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Abstract
Let (I, ||| · |||) be a two-sided ideal of operators equipped with a unitarily invariant norm
||| · |||. We generalize the results of Kapil’s, using a new contractive map in I to obtain a
norm inequality. And we give a new inequality, which is a comparison between the
Heinz means and other related inequalities; moreover, we will obtain some correlative
conclusions.
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1 Introduction and preliminaries
In this paper, let B(H) denote the algebra of all bounded linear operators on a complex
separable Hilbert space, B(H)+ denote the cone of positive operators and K(H) denote the
ideal of compact operators in B(H). And (I, ||| · |||) is a two-sided ideal of B(H) equipped
with a unitarily invariant norm ||| · |||. We shall denote this by I instead of (I, ||| · |||) for
convenience.

For any compact operator A ∈ K(H), let S1(A), S2(A), . . . be the eigenvalues of |A| =
(A∗A) 1

2 arranged in decreasing order. If A ∈ Mn, which is the algebra of all n × n ma-
trices over C, we take Sk(A) = 0 for k > n. A unitarily invariant norm in K(H) is a map
||| · ||| : K(H) −→ [0,∞] given by |||A||| = g(S(A)), A ∈ K(H), where g is a symmetric gauge
function, cf. [6, 9]. The Schatten p-norms ‖A‖p = (

∑
j Sp

j (A))
1
p for p ≥ 1 are significant

examples of the unitarily invariant norm, and ‖ · ‖2 is a special unitarily invariant norm
which is the Hilbert–Schmidt norm defined, for A ∈ Mn, as follows:

‖A‖2
2 =

∑

i,j

|aij|2 = tr
(
A∗A

)
.

It is well known that the arithmetic–geometric mean inequality

√
ab ≤ a + b

2

for positive numbers a and b has been generalized in various directions.
Bhatia et al. [2] have obtained the result that if A, B, and X are n × n matrices with A

and B are positive definite, then

∣
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∣
∣
∣
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1
2 XB

1
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∣
∣
∣
∣
∣
∣ ≤ 1

2
|||AX + XB|||.
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The Heinz means

Hv(a, b) =
a1–vbv + avb1–v

2

is an interpolation between the arithmetic and geometric means for a, b ≥ 0 and v ∈ [0, 1].
It is easy to see that Hv is symmetric and convex function for v ∈ [0, 1] and attains its
minimum at v = 1

2 ; thus we have

√
ab ≤ Hv(a, b) ≤ a + b

2
.

The matrix version has been proved in [2]: if A, B and X are positive definite, then for
every unitarily invariant norm the function

g(v) =
∣
∣
∣
∣
∣
∣AvXB1–v + A1–vXBv∣∣

∣
∣
∣
∣

is convex on [0, 1], and attains its minimum at v = 1
2 . Thus we have
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∣
∣
∣
∣ ≤ |||AX + XB|||.

The Heron means is defined by

Fα(a, b) = (1 – α)
√

ab + α
a + b

2

for 0 ≤ α ≤ 1, see [1]. This family is the linear interpolation between the geometric and
the arithmetic mean. Clearly, Fα ≤ Fβ whenever α ≤ β .

Bhatia and Davis have proved that the inequality
∣
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(
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2
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(
AX + XB

2
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∣

is always true for 0 ≤ α ≤ β ≤ 1, β ≥ 1
2 , and this restriction on β is necessary in [2].

The Heinz means and the Heron means satisfy the inequality

Hv(a, b) ≤ Fα(v)(a, b)

for 0 ≤ v ≤ 1. And α(v) = 1 – 4(v – v2), this is a convex function, its minimum value is
α( 1

2 ) = 0, and its maximum value is α(0) = α(1) = 1.
In [10] the authors have presented the result that
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for 1
4 ≤ v ≤ 3

4 and α ∈ [ 1
2 ,∞] and they used the properties of contractive map on I to prove

it.
A different version of the Heinz inequality,

∣
∣
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∣
∣
∣AαXB1–α – A1–αXBα

∣
∣
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∣
∣
∣ ≤ |2α – 1||||AX – XB|||,

for α ∈ [0, 1] was proved by Bhatia and Davis [3] in 1995.
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A further generalization, namely

2 + t
2
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was proved for t ∈ [–2, 2], and α ∈ [ 1
4 , 3

4 ]. For more details refer to [13] and [14].
Contractive maps on I play a key role to prove the inequalities, more details refer to [4,

5, 7, 8, 11]. This in turn proves the corresponding Schur multiplier maps to be contractive.
We use the ideals to establish the fact that some special maps on I are contractive.

Our paper consists of three parts. In the second part, we will give a new norm inequality
which is proved by the properties of contractive maps on I . In the third part, we will present
a inequality related to the Heinz means and we notice that this inequality is a comparison
between the Heinz means and the geometric mean. Our results are extensions of some
previous conclusions about norm inequalities.

2 Norm inequalities with contractive maps
Let LX , RY denote the left and right multiplication maps on B(H), respectively, that is,
LX(T) = XT and RY (T) = TY and we have

eLX +RY (T) = eXTeY . (1)

Neeb [12] has proved that (LX ±RY )–1 sin(LX ±RY ) is an expansive map on I by using the
Weierstrass factorization theorem. We use X1 and Y1 to denote two selfadjoint operators
in B(H) and D = LX1 – RY1 . The following proposition is a result for a contractive map in I ;
for more details refer to [10].

Proposition 2.1 ([10, Proposition 2.4]) Let 0 ≤ r ≤ s or s ≤ r ≤ 0, then each of the following
operator maps is a contraction on I .

(1) (1+t) cosh( r
2 D)

t+cosh(sD) for |t| ≤ 1.
(2) t+cosh(rD)

t+cosh(sD) for |t| ≤ 1.
(3) cosh(rD)

cosh(sD) . In particular 1
r
∫ cosh(rD)

cosh(sD) dr = sinh(rD)
rD cosh(sD) is a contraction.

(4) s sinh(rD)
r sinh(sD) . The case r = 0 would become sD

sinh(sD) .

Corollary 2.2 ([10, Corollary 2.5]) The following maps are contractive on I .
(1) (t+1) cosh((2v–1)D)

t+cosh D for 1
4 ≤ v ≤ 3

4 , and |t| ≤ 1.
(2) 2 cosh(rD)

cosh(s1D)+cosh(s2D) for 0 ≤ r ≤ max{ s1+s2
2 , s1–s2

2 } or min{ s1+s2
2 , s1–s2

2 } ≤ r ≤ 0.
(3) (s1+s2) sinh(rD)

r(sinh(s1D)+sinh(s2D)) for 0 ≤ r ≤ s1+s2
2 or s1+s2

2 ≤ r ≤ 0.

Corollary 2.3 Let 0 ≤ v ≤ 1 and |t| ≤ 1. Then the map (t+1) cosh((2v–1)D)
t+cosh(2D) is contractive on I .

Proof This map is a special case of (1) of Proposition 2.1 when |s| = 2. From the condition
0 ≤ v ≤ 1, we can obtain |2v – 1| ≤ 1. Letting r

2 = 2v – 1, we get the desired result. �

With these above results about contractive maps in I , we obtain a new norm inequality
which derives from the Heinz means and other related inequalities. Let R be an invertible
operator in B(H)+, then there exists a selfadjoint operator S ∈ B(H) such that R = eS . To
avoid repetitions, we denote the two invertible operators A and B in B(H)+ by e2X1 and
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e2Y1 , respectively, where X1 and Y1 in B(H) are selfadjoint. The corresponding operator
map LX1 – RY1 is denoted by D.

Theorem 2.4 Let v ∈ [0, 1] and α ∈ [ 1
2 ,∞). Supposed that A and B are any two invertible

operators in B(H)+, X ∈ I , then
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∣
∣
∣
∣
∣AvXB1–v + A1–vXBv∣∣
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∣
∣ ≤
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∣
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∣
∣(1 – α)A

1
2 XB

1
2 + α

A 3
2 XB– 1

2 + A– 1
2 XB 3

2

2

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣. (2)

Proof Put A 1
2 XB 1

2 = T and use (1) we can notice that

AvXB1–v + A1–vXBv

2

=
A 2v–1

2 A 1
2 XB 1

2 B 1–2v
2 + A 1–2v

2 A 1
2 XB 1

2 B 2v–1
2

2

=
A 2v–1

2 TB 1–2v
2 + A 1–2v

2 TB 2v–1
2

2

=
e(2v–1)(LX1 –RY1 )T + e–(2v–1)(LX1 –RY1 )T

2

= cosh
(
(2v – 1)D

)
T . (3)

And we also have

(1 – α)A
1
2 XB

1
2 + α

A 3
2 XB– 1

2 + A– 1
2 XB 3

2

2

= (1 – α)T + α
AA 1

2 XB 1
2 B–1 + A–1A 1

2 XB 1
2 B

2

= (1 – α)T + α
ATB–1 + A–1TB

2

= (1 – α)T + α
e2(LX1 –RY1 )T + e–2(LX1 –RY1 )T

2

=
[
(1 – α) + α cosh(2D)

]
T . (4)

Setting 1
1+t = α in (4) and applying Corollary 2.3, we can obtain (2) from (3) and (4). �

3 Norm inequality related to the Heinz means
According to the above results, we set

Hv(a, b) =
avb1–v + a1–vbv

2
,

Gv(a, b) = (1 – v)a
1
2 b

1
2 + v

a 3
2 b– 1

2 + a– 1
2 b 3

2

2
.

Then we have the following result, which is a interpolation of Hv and Gv.
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Theorem 3.1 Let a, b > 0 and v ∈ [ 1
2 , 1]. Then

Hv(a, b) ≤
(H 1

2
(a, b)

H1(a, b)

)1–v

Gv(a, b). (5)

Proof Without loss of generality, we can suppose that a = 1. Then the inequality (5) can
be simplified to

bv + b1–v

2
≤

(
2
√

b
1 + b

)1–v[

(1 – v)
√

b + v
b– 1

2 + b 3
2

2

]

.

To prove this inequality, let

f (v) = log
(
bv + b1–v) – (1 – v) log

2
√

b
1 + b

– log
[
2(1 – v)

√
b + v

(
b– 1

2 + b
3
2
)]

.

Calculations show that

f ′′(v) =
4bvb1–v log2 b

(bv + b1–v)2 +
(b– 1

2 + b 3
2 – 2b 1

2 )2

[(1 – v)b 1
2 + v(b– 1

2 + b 3
2 )]2

.

We can notice that f ′′(v) ≥ 0 for 1
2 ≤ v ≤ 1, thus f is convex on [ 1

2 , 1]. Then we have f (v) ≤
max{f ( 1

2 ), f (1)}. By calculation, we have

f
(

1
2

)

= log

( √
2b 1

4 (1 + b) 1
2

b 1
2 + 1

2 b– 1
2 + 1

2 b 3
2

)

≤ 0

because of
√

2b
1
4 (1+b)

1
2

b
1
2 + 1

2 b– 1
2 + 1

2 b
3
2

≤ 1 (b > 0), which equals
√

2b 1
4 (1 + b) 1

2 ≤ b 1
2 + 1

2 b– 1
2 + 1

2 b 3
2 , that

is, 8(1 + b)b 3
2 ≤ 6b2 + b4 + 4b3 + 4b + 1.

Setting b = x2 (x > 0), thus we have x8 + 4x6 – 8x5 + 6x4 – 8x3 + 4x2 + 1 ≥ 0, that is,
(x – 1)2(x6 + 2x5 + 7x4 + 4x3 + 7x2 + 2x + 1) ≥ 0, which is always true when x > 0, then we
get the desired results.

In the same way,

f (1) = log

(
1 + b

b– 1
2 + b 3

2

)

≤ 0

because of 1+b

b– 1
2 +b

3
2

≤ 1 (b > 0), which equals 1 + b ≤ b– 1
2 + b 3

2 , that is (b 1
2 – 1)(b 3

2 – 1) ≥ 0,

which is always true when b > 0. Hence the values of f ( 1
2 ) and f (1) are both less than 0,

that is, f (v) ≤ 0. Then we complete the proof. �

Remark 3.2 The inequality which we obtained from Theorem 3.1 can also be written as

Hv(a, b) ≤
(

2
√

ab
a + b

)1–v

Gv,

and we notice that it is a new comparison between the Heinz means and the geometric
means.
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Corollary 3.3 Let A, B ∈ M+
n , X ∈ Mn and 1

2 ≤ v ≤ 1. If there are two positive numbers m,
M such that m ≤ A, B ≤ M, then

∥
∥
∥
∥

AvXB1–v + A1–vXBv

2

∥
∥
∥
∥

2
≤

(
m + M
2
√

mM

)v–1∥∥
∥
∥(1 – v)A

1
2 XB

1
2 + v

A 3
2 XB– 1

2 + A– 1
2 XB 3

2

2

∥
∥
∥
∥

2
.

Proof Let A = U diag(λi)U∗ and B = V diag(μj)V ∗ be the spectral decompositions of A and
B, respectively. Letting U∗XV = Y , we have

AvXB1–v + A1–vXBv

2

= U
diag(λv

i )Y diag(μ1–v
j ) + diag(λ1–v

i )Y diag(μv
j )

2
V ∗

= U
[λv

i μ
1–v
j + λ1–v

i μv
j ] ◦ [yij]

2
V ∗, (6)

where ◦ denotes the Schur product. Applying (5) we have

∥
∥
∥
∥

AvXB1–v + A1–vXBv

2

∥
∥
∥
∥

2

2

=
∑

i,j

(
λv

i μ
1–v
j + λ1–v

i μv
j

2

)2

|yij|2

≤
∑

i,j

(
λi + μj

2
√

λiλj

)2(v–1)(

(1 – v)λ
1
2
i μ

1
2
j + v

λ
3
2
i μ

– 1
2

j + λ
– 1

2
i μ

3
2
j

2

)

|yij|2

≤
(

m + M
2
√

mM

)2(v–1)∥∥
∥
∥(1 – v)A

1
2 XB

1
2 + v

A 3
2 XB– 1

2 + A– 1
2 XB 3

2

2

∥
∥
∥
∥

2

2
, (7)

where we have used the fact that m ≤ λi, μj ≤ M to obtain the last inequality. �
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