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1 Introduction and preliminaries
In recent years, much attention has been given by many researchers to theory of convexity
because of its great utility in various fields of pure and applied sciences. The theories of
convex functions and inequalities are closely intertwined. A very interesting inequality,
which is extensively studied in the literature, is due to Hermite and Hadamard who dis-
covered it independently; now it is known as Hermite–Hadamard inequality. It provides
a necessary and sufficient condition for a function to be convex. This famous result of
Hermite and Hadamard reads as follows:

Let F : I ⊂R →R be a convex function, where a, b ∈ I with a < b. Then

F
(

a + b
2

)
≤ 1

b – a

∫ b

a
F (x) dx ≤ F (a) + F (b)

2
. (1.1)

For details and applications, see [3, 4].
In this paper, we consider the classes of convex, log-convex and log-concave functions.

We derive some new Hermite–Hadamard type inequalities for such functions in connec-
tion with generalized logarithmic means. We also discuss some special cases.

Theorem 1.1 ([4, 5]) Let μ be a Borel probability measure on [a, b]. Then every convex
function F : I ⊇ [a, b] → R satisfies the following analogue of Hermite–Hadamard in-
equality:

F (bμ) ≤
∫ b

a
F (x) dμ ≤ b – bμ

b – a
F (a) +

bμ – a
b – a

F (b).

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1895-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1895-4&domain=pdf
mailto:awan.uzair@gmail.com


Mihai et al. Journal of Inequalities and Applications        (2018) 2018:309 Page 2 of 9

In an article from 1995, C. E. M. Pearce and J. E. Pečarić [7], formulated a result of Jensen
type, considering generalized logarithmic means of Stolarsky [9]. For a, b > 0, two distinct
numbers, these means are defined by the formulas

Lp(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

[ bp–ap

p(b–a) ]1/(p–1), p �= 0, 1,
b–a

log b–log a , p = 0,
1
e [ bb

aa ]1/(b–a), p = 1,

and for a = b > 0 we have Lp(a, a) = a.
In mathematics, the polylogarithm (also known as Jonquière function, for Alfred Jon-

quière) is a special function of order s and argument z given by

Lis(z) =
∞∑

k=1

zk

ks ,

where z ∈ C. Only for special values of s does the polylogarithm reduce to an elementary
function such as the natural logarithm or rational functions. The reflection formula was
already published by Landen in 1760, prior to its appearance in a book written in 1768 by
Euler ([2], Section 10); an equivalent to Abel’s identity was already published by Spence in
1809, before Abel wrote his manuscript in 1826 ([10], Section 2). Bilogarithmic functions
were introduced by Carl Johan Danielsson Hill in 1828. Don Zagier in 1989 remarked
that the dilogarithm is the only mathematical function possessing a sense of humor. Some
particular cases of the function are:

Li–3(x) =
x(1 + 4x + x2)

(1 – x)4 , Li–2(x) =
x(x + 1)
(1 – x)3 , x ∈R \ {1};

Li–1(x) =
x

(1 – x)2 , Li0(x) =
x

1 – x
, x ∈R \ {1};

Li1(x) = – log(1 – x), x ∈ (–∞, 1).

These functions are represented graphically in Fig. 1.
Other special functions are Struve functions, denoted as Hα(x). These are the solutions

of the non-homogeneous Bessel’s differential equation

x2 d2y
dx2 + x

dy
dx

+
(
x2 – a2)y =

4( x
2 )α+1

√
πΓ (α + 1

2 )
,

Figure 1 Jonquière functions in some particular cases
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Figure 2 Struve functions in some particular cases

introduced by Hermann Struve in 1882. The complex number α is the order of the Struve
function, and is often an integer. Struve functions have the following power series:

Hα(x) =
∞∑

m=0

(–1)m

Γ (m + 3
2 )Γ (m + α + 3

2 )

(
x
2

)2m+α+1

,

where Γ (z) is the gamma function. Another definition of the Struve function, for values
of α satisfying Re(z) > – 1

2 , is possible using an integral representation

Hα(x) =
2( x

2 )α√
πΓ (α + 1

2 )

∫ π/2

0
sin(x cos t) sin2α t dt.

For more details, see [6]. These functions are represented graphically in Fig. 2.

2 Results and discussions
We will use the result of Pearce and Pečarić to indicate analogues of Hermite–Hadamard
inequalities in several special cases.

Theorem 2.1 (C. E. M. Pearce and J. E. Pečarić [7]) Let 0 < a < b, [c, d] ⊂ (0, 1) ∪ (1, +∞)
and F : [a, b] → [c, d] a continuous function. If p �= 0, 1 and G(x) = F (x1/(p–1)) is convex, or
p = 1 and G(x) = F (ex) is convex, then

F
(
Lp(a, b)

) ≤ 1
b – a

∫ b

a
F (x) dx.

If p �= 0, 1 and G(x) = F (x1/(p–1)) is concave, or p = 1 and G(x) = F (ex) is concave, then the
inequality is reversed.

Proof The proof is immediate and is reduced to Jensen’s inequality in integral form,
namely, if p �= 0, 1 and G is convex, we have

F
(
Lp(a, b)

)
= F

[(
1

b – a

∫ b

a
tp–1 dt

)1/(p–1)]

= G
(

1
b – a

∫ b

a
tp–1 dt

)
≤ 1

b – a

∫ b

a
G

(
tp–1)dt =

1
b – a

∫ b

a
F (t) dt.
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If p �= 0, 1 and G is concave, then the inequality is reversed.
If p = 1 and G is convex, then

F
(
L1(a, b)

)
= F

(
I(a, b)

)
= F

[
exp

(
1

b – a

∫ b

a
log t dt

)]

= G
(

1
b – a

∫ b

a
log t dt

)
≤ 1

b – a

∫ b

a
G(log t) dt =

1
b – a

∫ b

a
F (t) dt.

Similarly as above, if G is a concave function then the reversed inequality holds. �

Theorem 2.2 Let 0 < a < b, [c, d] ⊂ (0, 1) ∪ (1, +∞) and let F : [a, b] → [c, d] be a contin-
uous and strictly increasing function, with the property that F–1 is log-concave. Then

F
(
I(a, b)

) ≤ 1
b – a

∫ b

a
F (x) dx ≤ L(a, b) – a

b – a
F (a) +

b – L(a, b)
b – a

F (b).

If the function F is strictly decreasing, then the last inequality is reversed.

Left inequality was noticed by Seiffert [8] in 1989.

Proof Since F–1 is the first power, we consider the case of p = 1 and G(x) = F (ex) of Theo-
rem 2.1. Therefore, it is sufficient to prove that the function G is convex for obtaining the
left inequality, i.e.,

G
(
(1 – λ)x + λy

)
= F

(
e(1–λ)x+λy) ≤ (1 – λ)F

(
ex) + λF

(
ey) = (1 – λ)G(x) + λG(y),

which is equivalent to

e(1–λ)x+λy ≤F–1((1 – λ)F
(
ex) + λF

(
ey)), (2.1)

because the functionF–1 is strictly increasing. Making substitutionsF (ex) = u andF (ey) =
v, we obtain x = logF–1(u) and y = logF–1(v) and then inequality (2.1) becomes

e(1–λ) logF–1(u)+λ logF–1(v) ≤F–1((1 – λ)u + λv
)
.

Also

(1 – λ) logF–1(u) + λ logF–1(v) ≤ logF–1((1 – λ)u + λv
)

is true because F–1 is a log-concave function. For the proof of the right-hand side inequal-
ity, we see that

1
b – a

∫ b

a
F (x) dx =

1
b – a

∫ log b

log a
F

(
eu)eu du =

∫ log b

log a
F

(
eu)eu du

b – a
,

which is an integral of a convex function F (eu) with respect to the probability measure
dμ(u) = eu du

b–a . The barycenter of this measure is

bμ =
∫ log b

log a
u · eu du

b – a
= I(a, b).
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Figure 3 Graph of the sine integral function

So, according to Theorem 1.1, we have

G(bμ) = F
(
ebμ

)
= F

(
I(a, b)

)

≤
∫ log b

log a
G(u) · eu du

b – a
≤ log b – bμ

log b – log a
G(log a) +

bμ – log a
log b – log a

G(log b)

=
L(a, b) – a

b – a
F (a) +

b – L(a, b)
b – a

F (b),

which completes the proof. �

Example 2.3 The sine integral Si(x) =
∫ x

0
sin t dt

t , is strictly increasing on the interval [0,π ],
see Fig. 3, and log Si(ex) is a concave function on [0,π/2], see Niculescu and Persson [5],
p. 336.

According to Theorem 2.2, for any 0 ≤ a < b ≤ π/2 the following double inequality
holds:

Si
(
I(a, b)

) ≥ 1
b – a

∫ b

a
Si(x) dx ≥ L(a, b) – a

b – a
Si(a) +

b – L(a, b)
b – a

Si(b).

Theorem 2.4 (An analogue of Hermite–Hadamard inequality for log-convex functions)
Let 0 < a < b, [c, d] ⊂ (0, 1) ∪ (1, +∞) and let F : [a, b] → [c, d] be a continuous function,
strictly increasing and such that 1/F–1 is convex. Then

F
(
L(a, b)

) ≤ 1
b – a

∫ b

a
F (x) dx ≤ bL(a, b) – ab

(b – a)L(a, b)
F (a) +

ab – aL(a, b)
(b – a)L(a, b)

F (b).

If F is strictly decreasing, then the last inequality holds reversed.

The left inequality was noticed for the first time by H. Alzer [1] in 1985.

Proof According to Theorem 2.1, for the left inequality it will be enough to show that the
function G(x) = F (1/x) is convex, i.e.,

F
(

1
(1 – λ)x + λy

)
≤ (1 – λ)F

(
1
x

)
+ λF

(
1
y

)
,
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for any x, y ∈ [a, b] and any λ ∈ [0, 1]. Let u = F (1/x) and v = F (1/y). Then the above in-
equality becomes

1
(1–λ)
F–1(u) + λ

F–1(v)

≤F–1((1 – λ)u + λv
)
,

that is,

1
F–1((1 – λ)u + λv)

≤ (1 – λ)
F–1(u)

+
λ

F–1(v)
,

and this is ensured by the assumption that the function 1/F–1 is convex.
With this Alzer’s inequality on the left is shown.
We demonstrate both inequalities of the theorem by noting that

1
b – a

∫ b

a
F (x) dx =

∫ 1/a

1/b
F (1/u)

du
(b – a)u2 ,

which is an integral of a convex function F (1/x) with respect to the probability measure
dμ(t) = du

(b–a)u2 .
The barycenter of this measure is

bμ =
∫ 1/a

1/b
u

du
(b – a))u2 =

log b – log a
b – a

= 1/L(a, b).

According to Theorem 1.1, it follows that

F
(
L(a, b)

) ≤ 1
b – a

∫ b

a
F (x) dx =

∫ 1/a

1/b
F (1/u)

du
(b – a)u2

≤ 1/a – 1/L(a, b)
1/a – 1/b

F (a) +
1/L(a, b) – 1/b

1/a – 1/b
F (b)

=
bL(a, b) – ab
(b – a)L(a, b)

F (a) +
ab – aL(a, b)
(b – a)L(a, b)

F (b).

The proof of the theorem is complete. �

Example 2.5 Previous proof shows that Theorem 2.4 works for functions F that are con-
tinuous, strictly increasing, defined on compact intervals of strictly positive numbers and
having the property that G(x) = F (1/x) is convex.

The function F (x) = sin(x) is strictly increasing on the interval [0,π/2] and the function
G(x) = sin(1/x) is convex for x ∈ (0, 2/π ], see Fig. 4. So whenever 0 < a < b ≤ 2/π , we have

sin
(
L(a, b)

) ≤ 1
b – a

∫ b

a
sin x dx ≤ bL(a, b) – ab

(b – a)L(a, b)
sin a +

ab – aL(a, b)
(b – a)L(a, b)

sin b.
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Figure 4 Graph of the function sin 1
x

Theorem 2.6 Let 0 < a < b, [c, d] ⊂ (0, 1) ∪ (1, +∞) and let F : [a, b] → [c, d] be a contin-
uous function, strictly increasing and such that (F–1)p–1 is concave, where p > 1. Then

F
(
Lp(a, b)

) ≤ 1
b – a

∫ b

a
F (x) dx

≤ bp–1 – (Lp(a, b))p–1

(bp–1 – ap–1)
F (a) +

(Lp(a, b))p–1 – ap–1

(bp–1 – ap–1)
F (b).

If (F–1)p–1 is convex then the reversed inequality holds.

Proof Since the argument of function F is Lp(a, b), where p > 1, we know that p �= 1 and
considerG(x) = F (x

1
p–1 ) of Theorem 2.1. Therefore it is sufficient to prove that the function

G is convex to obtain the left inequality, that is,

G
(
(1 – λ)x + λy

)
= F

((
(1 – λ)x + λy

) 1
p–1

) ≤ (1 – λ)F
(
x

1
p–1

)
+ λF

(
y

1
p–1

)
= (1 – λ)G(x) + λG(y),

which is equivalent to

(
(1 – λ)x + λy

) 1
p–1 ≤F–1[(1 – λ)F

(
x

1
p–1

)
+ λF

(
y

1
p–1

)]
,

that is, because the power function exponent p – 1 is strictly increasing, leading to

(1 – λ)x + λy ≤ {
F–1[(1 – λ)F

(
x

1
p–1

)
+ λF

(
y

1
p–1

)]}p–1. (2.2)

Making substitutions F (x
1

p–1 ) = u and F (y
1

p–1 ) = v, we obtain x = (F–1(u))p–1 and y =
(F–1(v))p–1, where a ≤ x

1
p–1 , y

1
p–1 ≤ b. Due to the last inequalities and monotonicity of

F–1, inequality (2.2) becomes

(1 – λ)
(
F–1(u)

)p–1 + λ
(
F–1(v)

)p–1 ≤ [
F–1((1 – λ)u + λv

)]p–1,

which holds since (F–1)p–1 is concave. For the proof of the second inequality, we see that

1
b – a

∫ b

a
F (x) dx =

∫ bp–1

ap–1
F

(
u

1
p–1

) · u
2–p
p–1 du

(b – a)(p – 1)
,
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which is an integral of a concave function F (x
1

p–1 ) with respect to the probability measure

dμ(u) = u
2–p
p–1 du

(b–a)(p–1) . The barycenter of this measure is

bμ =
∫ bp–1

ap–1
u · u

2–p
p–1 du

(b – a)(p – 1)
=

(
Lp(a, b)

)p–1.

So, according to Theorem 1.1 we have

G(bμ) = F
(
b

1
p–1
μ

)
= F

(
Lp(a, b)

) ≤
∫ bp–1

ap–1
G(x) dμ ≤ bp–1 – bμ

bp–1 – ap–1 G
(
ap–1)

+
bμ – ap–1

bp–1 – ap–1 G
(
bp–1) =

bp–1 – (Lp(a, b))p–1

(bp–1 – ap–1)
F (a) +

(Lp(a, b))p–1 – ap–1

(bp–1 – ap–1)
F (b),

and the proof is complete. �

Example 2.7 The polylogarithm function of Jonquière corresponding to s = 1, Li1(x) =
– log(1 – x), x ∈ (–∞, 1) (see Fig. 1) admits the inverse Li–1

1 (x) = 1 – e–x, for which (Li–1
1 )2

satisfies the assumptions of Theorem 2.6 on the interval (0, 1) and so

Li1
(
L3(a, b)

) ≤ 1
b – a

∫ b

a
Li1(x) dx

≤ b2 – (L3(a, b))2

b2 – a2 Li1(a) +
(L3(a, b))2 – a2

b2 – a2 Li1(b),

for all a, b ∈ (0, 1).

Example 2.8 Struve’s function corresponding to α = 1,

H1(x) =
2x
π

∫ π/2

0
sin(x cos t) sin t dt, x ∈ [0, 3],

admits the inverse, for which (H–1
1 (x))2 satisfies the assumptions of Theorem 2.6 on the

interval (0, 3) and so

H1
(
L3(a, b)

) ≤ 1
b – a

∫ b

a
H1(x) dx

≤ b2 – (L3(a, b))2

b2 – a2 H1(a) +
(L3(a, b))2 – a2

b2 – a2 H1(b),

for all a, b ∈ (0, 3).

Example 2.9 The polylogarithm function of Jonquière corresponding to s = 0, Li0(x) =
x

1–x , x ∈R \ {1} (see Fig. 1) has the corresponding inverse Li–1
0 (x) = x

x+1 , for which (Li–1
0 )–1/2

satisfies the assumptions of Theorem 2.6 on the interval (0.5, 0.9) and so

Li0
(
L 1

2
(a, b)

) ≤ 1
b – a

∫ b

a
Li0(x) dx

≤
b–1/2 – (L 1

2
(a, b))–1/2

b–1/2 – a–1/2 Li0(a) +
(L 1

2
(a, b))–1/2 – a–1/2

b–1/2 – a–1/2 Li0(b),

for all a, b ∈ (0.5, 0.9).
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3 Conclusion
We have established some new results of Hermite–Hadamard type for generalized loga-
rithmic means. We have also elaborated the results with corresponding examples. Special
cases were also discussed in detail. It is expected that the results of the paper will inspire
interested readers.
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