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Abstract
In this paper, we introduce a new class k-US(q,γ ,m,p), γ ∈C\{0}, of multivalent
functions using a newly defined q-analogue of a Salagean type differential operator.
We investigate the coefficient problem, Fekete–Szego inequality, and some other
properties related to subordination. Relevant connections of the results presented
here with those obtained in the earlier work are also pointed out.
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1 Introduction
For a positive integer p, let Ap denote the set of all functions f (z) which are analytic and
p-valent in the open unit disk E = {z ∈C : |z| < 1} and have series expansion of the form

f (z) = zp +
∞∑

n=p+1

anzn. (1.1)

Also, let f ∗ g denote the convolution (or Hadamard product) of f , g ∈ Ap defined as fol-
lows:

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnzn,

where f (z) is given by (1.1) and g(z) = zp +
∑∞

n=p+1 bnzn.
Quite recently, q-analysis has influenced the researchers a lot due to rapid applications

in mathematics and related fields. In the last century many well-known researchers (for
details, see [1, 4, 6–10, 13, 14, 21, 22, 32]) did great work on q-calculus and found numerous
applications. It is worth mentioning that convolution theory helps many researchers to
investigate a number of properties of analytic univalent and multivalent functions. Several
differential and integral operators were defined using ordinary derivative; for details, see
[29].

Due to growing applications of q-calculus, investigators are interested in studying prop-
erties of functions using q-operators instead of ordinary differential operators; for com-
prehensive study, we refer to Kanas and Reducanu [15], Mahmood and Darus [19], and
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Mahmood and Sokol [20]. In this paper we define a q-analogue of a Salagean type opera-
tor and study its effect on multivalent functions in conic domains.

For any non-negative integer n, the q-integer number n denoted by [n]q is defined by

[n]q =
1 – qn

1 – q
, [0]q = 0.

For a non-negative integer n, the q-number shift factorial is defined as

[n]q! = [1]q[2]q[3]q...[n]q
(
[0]q! = 1

)
.

We note that when q → 1, [n]q! reduces to the classical definition of factorial. In general,
[t]q is defined as follows:

[t]q =
1 – qt

1 – q
, [0]q = 0, q ∈ (0, 1).

For f ∈ A, in [5], the q-derivative operator or q-difference operator is defined as follows:

∂qf (z) =
f (qz) – f (z)

z(q – 1)
.

It can easily be seen that

∂qzn = [n]qzn–1, ∂q

{ ∞∑

n=1

anzn

}
=

∞∑

n=1

[n]qanzn–1.

Taking motivation from the above mentioned work, we define new convolution operators
as follows.

Let

Φ(p, q, m, z) = zp +
∞∑

n=p+1

[
n + (p – 1)

]m
q zn. (1.2)

Using the functions Φ(p, q, m, z) and the definition of q-derivative along with the idea of
convolution, we now define the following differential operator Sm

q,pf (z) : Ap →Ap for mul-
tivalent functions

Sm
q,pf (z) = Φ(p, q, m, z) ∗ f (z), m ∈ N ∪ {0},

= zp +
∞∑

n=p+1

[
n + (p – 1)

]m
q anzn,

= zp +
∞∑

n=p+1

ψnanzn, (1.3)

where

ψn =
[
n + (p – 1)

]m
q . (1.4)
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For p = 1, the operatorSm
q,pf (z) reduces to the Salagean q-differential operator defined by

Govindaraj and Sivasubramanian [11], and for p = 1, q → 1, the operator Sm
q,pf (z) reduces

to the Salagean differential operator defined by Salagean [26].
Taking motivation from [12] and using (1.3), we define a new class k-US(q,γ , m, p) of

multivalent functions as follows.
Throughout paper we shall assume k ≥ 0, m ∈ N ∪ {0}, q ∈ (0, 1), γ ∈C\{0}, and p ∈ N .

Definition 1.1 A function f (z) ∈ Ap is in the class k-US(q,γ , m, p) if it satisfies the con-
dition

Re

{
1 +

1
γ

{
1

[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}}
> k

∣∣∣∣
1
γ

{
1

[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}∣∣∣∣, z ∈ E.

By taking specific values of parameters, we obtain many important subclasses studied by
various authors in earlier papers. Here we enlist some of them.

(i) For p = 1, the class k-US(q,γ , m, p) reduces to the class k-US(q,γ , m) studied by
Saqib et al. [12].

(ii) For p = 1, m = 0, k = 0, and γ ∈ C\{0}, the class k-US(q,γ , m, p) reduces to the
class S∗

q (γ ) studied by Seoudy and Aouf [27].
(iii) For p = 1, m = 0, k = 0, and γ = 1

1–α
, with 0 ≤ α < 1, the class k-US(q,γ , m, p)

reduces to the class S∗
q (α) studied by Agrawal and Sahoo [2].

(iv) For p = 1, m = 0, q → 1, and γ = 1
1–α

, with 0 ≤ α < 1, the class k-US(q,γ , m, p)
reduces to the class SD(k,α) studied by Shams et al. [28].

(v) For p = 1, m = 0, q → 1, and γ = 2
1–α

, with 0 ≤ α < 1, the class k-US(q,γ , m, p)
reduces to the class KD(k,α) studied by Owa et al. [24].

(vi) For p = 1, k = 1, m = 0, q → 1, and γ = 1
1–α

, with 0 ≤ α < 1, the class
k-US(q,γ , m, p) reduces to the class S(α) studied by Ali et al. [3].

(vii) For p = 1, k = 1, m = 0, q → 1, and γ = 2
1–α

, with 0 ≤ α < 1, the class
k-US(q,γ , m, p) reduces to the class K(α) studied by Ali et al. [3].

(viii) For p = 1, m = 0, q → 1, the class k-US(q,γ , m, p) reduces to the class K-ST
introduced by Kanas and Wisniowska [17].

(ix) For p = 1, k = 0, m = 0, q → 1, and γ = 1
1–α

, with 0 ≤ α < 1, the class
k-US(q,γ , m, p) reduces to the class S∗(α), a well-known class of starlike
functions of order α, respectively.

Geometric interpretation. A function f (z) ∈Ap is in the class k-US(q,γ , m, p) if and only
if 1

[p]q
( z∂qSm

q,pf (z)
Sm

q,pf (z) ) takes all the values in the conic domain Ωk,γ = hk,γ (E) such that

Ωk,γ = γΩk + (1 – α),

where

Ωk =
{

u + iv : u > k
√

(u – 1)2 + v2
}

.

Since hk,γ (z) is convex univalent, so the above definition can be written as

1
[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
≺ hk,γ (z), (1.5)
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where

hk,γ (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1+z
1–z , for k = 0,

1 + 2γ

π2 (log 1+
√

z
1–

√
z )2, for k = 1,

1 + 2γ

1–k2 sinh2{( 2
π

arccos k) arctan h
√

z}, for 0 < k < 1,

1 + γ

k2–1 sin( π
2R(t)

∫ u(z)√
t

0
1√

1–x2
√

1–(tx)2
dx) + γ

1–k2 , for k > 1.

(1.6)

The boundary ∂Ωk,γ of the above set becomes an imaginary axis when k = 0, and a hyper-
bola when 0 < k < 1. For k = 1, the boundary ∂Ωk,γ becomes a parabola and it is an ellipse
when k > 1 and in this case where

u(z) =
z –

√
t

1 –
√

tz
, z ∈ E,

and t ∈ (0, 1) is chosen such that k = cosh(πK ′(t)/(4K(t))). Here K(t) is Legendre’s com-
plete elliptic integral of the first kind and K ′(t) = K(

√
1 – t2), and K ′(t) is the complemen-

tary integral of K(t) (for details, see [16, 17, 23]). Moreover, hk,γ (E) is convex univalent
in E, see [16, 17]. All of these curves have the vertex at the point k+γ

k+1 .

2 A set of lemmas
Each of the following lemmas will be needed in our present investigation.

Lemma 2.1 ([25]) Let h(z) =
∑∞

n=1 hnzn ≺ F(z) =
∑∞

n=1 dnzn in E. If F(z) is convex univalent
in E, then

|hn| ≤ |d1|, n ≥ 1.

Lemma 2.2 ([31]) Let k ∈ [0,∞) and let hk,γ be defined (1.6). If

hk,γ (z) = 1 + Q1z + Q2z2 + · · · , (2.1)

Q1 =

⎧
⎪⎪⎨

⎪⎪⎩

2γ A2

1–k2 , 0 ≤ k < 1,
8γ

π2 , k = 1,
π2γ

4(1+t)
√

tK2(t)(k2–1) , k > 1,

(2.2)

Q2 =

⎧
⎪⎪⎨

⎪⎪⎩

A2+2
3 Q1, 0 ≤ k < 1,

2
3 Q1, k = 1,
4K2(t)(t2+6t+1)–π2

24K2(t)(1+t)
√

t Q1, k > 1,

(2.3)

where A = 2 cos–1 k
π

, and t ∈ (0, 1) is chosen such that k = cosh( πK ′(t)
K (t) ), K(t) is Legendre’s com-

plete elliptic integral of the first kind.

Lemma 2.3 ([18]) Let h(z) = 1 +
∑∞

n=1 cnzn be analytic in E and satisfy Re{h(z)} > 0 for z
in E. Then the following sharp estimate holds:

∣∣c2 – μc2
1
∣∣ ≤ 2 max

{
1, |2μ – 1|}, ∀μ ∈C.
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3 Main results
In this section, we will prove our main results.

Theorem 3.1 Let f (z) ∈ k – US(q,γ , m, p). Then

Sm
q,pf (z) ≺ z exp

∫ z

0

p{hk,γ (w(z))} – 1
ζ

dξ , (3.1)

where w(z) is analytic in E with w(0) = 0 and |w(z)| < 1. Moreover, for |z| = ρ , we have

exp

(∫ 1

0

p{hk,γ (–ρ)} – 1
ρ

dρ

)
≤

∣∣∣∣
Sm

q,pf (z)
z

∣∣∣∣ ≤ exp

(∫ 1

0

p{hk,γ (ρ)} – 1
ρ

dρ

)
, (3.2)

where hk,γ (z) is defined by (1.6).

Proof If f (z) ∈ k – US(q,γ , m, p), then using identity (1.5), we obtain

1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
≺ hk,γ (z),

1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
= hk,γ

(
w(z)

)
, (3.3)

∂qSm
q,pf (z)

Sm
q,pf (z)

–
1
z

=
p{hk,γ (w(z))} – 1

z
.

For some function w(z) is analytic in E with w(0) = 0 and |w(z)| < 1. Integrating (3.3) and
after some simplification, we have

Sm
q,pf (z) ≺ z exp

∫ z

0

p{hk,γ (w(z))} – 1
ζ

dξ . (3.4)

This proves (3.1). Noting that the univalent function hk,γ (z) maps the disk |z| < ρ (0 < ρ ≤
1) onto a region which is convex and symmetric with respect to the real axis, we see

hk,γ
(
–ρ|z|) ≤ Re

{
hk,γ (w(ρz)

} ≤ hk,γ
(
ρ|z|) (0 < ρ ≤ 1, z ∈ E). (3.5)

Using (3.4) and (3.5) gives

∫ 1

0

p{hk,γ (–ρ|z|)} – 1
ρ

dρ ≤ Re
∫ 1

0

p{hk,γ (w(ρ(z))} – 1
ρ

dρ

≤
∫ 1

0

p{hk,γ (ρ|z|)} – 1
ρ

dρ

for z ∈ E. Consequently, subordination (3.4) leads to

∫ 1

0

p{hk,γ (–ρ|z|)} – 1
ρ

dρ ≤ log

∣∣∣∣
Sm

q,pf (z)
z

∣∣∣∣ ≤
∫ 1

0

p{hk,γ (ρ|z|)} – 1
ρ

dρ,

hk,γ (–ρ) ≤ hk,γ
(
–ρ|z|), hk,γ

(
ρ|z|) ≤ hk,γ (ρ)
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implies that

exp
∫ 1

0

p{hk,γ (–ρ)} – 1
ρ

dρ ≤
∣∣∣∣
Sm

q,pf (z)
z

∣∣∣∣

≤ exp
∫ 1

0

p{hk,γ (ρ)} – 1
ρ

dρ.

This completes the proof. �

When p = 1, we have the following known result proved by Saqib et al. in [12].

Corollary 3.2 Let f (z) ∈ k – US(q,γ , m). Then

Sm
q f (z) ≺ z exp

∫ z

0

hk,γ (w(ξ )) – 1
ζ

dξ ,

where w(z) is analytic in E with w(0) = 0 and |w(z)| < 1. Moreover, for |z| = ρ , we have

exp

(∫ 1

0

hk,γ (–ρ) – 1
ρ

dρ

)
≤

∣∣∣∣
Sm

q f (z)
z

∣∣∣∣

≤ exp

(∫ 1

0

hk,γ (ρ) – 1
ρ

dρ

)
,

where hk,γ (z) is defined by (1.6).

Theorem 3.3 If f (z) ∈ k – US(q,γ , m, p), then

|ap+1| ≤ δ

{[p + 1]q – p}ψp+1
(3.6)

and

|an+p–1| ≤ δ

{[n + p – 1]q – p}ψn+p–1

n–2∏

j=1

(
1 +

δ

{[j + p]q – p}
)

for n = 3, 4, . . . , (3.7)

where δ = p|Q1| with Q1 given by (2.2).

Proof Let

1
[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
= h(z),

z∂qSm
q,pf (z) = [p]qSm

q,pf (z)h(z),

(3.8)

where h(z) is analytic in E and h(0) = 1. Let h(z) = 1 +
∑∞

n=1 cnzn and Sm
q,pf (z) be given by

(1.3). Then (3.8) becomes

zp +
∞∑

n=p+1

[n]qψnanzn = p

( ∞∑

n=0

cnzn

)(
zp +

∞∑

n=p+1

ψnanzn

)
.
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Now comparing the coefficients of zn+p–1, we obtain

[n + p – 1]qψn+p–1an+p–1 = pψn+p–1an+p–1 + p{c1ψn+p–2an+p–2 + · · · + cn–1},
{

[n + p – 1]q – p
}
ψn+p–1an+p–1 = p{c1ψn+p–2an+p–2 + · · · + cn–1}.

Taking the absolute on both sides and then applying the coefficient estimates |cn| ≤ |Q1|,
see in [23], we have

|an+p–1| ≤ p|Q1|
{[n + p – 1]q – p}ψn+p–1

{
1 + ψp+1|ap+1| + · · · + ψn+p–2|an+p–2|

}
.

Let us take δ = p|Q1|, then we have

|an+p–1| ≤ δ

{[n + p – 1]q – p}ψn+p–1

{
1 + ψp+1|ap+1| + · · · + ψn+p–2|an+p–2|

}
. (3.9)

We apply mathematical induction on (3.9), so for n = 2 in (3.9), we have

|ap+1| ≤ δ

{[p + 1]q – p}ψp+1
, (3.10)

which shows that (3.7) holds for n = 2. Now consider the case n = 3 in (3.9), we have

|ap+2| ≤ δ

{[p + 2]q – p}ψp+2

{
1 + ψp+1|ap+1|

}
.

Using (3.10), we have

|ap+2| ≤ δ

{[p + 2]q – p}ψp+2

{
1 +

δ

[p + 1]q – p

}
,

which shows that (3.7) holds for n = 3. Let us assume that (3.7) is true for n ≤ t, that is,

|at+p–1| ≤ δ

{[t + p – 1]q – p}ψt+p–1

t–2∏

j=1

(
1 +

δ

[j + p]q – p

)
for n = 3, 4, . . . .

Consider

|at+p| ≤ δ

{[t + p]q – p}ψt+p

{
1 + ψp+1|ap+1| + · · ·ψt+p–1|at+p–1|

}

≤ δ

{[t + p]q – p}ψt+p

{
1 + δ

[p+1]q–p + δ
[p+2]q–p (1 + δ

[p+1]q–p ) + · · ·
+ δ

{[t+p–1]q–p}
∏t–2

j=1 (1 + δ
[j+p]q–p )

}

=
δ

{[t + p]q – p}ψt+p

t–1∏

j=1

(
1 +

δ

[j + p]q – p

)
,

which proves the assertion of theorem n = t + 1. Hence (3.7) holds for all n, n ≥ 3.
This completes the proof. �
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When p = 1, we have the following known result proved by Saqib et al. in [12].

Corollary 3.4 ([12]) If f (z) ∈ k – US(q,γ , m), then

|a2| ≤ δ

{[2]q – 1}[2]m
q

and

|an| ≤ δ

{[n]q – 1}[n]m
q

n–2∏

j=1

(
1 +

δ

[j + 1]q – 1

)
for n = 3, 4, . . . ,

where δ = |Q1| with Q1 given by (2.2).

Theorem 3.5 Let 0 ≤ k < ∞ be fixed and let f (z) ∈ k – US(q,γ , m, p) with the form (1.1).
Then, for a complex number μ,

∣∣ap+2 – μa2
p+1

∣∣ ≤ pQ1

2[2p + 1]m
q {[p + 2]q – p} max

[
1, |2v – 1|], (3.11)

where

v =
1
2

{
1 –

Q2

Q1
– Q1

(
4p

{[p + 1]q – p} – μ
4p[2p + 1]m

q {[p + 2]q – p}
([2p]m

q )2{[p + 1]q – p}
)}

, (3.12)

and δ = p|Q1|, with Q1 and Q2 given by (2.2) and (2.3).

Proof Let f (z) ∈ k –US(q,γ , m, p), then there exists a Schwarz function w(z), with w(0) = 0
and |w(z)| < 1, such that

1
[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
≺ hk,γ (z), z ∈ E,

1
[p]q

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
= hk,γ

(
w(z)

)
.

(3.13)

Let h(z) ∈P be a function defined as

h(z) =
1 + w(z)
1 – w(z)

,

which gives

w(z) =
c1

2
z +

1
2

(
c2 –

c2
1

2

)
z2 + · · ·

and

hk,γ
(
w(z)

)
= 1 +

Q1c1

2
z +

{
Q2c2

1
4

+
1
2

(
c2 –

c2
1

2

)
Q1

}
z2 + · · · . (3.14)
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Using (3.14) in (3.13) and along with (1.3), we obtain

ap+1 =
pQ1c1

[2p]m
q {[p + 1]q – p}

and

ap+2 =
p

[2p + 1]m
q {[p + 2]q – p}

{
Q1c2

2
+

c2
1

4

(
Q2 – Q1 +

4pQ2
1

{[p + 1]q – p}
)}

.

Using any complex number μ and the above coefficients, we have

ap+2 – μa2
p+1 =

pQ1

2[2p + 1]m
q {[p + 2]q – p}

{
c2 – vc2

1
}

. (3.15)

Using Lemma 2.3 on (3.15), we have

∣∣ap+2 – μa2
p+1

∣∣ ≤ pQ1

2[2p + 1]m
q {[p + 2]q – p} max

[
1, |2v – 1|],

where

v =
1
2

{
1 –

Q2

Q1
– Q1

(
4p

{[p + 1]q – p} – μ
4p[2p + 1]m

q {[p + 2]q – p}
([2p]m

q )2{[p + 1]q – p}
)}

.

This is our required result (3.11). �

When p = 1, we have the following known result proved by Saqib et al. in [12].

Corollary 3.6 ([12]) Let 0 ≤ k < ∞ be fixed and let f (z) ∈ k – US(q,γ , m) with the form
(1.1). Then, for a complex number μ,

∣∣a3 – μa2
2
∣∣ ≤ Q1

2[3]m
q {[3]q – 1} max

[
1, |2v – 1|],

where

v =
1
2

{
1 –

Q2

Q1
– Q1

(
4

[2]q – 1
– μ

4[3]m
q {[3]q – 1}

([2]m
q )2{[2]q – 1}

)}
,

and Q1 and Q2 are given by (2.2) and (2.3).

Theorem 3.7 If a function f (z) ∈Ap has the form (1.1) and satisfies the condition

∞∑

n=p+1

{{∣∣[n]q – p
∣∣}(k + 1) + p|γ |}|ψn||an| ≤ |γ ||p|, (3.16)

then f (z) ∈ k – US(q,γ , m, p).
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Proof Let

∣∣∣∣
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

∣∣∣∣ =
∣∣∣∣
z∂qSm

q,pf (z) – pSm
q,pf (z)

pSm
q,pf (z)

∣∣∣∣

=
∣∣∣∣

∑∞
n=p+1 ψn{[n]q – p}anzn

pzp + p
∑∞

n=p+1 ψnanzn

∣∣∣∣

≤
∑∞

n=p+1 |ψn{[n]q – p}||an|
|p| –

∑∞
n=p+1 p|ψn||an| . (3.17)

From (3.16), it follows that

p –
∞∑

n=p+1

p|ψn||an| > 0.

To show that f (z) ∈ k – US(q,γ , m, p), it is enough to prove that

∣∣∣∣
k
γ

{
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}∣∣∣∣ – Re

{
1
γ

{
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}}
≤ 1.

From (3.17), we have

∣∣∣∣
k
γ

{
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}∣∣∣∣ – Re

{
1
γ

{
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

}}

≤ k
|γ |

∣∣∣∣
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

∣∣∣∣ +
1

|γ |
∣∣∣∣
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

∣∣∣∣

≤ (k + 1)
|γ |

∣∣∣∣
1
p

(z∂qSm
q,pf (z)

Sm
q,pf (z)

)
– 1

∣∣∣∣

=
(k + 1)

|γ |
∣∣∣∣
z∂qSm

q,pf (z) – pSm
q,pf (z)

pSm
q,pf (z)

∣∣∣∣

≤ (k + 1)
|γ |

{∑∞
n=p+1 |ψn{[n]q – p}||an|

|p| –
∑∞

n=p+1 p|ψn||an|
}

≤ 1. �

When p = 1, we have the following known result proved by Hussain et al. in [12].

Corollary 3.8 ([12]) If a function f (z) ∈A has the form (1.1) and satisfies the condition

∞∑

n=2

{∣∣[n]q – 1
∣∣(k + 1) + |γ |}[n]m

q |an| ≤ |γ |,

then f (z) ∈ k – US(q,γ , m).

When q → 1, p = 1, m = 0, γ = 1 –α, with 0 ≤ α < 1, we have the following known result,
proved by Shams et al. in [28].
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Corollary 3.9 A function f ∈ A of the form (1.1) is in the class SD(k,α) if it satisfies the
condition

∞∑

n=2

{
n(k + 1) – (k + α)

}|an| ≤ 1 – α,

where 0 ≤ α < 1 and k ≥ 0.

When q → 1, p = 1, m = 0, γ = 1 – α, with 0 ≤ α < 1 and k = 0, we have the following
known result proved by Silverman in [30].

Corollary 3.10 A function f ∈ A of the form (1.1) is in the class SD(α) if it satisfies the
condition

∞∑

n=2

{n – α}|an| ≤ 1 – α.

Theorem 3.11 Let f (z) ∈ k – US(q,γ , m, p). Then f (E) contains an open disk of radius

r =
{[p + 1]q – p}ψp+1

(p + 1){[p + 1]q – p}ψp+1 + δ
,

where δ = p|Q1| with Q1 given by (2.2).

Proof Let w0 
= 0 be a complex number such that f (z) 
= w0 for z ∈ E. Then

f1(z) =
w0f (z)

w0 – f (z)
= z +

(
ap+1 +

1
w0

)
zp+1 + · · · .

Since f1(z) is univalent, so
∣∣∣∣ap+1 +

1
w0

∣∣∣∣ ≤ p + 1.

Now, by using (3.6), we have

∣∣∣∣
1

w0

∣∣∣∣ ≤ (p + 1){[p + 1]q – p}ψp+1 + δ

{[p + 1]q – p}ψp+1
.

Hence we have

|w0| ≥ {[p + 1]q – p}ψp+1

(p + 1){[p + 1]q – p}ψp+1 + δ
. �

When p = 1, we have the following known result proved by Saqib et al. in [12].

Corollary 3.12 ([12]) Let f (z) ∈ k –US(q,γ , m). Then f (E) contains an open disk of radius

r =
{[2]q – 1}[2]m

q

2[2]m
q {[2]q – 1} + Q1

,

where Q1 is given by (2.2).
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