0 – y) – c(x0 – x) = λ + c(x + y – 2x0).

Since x – y < 0 we get

f (x) – f (y) ≥ λ(x – y) + c(x – y)(x + y – 2x0),

and because of x + y – 2x0 < x – y, we end up with

f (x) – f (y) ≥ λ(x – y) + c(x – y)2.

If x0 < x < y, in an analogous way we can prove

f (y) – f (x) ≥ λ(y – x) + c(y – x)2.

Note that the above inequalities still hold in the trivial way if x = y. �
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Remark 1 (3.2) and (3.3) can be also proved using the convex representation g = f – c(·)2.
We start from the support parabola property in x0 ∈ I

f (x) – f (x0) ≥ λ(x – x0) + c(x – x0)2.

Then

g(x) – g(x0) + cx2 – cx2
0 ≥ λ(x – x0) + c(x – x0)2,

that is,

g(x) – g(x0) ≥ λ(x – x0) + c(x – x0)2 – cx2 + cx2
0

= (λ – 2cx0)(x – x0) = λ′(x – x0),

hence g has a support line in x0 for λ′ = λ – 2cx0. Since g is convex, we know that for every
x0 ≤ x ≤ y [7]

g(y) – g(x) ≥ λ′(y – x) = (λ – 2cx0)(y – x).

Returning to f , we obtain

f (y) – cy2 – f (x) + cx2 ≥ (λ – 2cx0)(y – x),

hence

f (y) – f (x) ≥ (λ – 2cx0)(y – x) + cy2 – cx2

= λ(y – x) + c(y – x)(x + y – 2x0)

≥ λ(y – x) + c(y – x)(x + y – 2x)

= λ(y – x) + c(y – x)2.

Consequently,

f (y) – f (x) ≥ λ(y – x) + c(y – x)2, x0 ≤ x ≤ y.

Analogously, we can prove

f (x) – f (y) ≥ λ(x – y) + c(x – y)2, x ≤ y ≤ x0.

Theorem 3 Let I ⊂ R be an open interval. If f : I → R is a strongly convex function with
modulus c, then for every monotonic n-tuple x = (x1, . . . , xn) ∈ In and every real n-tuple
p = (p1, . . . , pn) such that for every i ∈ {1, 2, . . . , n}

0 ≤ Pi ≤ Pn = 1,



Klaričić Bakula Journal of Inequalities and Applications        (2018) 2018:306 Page 7 of 12

there exists k ∈ {1, . . . , n – 1} such that x̄ ∈ [xk , xk+1] for x increasing or x̄ ∈ [xk+1, xk] for x
decreasing, and

n∑
i=1

pif (xi) – f

( n∑
i=1

pixi

)

≥ c

[ k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2

]

≥ 0.

Proof Suppose that x is increasing (for x decreasing the proof is analogous).
First observe that as in Theorem 2 we know that x̄ ∈ [x1, xn] ⊂ I , and we may conclude

that there exists some k ∈ {1, . . . , n – 1} such that x̄ ∈ [xk , xk+1].
From (3.4), choosing x0 = x̄, we get

f (x) – f (x̄) ≥ λ(x – x̄) + c(x – x̄)2

for some λ ∈R and every x ∈ I .
Next we use the Abel transformation to obtain the identities (similar can be found in [1])

0 =
n∑

i=1

pixi – x̄

=
k–1∑
i=1

Pi(xi – xi+1) + Pk(xk – x̄)

+ Pk+1(xk+1 – x̄) +
n∑

i=k+2

Pi(xi – xi–1) (3.6)

and

n∑
i=1

pif (xi) – f (x̄)

=
k–1∑
i=1

Pi
(
f (xi) – f (xi+1)

)
+ Pk

(
f (xk) – f (x̄)

)

+ Pk+1
(
f (xk+1) – f (x̄)

)
+

n∑
i=k+2

Pi
(
f (xi) – f (xi–1)

)
, (3.7)

where in the case k = 1 we assume
∑k–1

i=1 to be 0, while in the case k = n – 1 we assume∑n
i=k+2 to be 0.
From (3.7), using (3.2), (3.3), and then (3.6), we get

n∑
i=1

pif (xi) – f (x̄)

≥
k–1∑
i=1

Pi
(
λ(xi – xi+1) + c(xi – xi+1)2) + Pk

(
λ(xk – x̄) + c(xk – x̄)2)
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+ Pk+1
(
λ(xk+1 – x̄) + c(xk+1 – x̄)2) +

n∑
i=k+2

Pi
(
λ(xi – xi–1) + c(xi – xi–1)2)

= λ

[ k–1∑
i=1

Pi(xi – xi+1) + Pk(xk – x̄) + Pk+1(xk+1 – x̄) +
n∑

i=k+2

Pi(xi – xi–1)

]

+ c

[ k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2

]

= c

[ k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2

]
. �

It was hopeful to think that this way we can end up with

n∑
i=1

pif (xi) – f (x̄) ≥ c
n∑

i=1

pi(xi – x̄)2

since this is exactly what happens in the analogous proofs (direct and indirect) for convex
functions. It would be possible if

k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2

≥
n∑

i=1

pi(xi – x̄)2, (3.8)

but sadly this is not generally true.

Example 1 Let x = (1, 2, 3, 4), p = (1, –1, 0, 1). Then

P1 = 1, P2 = 0, P3 = 0, P4 = 1,

P1 = 1, P2 = 0, P3 = 1, P4 = 1,

x̄ = 3 ∈ [2, 3], k = 2 (or k = 3),

1∑
i=1

Pi(xi – xi+1)2 + P2(x2 – x̄)2 + P3(x3 – x̄)2 +
4∑

i=4

Pi(xi – xi–1)2

= (1 – 2)2 + 0 + (3 – 3)2 + (4 – 3)2 = 2,

4∑
i=1

pi(xi – x̄)2 = (1 – 3)2 – (2 – 3)2 + 0 + (4 – 3)2 = 4 > 2.

In fact, the following theorem holds.

Theorem 4 Let f , p, x, and k be as in Theorem 3. Then

k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2
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≤
n∑

i=1

pi(xi – x̄)2.

Proof For the sake of simplicity, we introduce the following notation:

Ik =
k–1∑
i=1

Pi(xi – xi+1)2 + Pk(xk – x̄)2 + Pk+1(xk+1 – x̄)2 +
n∑

i=k+2

Pi(xi – xi–1)2,

x2 =
n∑

i=1

pix2
i .

Suppose that x is increasing (for x decreasing the proof is analogous). First note that for k
as in Theorem 3 we have

xi ≤ x̄, i = 1, 2, . . . , k,

x̄ ≤ xi, i = k + 1, . . . , n.

Using this notation, we get

Ik =
k–1∑
i=1

Pi
(
x2

i – x2
i+1

)
+ Pk

(
x2

k – x2
)

+ Pk+1
(
x2

k+1 – x2
)

+
n∑

i=k+2

Pi
(
x2

i – x2
i–1

)

– 2
k–1∑
i=1

Pixixi+1 + 2
k–1∑
i=1

Pix2
i+1 + Pk

(
–2xkx̄ + x̄2) + Pkx2 + Pk+1x2

+ Pk+1
(
–2xk+1x̄ + x̄2) – 2

n∑
i=k+2

Pixixi–1 + 2
n∑

i=k+2

Pix2
i–1.

Applying (3.6) on p and x2 = (x2
1, . . . , x2

n), we obtain

k–1∑
i=1

Pi
(
x2

i – x2
i+1

)
+ Pk

(
x2

k – x2
)

+ Pk+1
(
x2

k+1 – x2
)

+
n∑

i=k+2

Pi
(
x2

i – x2
i–1

)
= 0,

hence

Ik = 2
k–1∑
i=1

Pixi+1(xi+1 – xi) + 2
n∑

i=k+2

Pixi–1(xi–1 – xi) + Pkx2 + Pk+1x2

+ Pk
(
–2xkx̄ + x̄2) + Pk+1

(
–2xk+1x̄ + x̄2)

= 2
k–1∑
i=1

Pixi+1(xi+1 – xi) + 2
n∑

i=k+2

Pixi–1(xi–1 – xi) + x2

+ Pk
(
–2xkx̄ + x̄2) + Pk+1

(
–2xk+1x̄ + x̄2).

Taking into account that x is increasing and

Pi, Pi ≥ 0, i = 1, 2, . . . , n,
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xi ≤ x̄, i = 1, 2, . . . , k,

x̄ ≤ xi, i = k + 1, . . . , n,

we obtain

Ik ≤ 2x̄
k–1∑
i=1

Pi(xi+1 – xi) + 2x̄
n∑

i=k+2

Pi(xi–1 – xi) + x2

– 2Pkxkx̄ – 2Pk+1xk+1x̄ + x̄2.

Applying again (3.6) on p and x, we get

k–1∑
i=1

Pi(xi+1 – xi) +
n∑

i=k+2

Pi(xi–1 – xi) = Pk(xk – x̄) + Pk+1(xk+1 – x̄),

hence

Ik ≤ 2x̄
[
Pk(xk – x̄) + Pk+1(xk+1 – x̄)

]
+ x2 – 2Pkxkx̄ – 2Pk+1xk+1x̄ + x̄2

= –2Pkx̄2 – 2Pk+1x̄2 + x̄2 + x2 = –2x̄2 + x̄2 + x2 = x2 – x̄2,

or written differently

Ik ≤
n∑

i=1

pix2
i – x̄2 =

n∑
i=1

pi(xi – x̄)2. �

We have just proven that the Jensen–Steffensen inequality for strongly convex functions
behaves differently than the Jensen inequality for strongly convex functions: applying the
same proof techniques, we end up with two different bounds, and surprisingly the indirect
proof gives the better one.

4 Integral version
The integral version of the Jensen–Steffensen inequality for convex functions was proved
by Boas in 1970 [2].

Theorem 5 Let x : [α,β] → (a, b) be a continuous and monotonic function, where –∞ <
α < β < +∞ and –∞ ≤ a < b ≤ +∞, and let f : (a, b) → R be a convex function. If λ :
[α,β] →R is either continuous or of bounded variation satisfying

(∀t ∈ [α,β]
)

λ(α) ≤ λ(t) ≤ λ(β),

λ(β) – λ(α) > 0,

then

f
(∫ β

α
x(t) dλ(t)∫ β

α
dλ(t)

)
≤

∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

.



Klaričić Bakula Journal of Inequalities and Applications        (2018) 2018:306 Page 11 of 12

Since the indirect proof as in Theorem 2 produced a better bound, we will use the same
technique to prove the integral version of the Jensen–Steffensen inequality for strongly
convex functions.

Theorem 6 Let x : [α,β] → (a, b) be a continuous and monotonic function, where –∞ <
α < β < +∞ and –∞ ≤ a < b ≤ +∞, and let f : (a, b) → R be a strongly convex function
with modulus c. If λ : [α,β] →R is either continuous or of bounded variation satisfying

(∀t ∈ [α,β]
)

λ(α) ≤ λ(t) ≤ λ(β),

λ(β) – λ(α) > 0,

then

f (μ) ≤
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
∫ β

α
(x(t) – μ)2 dλ(t)∫ β

α
dλ(t)

,

where

μ =
∫ β

α
x(t) dλ(t)∫ β

α
dλ(t)

.

Proof Using the convex representation g = f – c(·)2 as in Theorem 1 and applying the in-
tegral Jensen–Steffensen inequality for convex functions, we obtain

g(μ) = g
(∫ β

α
x(t) dλ(t)∫ β

α
dλ(t)

)
≤

∫ β

α
g(x(t)) dλ(t)∫ β

α
dλ(t)

.

Going back to f we get

f (μ) – cμ2 ≤
∫ β

α
(f (x(t)) – cx(t)2) dλ(t)∫ β

α
dλ(t)

=
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
∫ β

α
x(t)2 dλ(t)∫ β

α
dλ(t)

,

or written differently

f (μ) ≤
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
∫ β

α
x(t)2 dλ(t)∫ β

α
dλ(t)

+ cμ2

=
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
[∫ β

α
x(t)2 dλ(t)∫ β

α
dλ(t)

– μ2
]

=
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
[∫ β

α
x(t)2 dλ(t)∫ β

α
dλ(t)

– 2μ2 + μ2
]

=
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
[∫ β

α
x(t)2 dλ(t)∫ β

α
dλ(t)

– 2μ

∫ β

α
x(t) dλ(t)∫ β

α
dλ(t)

+ μ2
∫ β

α
dλ(t)∫ β

α
dλ(t)

]

=
∫ β

α
f (x(t)) dλ(t)∫ β

α
dλ(t)

– c
∫ β

α
(x(t) – μ)2 dλ(t)∫ β

α
dλ(t)

. �
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