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Abstract
In this paper we consider a class of split feasibility problem by focusing on the
solution sets of two important problems in the setting of Hilbert spaces. One of them
is the set of zero points of the sum of two monotone operators and the other is the
set of �xed points of mappings. By using the modi�ed forward�backward splitting
method, we propose a viscosity iterative algorithm. Under suitable conditions, some
strong convergence theorems of the sequence generated by the algorithm to a
common solution of the problem are proved. At the end of the paper, some
applications and the constructed algorithm are also discussed.
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1 Introduction
Many applications of the split feasibility problem (SFP), which was �rst introduced by
Censor and Elfving [1], have appeared in various �elds of science and technology, such
as in signal processing, medical image reconstruction and intensity-modulated radiation
therapy (for more information, see [2, 3] and the references therein). In fact, Censor and
Elfving [1] studied SFP in a �nite-dimensional space, by considering the problemof �nding
a point

x� � C such that Ax� �Q, (1.1)

where C andQ are nonempty closed convex subsets of Rn, and A is an n×nmatrix. They
introduced an iterative method for solving SFP.
On the other hand, variational inclusion problems are being used as mathematical pro-

gramming models to study a large number of optimization problems arising in �nance,
economics, network, transportation and engineering science. The formal form of a varia-
tional inclusion problem is the problem of �nding x� �H such that

0 � Bx�, (1.2)
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where B :H � 2H is a set-valued operator. If B is a maximal monotone operator, the ele-
ments in the solution set of problem (1.2) are called the zeros of this maximal monotone
operator. This problem was introduced by Martinet [4], and later it has been studied by
many authors. It is well known that the popular iterationmethod that was used for solving
problem (1.2) is the following proximal point algorithm: for a given x �H ,

xn+1 = JBλnxn, �n �N,

where {λn} � (0,�) and JBλn = (I+λnB)�1 is the resolvent of the consideredmaximalmono-
tone operator B corresponding to λn (see, also [5�9] for more details).
In view of SFP and the �xed point problem, very recently, Montira et al. [10] considered

the problem of �nding a point x� �H such

0 � Ax� + Bx� and Lx� � F(T), (1.3)

where A : H1 � H1 is a monotone operator, and B : H1 � 2H1 is a maximal monotone
operator, L : H1 � H2 is a bounded linear operator and T : H2 � H2 is a nonexpansive
mapping.
They considered the following iterative algorithm: for any x0 �H1,

xn+1 = JBλn
(
(I � λnA) � γnL�(I � T)L

)
xn, �n �N, (1.4)

where {λn} and {γn} satisfy some suitable control conditions, and JBλn is the resolvent of a
maximal monotone operator B associated to λn, and proved that sequence (1.4) weakly
converges to a point x� � �A+B

L,T , where �A+B
L,T is the solution set of problem (1.3).

Motivated by the work of Montira et al. [10] and the research in this direction, the pur-
pose of this paper is to study the following split feasibility problem and �xed point prob-
lem: �nd x� � H such that

0 � Ax� + Bx�, Lx� � F(T) and x� � F(S), (1.5)

whereA, B, L are the same as in (1.3) and S :H1 �H1 is a nonexpansivemapping. By using
amodi�ed forward�backward splittingmethod, we propose a viscosity iterative algorithm
(see (3.4) below). Under suitable conditions, some strong convergence theorems of the
sequence generated by the algorithm to a zero of the sum of two monotone operators and
�xed point of mappings are proved. At the end of the paper, some applications and the
constructed algorithm are also discussed. The results presented in the paper extend and
improve the main results of Montira et al. [10], Byrne et al. [11], Takahashi et al. [12] and
Passty [13].

2 Preliminaries
Throughout this paper, we denote by N the set of positive integers, and by R the set of
real numbers. Let H be a real Hilbert space with the inner product �•, •	 and norm 
 • 
,
respectively. When {xn} is a sequence in H , we denote the weak convergence of {xn} to x
in H by xn ⇀ x.
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Let T : H � H be a mapping. We say that T is a Lipschitz mapping if there exists an
L > 0 such that


Tx � Ty
 � L
x � y
, �x, y � H .

The number L, associated with T , is called a Lipschitz constant. If L = 1,we say that T is a
nonexpansive mapping, that is,


Tx � Ty
 � 
x � y
, �x, y �H .

We say that T is �rmly nonexpansive if

�Tx � Ty,x � y	 � 
Tx � Ty
2, �x, y �H .

A mapping T : H � H is said to be an averaged mapping if it can be written as the
average of the identity I and a nonexpansive mapping, that is,

T = (1 � α)I + αS, (2.1)

where α � (0, 1) and S : H � H is a nonexpansive mapping [14]. More precisely, when
(2.1) holds, we say that T is α-averaged. It should be observed that a mapping is �rmly
nonexpansive if and only if it is a 1

2 -averaged mapping.
Let A :H � H be a single-valued mapping. For a positive real number β , we say that A

is β-inverse strongly monotone (β-ism) if

�Ax �Ay,x � y	 � β
Ax �Ay
2, �x, y �H .

We now collect some important conclusions and properties, which will be needed in
proving our main results.

Lemma 2.1 ([15, 16]) The following conclusions hold:
(i) The composition of finitely many averaged mappings is averaged. In particular, if Ti

is αi-averaged, where αi � (0, 1) for i = 1, 2, then the composition T1T2 is α-averaged,
where α = α1 + α2 � α1α2.

(ii) If A is β-ism and γ � (0,β], then T := I � γA is firmly nonexpansive.
(iii) A mapping T :H �H is nonexpansive if and only if I � T is 1

2 -ism.
(iv) If A is β-ism, then, for γ > 0, γA is β

γ
-ism.

(v) T is averaged if and only if the complement I �T is β-ism for some β > 1
2 . Indeed, for

α � (0, 1), T is α-averaged if and only if I � T is 1
2α -ism.

Lemma 2.2 ([17]) Let T = (1 � α)A + αN for some α � (0, 1). If A is β-averaged and N is
nonexpansive then T is α + (1 � α)β-averaged.

Let B :H � 2H be a set-valued mapping. The e�ective domain of B is denoted by D(B),
that is, D(B) = {x �H : Bx 
= �}. Recall that B is said to be monotone if

�x � y,u � v	 � 0, �x, y �D(B),u � Bx, v � By.
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A monotone mapping B is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator. For a maximal monotone operator B :H � 2H

and r > 0, its resolvent JBr is de�ned by

JBr := (I + rB)�1 :H �D(B).

It is well known that, if B is a maximal monotone operator and r is a positive number, then
the resolvent JBr is single-valued and �rmly nonexpansive, and F(JBr ) = B�10 � {x �H : 0 �
Bx}, �r > 0 (see [12, 18, 19]).

Lemma 2.3 ([20]) Let H be a Hilbert space and let B be a maximal monotone operator
on H . Then for all s, t > 0 and x � H ,

s � t
s

�Jsx � Jtx, Jsx � x	 � 
Jsx � Jtx
2;


Jsx � Jtx
 �
(
|s � t|/s

)

x � Jsx
.

Lemma 2.4 ([12]) Let H1 and H2 be Hilbert spaces. Let L :H1 �H2 be a nonzero bounded
linear operator and T :H2 �H2 be a nonexpansivemapping. If B :H1 � 2H1 is amaximal
monotone operator, then

(i) L�(I � T)L is 1
2
L
2 -ism,

(ii) For 0 < r < 1

L
 ,

(iia) I � rL�(I � T)L is r
L
2-averaged,
(iib) JBλ (I � rL�(I � T)L) is 1+r
L
2

2 -averaged, for λ > 0,
(iii) If r = 
L
�2, then I � rL�(I � T)L is nonexpansive.

Lemma 2.5 ([21]) Let B : H � 2H be a maximal monotone operator with the resolvent
JBλ = (I + λB)�1 for λ > 0. Then we have the following resolvent identity:

JBλ x = JBμ

(
μ

λ
x +

(
1 �

μ

λ

)
JBλ x

)
,

for all μ > 0 and x � H .

Lemma 2.6 ([22]) Let C be a closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself. Then U := I � T is demiclosed, i.e., xn ⇀ x0 and
Uxn � y0 imply Ux0 = y0.

Lemma 2.7 ([10]) Let H1 and H2 be Hilbert spaces. Let A :H1 �H1 be a β-ism, B :H1 �
2H1 amaximalmonotone operator,T :H2 �H2 a nonexpansivemapping and L :H1 �H2

a bounded linear operator. If �A+B
L,T 
= �, then the following are equivalent:

(i) z � �A+B
L,T ,

(ii) z = JBλ ((Iλ �A) � γL�(I � T)L)z,
(iii) 0 � L�(I � T)Lz + (A + B)z,

where λ,γ > 0 and z �H1.

Lemma 2.8 ([23]) Let {an} be a sequence of nonnegative real numbers such that

an+1 � (1 � βn)an + δn, �n� 0,
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where {βn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)

∑�
n=1 βn = �;

(ii) lim supn��
δn
βn

� 0 or
∑�

n=1 |δn| < �.
Then limn�� an = 0.

3 Main results
We are now in a position to give the main result of this paper.

Lemma 3.1 Let H1 and H2 be two real Hilbert spaces. Let A : H1 � H1 be a β-ism, B :
H1 � 2H1 be a maximal monotone operator, T : H2 � H2 be a nonexpansive mapping,
and L :H1 � H2 be a bounded linear operator.Let S :H1 �H1 be a nonexpansivemapping
such that F(S)� �A+B

L,T 
= �, where

�A+B
L,T :=

{
x � (A + B)�1(0)� L�1F(T)

}
(3.1)

is the set of solutions of problem (1.3). Let f : H1 � H1 be a contraction mapping with a
contractive constant α � (0, 1). For any t � (0, 1], let Wt :H1 � H1 be the mapping de�ned
by

Wtx = tf (x) + (1 � t)S
[
JBλn

(
(I � λnA) � γnL�(I � T)L

)
x
]
, �x �H1, (3.2)

where L� is the adjoint of L and the sequences λn and γn satisfy the following control con-
ditions:

(i) 0 < a� λn � b1 < β

2 ,
(ii) 0 < a� γn � b2 < 1

2
L
2 , for some a,b1,b2 � R.
Then Wt is a contraction mapping with a contractive constant [1 � t(1 � α)]. Therefore Wt

has a unique �xed point for each t � (0, 1).

Proof Note that, for each n �N, we have

(I � λnA) � γnL�(I � L)L =
1
2
(I � 2λnA) +

1
2
(
I � 2γnL�(I � T)L

)
.

Also, by condition (i) and Lemma 2.1(ii), we know that I � 2λnA is a �rmly nonexpansive
mapping, and this implies that I � 2λnA must be a nonexpansive mapping. On the other
hand, by Lemma 2.4(iia), we know that I � 2γnL�(I � T)L is 2γn
L
2-averaged. Thus, by
condition (ii) and Lemma 2.2, we see that (I � λnA) � γnL�(I � T)L is 1+2γn
L
2

2 -averaged.
Set

Tn := JBλn
(
(I � λnA) � γnL�(I � T)L

)
, �n� 1. (3.3)

Since JBλn is
1
2 -averaged, by Lemma 2.1(i) we see that Tn is 3+2γn
L
2

4 -averaged and hence it
is nonexpansive. Further, for any x, y �H1, we obtain


Wtx �Wty
 =
∥
∥tf (x) + (1 � t)STnx � tf (y) � (1 � t)STny

∥
∥

� t
∥∥f (x) � f (y)

∥∥ + (1 � t)
STnx � STny
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� tα
x � y
 + (1 � t)
x � y


=
(
1 � t(1 � α)

)

x � y
.

Since 0 < 1� t(1�α) < 1, it follows thatWt is a contractionmapping. Therefore, by Banach
contraction principle,Wt has a unique �xed point xt in H1. �

Theorem 3.2 Let H1, H2, A, B, T , L, S, f be the same as in Lemma 3.1. For any given
x0 �H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = JBλn ((I � λnA) � γnL�(I � T)L)xn,

xn+1 = αnf (xn) + (1 � αn)Sun,
�n� 0, (3.4)

where {αn} is a sequence in (0, 1) such that limn�� αn = 0,
∑�

n=0 αn = � and
∑�

n=1 |αn �
αn�1| < � and L� is the adjoint of L.
If F(S)� �A+B

L,T 
= � and the sequences {λn} and {γn} satisfy the following conditions:
(i) 0 < a� λn � b1 < β

2 , and 	�
n=1|λn � λn�1| <�,

(ii) 0 < a� γn � b2 < 1
2
L
2 , and 	�

n=1|γn � γn�1| < �, for some a,b1,b2 �R,
then the sequences {un} and {xn} both converge strongly to z � F(S) � �A+B

L,T , where z =
PF(S)��A+B

L,T
f (z), i.e., z is a solution of problem (1.5).

Proof Take

Tn := JBλn
(
(I � λnA) � γnL�(I � T)L

)
,

for each n � N. By Lemma 2.7, we have �A+B
L,T = F(Tn), for all n � N. Thus, for each n � N,

we can write xn+1 = αnf (xn) + (1 � αn)STnxn. By the proof of Lemma 3.1, we see that Tn is
3+2γn
L
2

4 -averaged. Thus, for each n �N, we can write

Tn = (1 � ξn)I + ξnVn,

where ξn = 3+2γn
L
2
4 and Vn is a nonexpansive mapping. Consequently, we also have

�A+B
L,T = F(Tn) = F(Vn), for all n �N. Using this fact, for each p � F(S)� �A+B

L,T , we see that


un � p
2 = 
Tnxn � p
2

=
∥∥(1 � ξn)xn + ξnVnxn � p

∥∥2

=
∥∥(1 � ξn)(xn � p) + ξn(Vnxn � p)

∥∥2

= (1 � ξn)
xn � p
2 + ξn
Vnxn � p
2 � ξn(1 � ξn)
xn �Vnxn
2

� 
xn � p
2 � ξn(1 � ξn)
xn �Vnxn
2 (3.5)

for each n � N. Since I � Tn = ξn(I �Vn), in view of (3.5) we get


un � p
2 � 
xn � p
2 � (1 � ξn)
xn � Tnxn
2, (3.6)
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for each n � N. Since ξn = 3+2γn
L
2
4 � ( 34 , 1), we obtain


un � p
2 � 
xn � p
2. (3.7)

Next, we estimate


xn+1 � p
 =
∥
∥αnf (xn) + (1 � αn)Sun � p

∥
∥

� αn
∥∥f (xn) � p

∥∥ + (1 � αn)
Sun � p


� αn
(∥∥f (xn) � f (p)

∥∥ +
∥∥f (p) � p

∥∥)
+ (1 � αn)
un � p


� αnα
xn � p
 + αn
∥
∥f (p) � p

∥
∥ + (1 � αn)
xn � p


�
(
1 � αn(1 � α)

)

xn � p
 + αn

∥∥f (p) � p
∥∥

� max

{

xn � p
,


f (p) � p

1 � α

}
.

By induction, we can prove that


xn+1 � p
 � max

{

x0 � p
,


f (p) � p

1 � α

}
, �n� 0. (3.8)

Hence {xn} is bounded and so are {un}, {f (xn)} and {Sun}.
Next, we show that

lim
n��


xn+1 � xn
 = 0. (3.9)

In fact, it follows from (3.4) that


xn+1 � xn
 =
∥
∥αnf (xn) + (1 � αn)Sun �

(
αn�1f (xn�1) + (1 � αn�1)Sun�1

)∥∥

=
∥∥αnf (xn) � αnf (xn�1) + αnf (xn�1) � αn�1f (xn�1) + (1 � αn)Sun

� (1 � αn)Sun�1 + (1 � αn)Sun�1 � (1 � αn�1)Sun�1
∥
∥

� αnα
xn � xn�1
 + (1 � αn)
Sun � Sun�1
 + 2|αn � αn�1|K

� αnα
xn � xn�1
 + (1 � αn)
un � un�1
 + 2|αn � αn�1|K , (3.10)

where K := sup{
f (xn)
 + 
Sun
 : n � N}.
Put

yn =
(
(I � λnA) � γnL�(I � T)L

)
xn and

un = Tnxn = JBλnyn.

Since JBλn ((I � λnA) � γnL�(I � T)L) is nonexpansive, it follows from Lemma 2.3 that


un+1 � un
 =
∥
∥JBλn+1yn+1 � JBλnyn

∥
∥

�
∥∥JBλn+1yn+1 � JBλn+1

(
(I � λn+1A) � γn+1L�(I � T)L

)
xn

∥∥
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+
∥∥JBλn+1

(
(I � λn+1A) � γn+1L�(I � T)L

)
xn � JBλnyn

∥∥

� 
xn+1 � xn
 +
∥
∥JBλn+1

(
(I � λn+1A) � γn+1L�(I � T)L

)
xn � JBλnyn

∥
∥

�
∥
∥JBλn+1

(
(I � λn+1A) � γn+1L�(I � T)L

)
xn

� JBλn+1
(
(I � λnA) � γnL�(I � T)L

)
xn

∥
∥

+
∥∥JBλn+1yn � JBλnyn

∥∥ + 
xn+1 � xn


�
∥∥(
(I � λn+1A) � γn+1L�(I � T)L

)
xn �

(
(I � λnA) � γnL�(I � T)L

)
xn

∥∥

+
∥∥JBλn+1yn � JBλnyn

∥∥ + 
xn+1 � xn


� |λn+1 � λn|
Axn
 + |γn+1 � γn|
∥
∥L�(I � T)Lxn

∥
∥

+
|λn+1 � λn|

a
∥∥JBλn+1yn � yn

∥∥ + 
xn+1 � xn


� 
xn+1 � xn
 +M1|λn+1 � λn| +M2|γn+1 � γn|, (3.11)

whereM1 andM2 are constants de�ned by

M1 = sup
n

(

Axn
 +

1
a
∥
∥JBλn+1yn � yn

∥
∥
)
,

M2 = sup
n

∥
∥L�(I � T)Lxn

∥
∥.

Therefore it follows from (3.10) and (3.11) that


xn+1 �xn
 �
(
1�αn(1�α)

)

xn�xn�1
+M1|λn+1 �λn|+M2|γn+1 �γn|+2|αn�αn�1|K .

Take

βn := αn(1 � α) and

δn :=M1|λn+1 � λn| +M2|γn+1 � γn| + 2|αn � αn�1|K .

It follows from Lemma 2.8 that

lim
n��


xn+1 � xn
 = 0. (3.12)

Now, we write

xn+1 � xn = αnf (xn) + (1 � αn)Sun � xn

= αn
(
f (xn) � xn

)
+ (1 � αn)(Sun � xn).

Since 
xn+1 � xn
 � 0 and αn � 0 as n � �, we obtain

lim
n��


Sun � xn
 = 0. (3.13)

Next, we prove that

lim
n��


xn � un
 = lim
n��


xn � Tnxn
 = 0.
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In fact, it follows from (3.4) and (3.6) That


xn+1 � p
2 =
∥
∥αnf (xn) + (1 � αn)Sun � p

∥
∥2

� αn
∥
∥f (xn) � p

∥
∥2 + (1 � αn)
Sun � p
2

� αn
∥
∥f (xn) � p

∥
∥2 + (1 � αn)
un � p
2

� αn
∥∥f (xn) � p

∥∥2 + (1 � αn)
(

xn � p
2 � (1 � ξn)
xn � Tnxn
2

)

� αn
∥∥f (xn) � p

∥∥2 + 
xn � p
2 � (1 � ξn)
xn � Tnxn
2.

Hence, we obtain

(1 � ξn)
xn � Tnxn
2 � αn
∥
∥f (xn) � p

∥
∥2 +

(

xn � p
2 � 
xn+1 � p
2

)

� αn
∥∥f (xn) � p

∥∥2 +
(

xn � p
 + 
xn+1 � p


)

xn � xn+1
.

Since αn � 0 as n� �, and ξn = 3+2γn
L
2
4 � ( 34 , 1), from (3.12) we obtain

lim
n��


un � xn
 = 
xn � Tnxn
 = 0. (3.14)

Therefore we have


Sun � un
 � 
Sun � xn
 + 
xn � un
 � 0, as n � �. (3.15)

On the other hand, since {xn} is bounded, let {xnj} be any subsequence of {xn}with xnj ⇀ �x.
Also, we assume that λnj � �λ � (0, β

2 ) and γnj � �γ � (0, 1
2
L
2 ).

Letting

�T = JB�λ
(
(I � �λA) � �γL�(I � T)L

)
,

we know that �T is 3+2 �γ 
L
2
4 -averaged and F( �T) = �A+B

L,T .
Hence, for each j �N we have


xnj � �Txnj
 � 
xnj � unj
 + 
Tnjxnj � �Txnj


� 
xnj � unj
 +
∥∥JBλnj zj � JB�λ zj

∥∥ +
∥∥JB�λ zj � �Txnj

∥∥, (3.16)

where zj = ((I �λnjA) �γnjL
�(I �T)L)xnj . Now, we estimate the last term in (3.16).We have

∥
∥JB�λ zj � �Txnj

∥
∥ =

∥
∥JB�λ

(
(I � λnjA) � γnjL

�(I � T)L
)
xnj � JB�λ

(
(I � �λA) � �γL�(I � T)L

)
xnj

∥
∥

�
∥∥(
(I � λnjA) � γnjL

�(I � T)L
)
xnj �

(
(I � �λA) � �γL�(I � T)L

)
xnj

∥∥

�
∥∥(λnj � �λ)Axnj

∥∥ +
∥∥(γnj � �γ )L�(I � T)Lxnj

∥∥

� |λnj � �λ|
Axnj
 + 2|γnj � �γ |
∥
∥L�∥∥
L

xnj � p


for each j �N. This implies that

lim
j��

∥
∥JB�λ zj � �Txnj

∥
∥ = 0. (3.17)
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Next, we estimate the second term in (3.16). By Lemma 2.5, we have

∥∥JBλnj zj � JB�λ zj
∥∥ =

∥
∥∥
∥J

B
�λ

( �λ
λnj

zj +
(
1 �

�λ
λnj

)
JBλnj zj

)
� JB�λ zj

∥
∥∥
∥

�
∥∥
∥∥

�λ
λnj

zj +
(
1 �

�λ
λnj

)
JBλnj zj � zj

∥∥
∥∥

=
∥
∥∥
∥

(
1 �

�λ
λnj

)
JBλnj zj �

(
1 �

�λ
λnj

)
zj
∥
∥∥
∥

=
∥∥
∥∥

(
1 �

�λ
λnj

)(
JBλnj zj � zj

)
∥∥
∥∥

=
∣∣∣
∣1 �

�λ
λnj

∣∣∣
∣
∥∥JBλnj zj � zj

∥∥, �j � 1. (3.18)

Also for each j �N we have

∥∥JBλnj zj � zj
∥∥ = 
Tnjxnj � zj


=
∥∥unj � xnj + λnjAxnj + γnjL

�(I � T)Lxnj
∥∥

� 
unj � xnj
 + λnj
Axnj
 + γnj

∥∥L�(I � T)Lxnj
∥∥

� 
unj � xnj
 + λnj
Axnj
 + 2γnj
∥∥L�∥∥
L

xnj � p
.

This shows that {
(JBλnj zj � zj)
} is a bounded sequence. This, together with (3.18), implies

lim
j��

∥
∥JBλnj zj � JB�λ zj

∥
∥ = 0. (3.19)

Substituting (3.14), (3.17) and (3.19) into (3.16), we get

lim
j��


xnj � �Txnj
 = 0. (3.20)

Thus, by Lemma 2.6, it follows that �x � F( �T) = �A+B
L,T .

Furthermore, it follows from (3.13) and (3.14) that {un}, {xn} and {S(un)} have the same
asymptotical behavior, so {un} also converges weakly to �x. Since S is nonexpansive, by
(3.13) and Lemma 2.6, we obtain that �x � F(S). Thus �x � �A+B

L,T � F(S).
Next, we claim that

lim sup
n��

〈
f (z) � z,xn � z

〉
� 0, (3.21)

where z = PF(S)��A+B
L,T

f (z).
Indeed, we have

lim sup
n��

〈
f (z) � z,xn � z

〉
= lim sup

n��

〈
f (z) � z,Sun � z

〉

� lim sup
n��

〈
f (z) � z,un � z

〉
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=
〈
f (z) � z, �x � z

〉

� 0, (3.22)

since z = PF(S)��A+B
L,T

f (z).
Finally, we show that xn � z. Indeed, we have


xn+1 � z
2 =
〈
αnf (xn) + (1 � αn)Sun � z,xn+1 � z

〉

= αn
〈
f (xn) � z,xn+1 � z

〉
+ (1 � αn)�Sun � z,xn+1 � z	

� αn
〈
f (xn) � z,xn+1 � z

〉
+ (1 � αn)�un � z,xn+1 � z	

� αn
〈
f (xn) � f (z),xn+1 � z

〉
+ αn

〈
f (z) � z,xn+1 � z

〉

+ (1 � αn)�xn � z,xn+1 � z	

�
αn

2
{∥∥f (x) � f (z)

∥∥2 + 
xn+1 � z
2
}
+ αn

〈
f (z) � z,xn+1 � z

〉

+
(1 � αn)

2
{

xn � z
2 + 
xn+1 � z
2

}

�
1
2
(
1 � αn

(
1 � α2))
xn � z
2 +

(1 � αn)
2


xn+1 � z
2

+
αn

2

xn+1 � z
2 + αn

〈
f (z) � z,xn+1 � z

〉
,

which implies that


xn+1 � z
2 �
(
1 � αn

(
1 � α2))
xn � z
2 + 2αn

〈
f (z) � z,xn+1 � z

〉
.

Now, by using (3.22) and Lemma 2.8, we deduce that xn � z. Further it follows from 
un �
xn
 � 0,un ⇀ �x � F(S) � �A+B

L,T and xn � z as n � �, that z = �x. This completes the
proof. �

If A := 0, the zero operator, then the following result can be obtained from Theorem 3.2
immediately.

Corollary 3.3 Let H1 and H2 be Hilbert spaces. Let B :H1 � 2H1 be a maximal monotone
operator, T :H2 �H2 a nonexpansive mapping and L :H1 �H2 a bounded linear opera-
tor. Let S :H1 �H1 be a nonexpansive mapping such that � = F(S)�B�1(0)� L�1(F(T)) 
=
�. Let f :H1 �H1 be a contraction mapping with a contractive constant α � (0, 1). For any
given x0 � H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = JBλn ((I � γnL�(I � T)L)xn,

xn+1 = αnf (xn) + (1 � αn)Sun,
�n� 0. (3.23)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z = P�f (z) which is a solution of problem
(1.5) with A = 0.

If H1 =H2, L = I , then by applying Theorem 3.2, we can obtain the following result.
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Corollary 3.4 Let H1 be Hilbert spaces. Let A : H1 � H1 be a β-ism and B : H1 � 2H1

be a maximal monotone operator. Let S : H1 � H1 be a nonexpansive mapping such that
�1 = F(S)� (A+B)�10�F(T) 
= �. Let f :H1 �H1 be a contraction mapping with constant
α � (0, 1). For any x0 � H1 arbitrarily, let the iterative sequences {un} and {xn} be generated
by

xn+1 = αnf (xn) + (1 � αn)SJBλn
(
(I � λnA) � γn(I � T)

)
xn. (3.24)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z � �1, where z = P�1 f (z).

4 Applications
In this section, we will utilize the results presented in the paper to study variational in-
equality problems, convex minimization problem and split common �xed point problem
in Hilbert spaces.

4.1 Application to variational inequality problem
LetC be a nonempty closed and convex subset of a Hilbert spaceH . Recall that the normal
cone to C at u � C is de�ned by

NC(u) =
{
z �H : �z, y � u	 � 0,�y � C

}
.

It is well known that NC is a maximal monotone operator. In the case B := NC : H � 2H

we can verify that the problem of �nding x� �H such that 0 � Ax� +Bx� is reduced to the
problem of �nding x� � C such that

〈
Ax�,x � x�〉 � 0, �x � C. (4.1)

In the sequel, we denote by VIP(C,A) the solution set of problem (4.1). In this case, we also
have JBλ = PC (the metric projection of H onto C). By the above consideration, problem
(1.5) is reduced to �nding

x� � VIP(C,A) such that Lx� � F(T) and x� � F(S). (4.2)

Therefore, the following convergence theorem can be immediately obtained from Theo-
rem 3.2.

Theorem 4.1 Let H1 and H2 be Hilbert spaces. Let A : H1 � H1 be a β-ism operator,
T : H2 � H2 a nonexpansive mapping and L : H1 � H2 a bounded linear operator. Let
S :H1 �H1 be a nonexpansive mapping such that F(S)� �

A,C
L,T 
= �, where

�
A,C
L,T := VIP(C,A)� L�1

(
F(T)

)
.

Let f : H1 � H1 be a contraction mapping with a contractive constant α � (0, 1). For any
given x0 � H1, let the sequences {un} and {xn} be generated by

⎧
⎨

⎩
un = PC((I � λnA) � γnL�(I � T)L)xn,

xn+1 = αnf (xn) + (1 � αn)Sun,
(4.3)
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where {αn} is a sequence in (0, 1) such that limn�� αn = 0,
∑�

n=0 αn = �,
∑�

n=1 |αn �αn�1| <
�, L� is the adjoint of L, and the sequences {λn} and {γn} satisfy conditions (i)�(ii) in Theo-
rem 3.2.Then the sequences {un} and {xn} both converge strongly to z = PF(S)��

A,C
L,T

f (z),which
is a solution of problem (4.2).

4.2 Application to convex minimization problem
Let g :H � R be a convex function, which is also FrØchet di�erentiable. Let C be a given
closed convex subset of H . In this case, by setting A := �g , the gradient of g , and B =NC ,
the problem of �nding x� � (A + B)�10 is equivalent to �nding a point x� � C such that

〈
�g

(
x�),x � x�〉 � 0, �x � C. (4.4)

Note that (4.4) is equivalent to the following minimization problem: �nd x� � C such that

x� � arg min
x�C

g(x).

Thus, in this situation, problem (1.5) is reduced to the problem of �nding

x� � arg min
x�C

g(x) such that Lx� � F(T) and x� � F(S). (4.5)

Denote by

�
g,C
L,T := arg min

x�C
g(x)� L�1

(
F(T)

)
.

Then, by using Theorem 3.2, we can obtain the following result.

Theorem 4.2 Let H1 and H2 be Hilbert spaces and let C be a nonempty closed convex
subset of H1. Let g : H1 � R be a convex and FrØchet di�erentiable function, �g be β-
Lipschitz, T : H2 � H2 be a nonexpansive mapping, and let L : H1 � H2 be a bounded
linear operator. Let S :H1 �H1 be a nonexpansive mapping such that F(S)��

g,C
L,T 
= �. Let

f :H1 �H1 be a contraction mapping with a contractive constant α � (0, 1). For any given
x0 �H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = PC((I � λn�g) � γnL�(I � T)L)xn,

xn+1 = αnf (xn) + (1 � αn)Sun,
�n� 0. (4.6)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z � F(S) � �

g,C
L,T , where z = PF(S)��

g,C
L,T

f (z),
which is a solution of problem (4.5).

Proof Note that if g : H � R is convex and �g : H � H is β-Lipschitz continuous for
β > 0 then �g is 1

β
-ism (see [24]). Thus, the required result can be obtained immediately

from Theorem 3.2. �
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4.3 Application to split common fixed point problem
Let V : H1 � H1 be a nonexpansive mapping. Then, by Lemma 2.1(iii), we know that
A := I � V is 1

2 -ism. Furthermore, Ax� = 0 if and only if x� � F(V ). Hence problem (1.5)
can be reduced to the problem of �nding

x� � F(V ) such that Lx� � F(T) and x� � F(S), (4.7)

where T :H2 �H2, L :H1 �H2 and S :H1 �H1 are mappings as in Theorem 3.2.
This problem is called the split common �xed point problem (SCFP), and was studied

by many authors (see [25�28], for example). By using Theorem 3.2, we can obtain the
following result.

Theorem 4.3 Let H1 and H2 be Hilbert spaces. Let V : H1 � H1 and T : H2 � H2 be
nonexpansive mappings and L :H1 �H2 a bounded linear operator. Let S :H1 �H1 be a
nonexpansive mapping such that F(S)� �V

L,T 
= �, where

�V
L,T := F(V )� L�1

(
F(S)

)
.

Let f : H1 � H1 be a contraction mapping with a contractive constant α � (0, 1). For any
given x0 � H1, let be {un} and {xn} be the iterative sequences generated by

⎧
⎨

⎩
un = (I � λn)xn + λnVxn � γnL�(I � T)Lxn,

xn+1 = αnf (xn) + (1 � αn)Sun,
�n� 0, (4.8)

where the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2. Then
the sequences {un} and {xn} both converge strongly to a point z = PF(S)��V

L,T
f (z), which is a

solution of problem (4.7).

Proof We consider B := 0, the zero operator. The required result follows from the fact that
the zero operator is monotone and continuous, hence it is maximal monotone. Moreover,
in this case, we see that JBλ is the identity operator on H1, for each λ > 0. Thus algorithm
(3.4) reduces to (4.8), by setting A := I �V and B := 0. �
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