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Abstract
In this paper we consider a class of split feasibility problem by focusing on the
solution sets of two important problems in the setting of Hilbert spaces. One of them
is the set of zero points of the sum of two monotone operators and the other is the
set of fixed points of mappings. By using the modified forward–backward splitting
method, we propose a viscosity iterative algorithm. Under suitable conditions, some
strong convergence theorems of the sequence generated by the algorithm to a
common solution of the problem are proved. At the end of the paper, some
applications and the constructed algorithm are also discussed.
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1 Introduction
Many applications of the split feasibility problem (SFP), which was first introduced by
Censor and Elfving [1], have appeared in various fields of science and technology, such
as in signal processing, medical image reconstruction and intensity-modulated radiation
therapy (for more information, see [2, 3] and the references therein). In fact, Censor and
Elfving [1] studied SFP in a finite-dimensional space, by considering the problem of finding
a point

x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of Rn, and A is an n × n matrix. They
introduced an iterative method for solving SFP.

On the other hand, variational inclusion problems are being used as mathematical pro-
gramming models to study a large number of optimization problems arising in finance,
economics, network, transportation and engineering science. The formal form of a varia-
tional inclusion problem is the problem of finding x∗ ∈ H such that

0 ∈ Bx∗, (1.2)
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where B : H → 2H is a set-valued operator. If B is a maximal monotone operator, the ele-
ments in the solution set of problem (1.2) are called the zeros of this maximal monotone
operator. This problem was introduced by Martinet [4], and later it has been studied by
many authors. It is well known that the popular iteration method that was used for solving
problem (1.2) is the following proximal point algorithm: for a given x ∈ H ,

xn+1 = JB
λn xn, ∀n ∈N,

where {λn} ⊂ (0,∞) and JB
λn = (I +λnB)–1 is the resolvent of the considered maximal mono-

tone operator B corresponding to λn (see, also [5–9] for more details).
In view of SFP and the fixed point problem, very recently, Montira et al. [10] considered

the problem of finding a point x∗ ∈ H such

0 ∈ Ax∗ + Bx∗ and Lx∗ ∈ F(T), (1.3)

where A : H1 → H1 is a monotone operator, and B : H1 → 2H1 is a maximal monotone
operator, L : H1 → H2 is a bounded linear operator and T : H2 → H2 is a nonexpansive
mapping.

They considered the following iterative algorithm: for any x0 ∈ H1,

xn+1 = JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
xn, ∀n ∈N, (1.4)

where {λn} and {γn} satisfy some suitable control conditions, and JB
λn is the resolvent of a

maximal monotone operator B associated to λn, and proved that sequence (1.4) weakly
converges to a point x∗ ∈ �A+B

L,T , where �A+B
L,T is the solution set of problem (1.3).

Motivated by the work of Montira et al. [10] and the research in this direction, the pur-
pose of this paper is to study the following split feasibility problem and fixed point prob-
lem: find x∗ ∈ H such that

0 ∈ Ax∗ + Bx∗, Lx∗ ∈ F(T) and x∗ ∈ F(S), (1.5)

where A, B, L are the same as in (1.3) and S : H1 → H1 is a nonexpansive mapping. By using
a modified forward–backward splitting method, we propose a viscosity iterative algorithm
(see (3.4) below). Under suitable conditions, some strong convergence theorems of the
sequence generated by the algorithm to a zero of the sum of two monotone operators and
fixed point of mappings are proved. At the end of the paper, some applications and the
constructed algorithm are also discussed. The results presented in the paper extend and
improve the main results of Montira et al. [10], Byrne et al. [11], Takahashi et al. [12] and
Passty [13].

2 Preliminaries
Throughout this paper, we denote by N the set of positive integers, and by R the set of
real numbers. Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. When {xn} is a sequence in H , we denote the weak convergence of {xn} to x
in H by xn ⇀ x.
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Let T : H → H be a mapping. We say that T is a Lipschitz mapping if there exists an
L > 0 such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

The number L, associated with T , is called a Lipschitz constant. If L = 1,we say that T is a
nonexpansive mapping, that is,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

We say that T is firmly nonexpansive if

〈Tx – Ty, x – y〉 ≥ ‖Tx – Ty‖2, ∀x, y ∈ H .

A mapping T : H → H is said to be an averaged mapping if it can be written as the
average of the identity I and a nonexpansive mapping, that is,

T = (1 – α)I + αS, (2.1)

where α ∈ (0, 1) and S : H → H is a nonexpansive mapping [14]. More precisely, when
(2.1) holds, we say that T is α-averaged. It should be observed that a mapping is firmly
nonexpansive if and only if it is a 1

2 -averaged mapping.
Let A : H → H be a single-valued mapping. For a positive real number β , we say that A

is β-inverse strongly monotone (β-ism) if

〈Ax – Ay, x – y〉 ≥ β‖Ax – Ay‖2, ∀x, y ∈ H .

We now collect some important conclusions and properties, which will be needed in
proving our main results.

Lemma 2.1 ([15, 16]) The following conclusions hold:
(i) The composition of finitely many averaged mappings is averaged. In particular, if Ti

is αi-averaged, where αi ∈ (0, 1) for i = 1, 2, then the composition T1T2 is α-averaged,
where α = α1 + α2 – α1α2.

(ii) If A is β-ism and γ ∈ (0,β], then T := I – γ A is firmly nonexpansive.
(iii) A mapping T : H → H is nonexpansive if and only if I – T is 1

2 -ism.
(iv) If A is β-ism, then, for γ > 0, γ A is β

γ
-ism.

(v) T is averaged if and only if the complement I – T is β-ism for some β > 1
2 . Indeed, for

α ∈ (0, 1), T is α-averaged if and only if I – T is 1
2α

-ism.

Lemma 2.2 ([17]) Let T = (1 – α)A + αN for some α ∈ (0, 1). If A is β-averaged and N is
nonexpansive then T is α + (1 – α)β-averaged.

Let B : H → 2H be a set-valued mapping. The effective domain of B is denoted by D(B),
that is, D(B) = {x ∈ H : Bx = ∅}. Recall that B is said to be monotone if

〈x – y, u – v〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx, v ∈ By.
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A monotone mapping B is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator. For a maximal monotone operator B : H → 2H

and r > 0, its resolvent JB
r is defined by

JB
r := (I + rB)–1 : H → D(B).

It is well known that, if B is a maximal monotone operator and r is a positive number, then
the resolvent JB

r is single-valued and firmly nonexpansive, and F(JB
r ) = B–10 ≡ {x ∈ H : 0 ∈

Bx}, ∀r > 0 (see [12, 18, 19]).

Lemma 2.3 ([20]) Let H be a Hilbert space and let B be a maximal monotone operator
on H . Then for all s, t > 0 and x ∈ H ,

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖2;

‖Jsx – Jtx‖ ≤ (|s – t|/s
)‖x – Jsx‖.

Lemma 2.4 ([12]) Let H1 and H2 be Hilbert spaces. Let L : H1 → H2 be a nonzero bounded
linear operator and T : H2 → H2 be a nonexpansive mapping. If B : H1 → 2H1 is a maximal
monotone operator, then

(i) L∗(I – T)L is 1
2‖L‖2 -ism,

(ii) For 0 < r < 1
‖L‖ ,

(iia) I – rL∗(I – T)L is r‖L‖2-averaged,
(iib) JB

λ (I – rL∗(I – T)L) is 1+r‖L‖2

2 -averaged, for λ > 0,
(iii) If r = ‖L‖–2, then I – rL∗(I – T)L is nonexpansive.

Lemma 2.5 ([21]) Let B : H → 2H be a maximal monotone operator with the resolvent
JB
λ = (I + λB)–1 for λ > 0. Then we have the following resolvent identity:

JB
λ x = JB

μ

(
μ

λ
x +

(
1 –

μ

λ

)
JB
λ x

)
,

for all μ > 0 and x ∈ H .

Lemma 2.6 ([22]) Let C be a closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself. Then U := I – T is demiclosed, i.e., xn ⇀ x0 and
Uxn → y0 imply Ux0 = y0.

Lemma 2.7 ([10]) Let H1 and H2 be Hilbert spaces. Let A : H1 → H1 be a β-ism, B : H1 →
2H1 a maximal monotone operator, T : H2 → H2 a nonexpansive mapping and L : H1 → H2

a bounded linear operator. If �A+B
L,T = ∅, then the following are equivalent:

(i) z ∈ �A+B
L,T ,

(ii) z = JB
λ ((Iλ – A) – γ L∗(I – T)L)z,

(iii) 0 ∈ L∗(I – T)Lz + (A + B)z,
where λ,γ > 0 and z ∈ H1.

Lemma 2.8 ([23]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 – βn)an + δn, ∀n ≥ 0,
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where {βn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(i)

∑∞
n=1 βn = ∞;

(ii) lim supn→∞
δn
βn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

3 Main results
We are now in a position to give the main result of this paper.

Lemma 3.1 Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H1 be a β-ism, B :
H1 → 2H1 be a maximal monotone operator, T : H2 → H2 be a nonexpansive mapping,
and L : H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a nonexpansive mapping
such that F(S) ∩ �A+B

L,T = ∅, where

�A+B
L,T :=

{
x ∈ (A + B)–1(0) ∩ L–1F(T)

}
(3.1)

is the set of solutions of problem (1.3). Let f : H1 → H1 be a contraction mapping with a
contractive constant α ∈ (0, 1). For any t ∈ (0, 1], let Wt : H1 → H1 be the mapping defined
by

Wtx = tf (x) + (1 – t)S
[
JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
x
]
, ∀x ∈ H1, (3.2)

where L∗ is the adjoint of L and the sequences λn and γn satisfy the following control con-
ditions:

(i) 0 < a ≤ λn ≤ b1 < β

2 ,
(ii) 0 < a ≤ γn ≤ b2 < 1

2‖L‖2 , for some a, b1, b2 ∈ R.
Then Wt is a contraction mapping with a contractive constant [1 – t(1 – α)]. Therefore Wt

has a unique fixed point for each t ∈ (0, 1).

Proof Note that, for each n ∈N, we have

(I – λnA) – γnL∗(I – L)L =
1
2

(I – 2λnA) +
1
2
(
I – 2γnL∗(I – T)L

)
.

Also, by condition (i) and Lemma 2.1(ii), we know that I – 2λnA is a firmly nonexpansive
mapping, and this implies that I – 2λnA must be a nonexpansive mapping. On the other
hand, by Lemma 2.4(iia), we know that I – 2γnL∗(I – T)L is 2γn‖L‖2-averaged. Thus, by
condition (ii) and Lemma 2.2, we see that (I – λnA) – γnL∗(I – T)L is 1+2γn‖L‖2

2 -averaged.
Set

Tn := JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
, ∀n ≥ 1. (3.3)

Since JB
λn is 1

2 -averaged, by Lemma 2.1(i) we see that Tn is 3+2γn‖L‖2

4 -averaged and hence it
is nonexpansive. Further, for any x, y ∈ H1, we obtain

‖Wtx – Wty‖ =
∥
∥tf (x) + (1 – t)STnx – tf (y) – (1 – t)STny

∥
∥

≤ t
∥∥f (x) – f (y)

∥∥ + (1 – t)‖STnx – STny‖
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≤ tα‖x – y‖ + (1 – t)‖x – y‖
=

(
1 – t(1 – α)

)‖x – y‖.

Since 0 < 1 – t(1 –α) < 1, it follows that Wt is a contraction mapping. Therefore, by Banach
contraction principle, Wt has a unique fixed point xt in H1. �

Theorem 3.2 Let H1, H2, A, B, T , L, S, f be the same as in Lemma 3.1. For any given
x0 ∈ H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = JB

λn ((I – λnA) – γnL∗(I – T)L)xn,

xn+1 = αnf (xn) + (1 – αn)Sun,
∀n ≥ 0, (3.4)

where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=0 αn = ∞ and
∑∞

n=1 |αn –
αn–1| < ∞ and L∗ is the adjoint of L.

If F(S) ∩ �A+B
L,T = ∅ and the sequences {λn} and {γn} satisfy the following conditions:

(i) 0 < a ≤ λn ≤ b1 < β

2 , and 	∞
n=1|λn – λn–1| < ∞,

(ii) 0 < a ≤ γn ≤ b2 < 1
2‖L‖2 , and 	∞

n=1|γn – γn–1| < ∞, for some a, b1, b2 ∈R,
then the sequences {un} and {xn} both converge strongly to z ∈ F(S) ∩ �A+B

L,T , where z =
PF(S)∩�A+B

L,T
f (z), i.e., z is a solution of problem (1.5).

Proof Take

Tn := JB
λn

(
(I – λnA) – γnL∗(I – T)L

)
,

for each n ∈ N. By Lemma 2.7, we have �A+B
L,T = F(Tn), for all n ∈ N. Thus, for each n ∈ N,

we can write xn+1 = αnf (xn) + (1 – αn)STnxn. By the proof of Lemma 3.1, we see that Tn is
3+2γn‖L‖2

4 -averaged. Thus, for each n ∈N, we can write

Tn = (1 – ξn)I + ξnVn,

where ξn = 3+2γn‖L‖2

4 and Vn is a nonexpansive mapping. Consequently, we also have
�A+B

L,T = F(Tn) = F(Vn), for all n ∈N. Using this fact, for each p ∈ F(S) ∩ �A+B
L,T , we see that

‖un – p‖2 = ‖Tnxn – p‖2

=
∥∥(1 – ξn)xn + ξnVnxn – p

∥∥2

=
∥∥(1 – ξn)(xn – p) + ξn(Vnxn – p)

∥∥2

= (1 – ξn)‖xn – p‖2 + ξn‖Vnxn – p‖2 – ξn(1 – ξn)‖xn – Vnxn‖2

≤ ‖xn – p‖2 – ξn(1 – ξn)‖xn – Vnxn‖2 (3.5)

for each n ∈ N. Since I – Tn = ξn(I – Vn), in view of (3.5) we get

‖un – p‖2 ≤ ‖xn – p‖2 – (1 – ξn)‖xn – Tnxn‖2, (3.6)
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for each n ∈ N. Since ξn = 3+2γn‖L‖2

4 ∈ ( 3
4 , 1), we obtain

‖un – p‖2 ≤ ‖xn – p‖2. (3.7)

Next, we estimate

‖xn+1 – p‖ =
∥
∥αnf (xn) + (1 – αn)Sun – p

∥
∥

≤ αn
∥∥f (xn) – p

∥∥ + (1 – αn)‖Sun – p‖
≤ αn

(∥∥f (xn) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+ (1 – αn)‖un – p‖
≤ αnα‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥ + (1 – αn)‖xn – p‖

≤ (
1 – αn(1 – α)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥

≤ max

{
‖xn – p‖,

‖f (p) – p‖
1 – α

}
.

By induction, we can prove that

‖xn+1 – p‖ ≤ max

{
‖x0 – p‖,

‖f (p) – p‖
1 – α

}
, ∀n ≥ 0. (3.8)

Hence {xn} is bounded and so are {un}, {f (xn)} and {Sun}.
Next, we show that

lim
n→∞‖xn+1 – xn‖ = 0. (3.9)

In fact, it follows from (3.4) that

‖xn+1 – xn‖ =
∥
∥αnf (xn) + (1 – αn)Sun –

(
αn–1f (xn–1) + (1 – αn–1)Sun–1

)∥∥

=
∥∥αnf (xn) – αnf (xn–1) + αnf (xn–1) – αn–1f (xn–1) + (1 – αn)Sun

– (1 – αn)Sun–1 + (1 – αn)Sun–1 – (1 – αn–1)Sun–1
∥
∥

≤ αnα‖xn – xn–1‖ + (1 – αn)‖Sun – Sun–1‖ + 2|αn – αn–1|K
≤ αnα‖xn – xn–1‖ + (1 – αn)‖un – un–1‖ + 2|αn – αn–1|K , (3.10)

where K := sup{‖f (xn)‖ + ‖Sun‖ : n ∈ N}.
Put

yn =
(
(I – λnA) – γnL∗(I – T)L

)
xn and

un = Tnxn = JB
λn yn.

Since JB
λn ((I – λnA) – γnL∗(I – T)L) is nonexpansive, it follows from Lemma 2.3 that

‖un+1 – un‖ =
∥
∥JB

λn+1 yn+1 – JB
λn yn

∥
∥

≤ ∥∥JB
λn+1 yn+1 – JB

λn+1

(
(I – λn+1A) – γn+1L∗(I – T)L

)
xn

∥∥
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+
∥∥JB

λn+1

(
(I – λn+1A) – γn+1L∗(I – T)L

)
xn – JB

λn yn
∥∥

≤ ‖xn+1 – xn‖ +
∥
∥JB

λn+1

(
(I – λn+1A) – γn+1L∗(I – T)L

)
xn – JB

λn yn
∥
∥

≤ ∥
∥JB

λn+1

(
(I – λn+1A) – γn+1L∗(I – T)L

)
xn

– JB
λn+1

(
(I – λnA) – γnL∗(I – T)L

)
xn

∥
∥

+
∥∥JB

λn+1 yn – JB
λn yn

∥∥ + ‖xn+1 – xn‖
≤ ∥∥(

(I – λn+1A) – γn+1L∗(I – T)L
)
xn –

(
(I – λnA) – γnL∗(I – T)L

)
xn

∥∥

+
∥∥JB

λn+1 yn – JB
λn yn

∥∥ + ‖xn+1 – xn‖
≤ |λn+1 – λn|‖Axn‖ + |γn+1 – γn|

∥
∥L∗(I – T)Lxn

∥
∥

+
|λn+1 – λn|

a
∥∥JB

λn+1 yn – yn
∥∥ + ‖xn+1 – xn‖

≤ ‖xn+1 – xn‖ + M1|λn+1 – λn| + M2|γn+1 – γn|, (3.11)

where M1 and M2 are constants defined by

M1 = sup
n

(
‖Axn‖ +

1
a
∥
∥JB

λn+1 yn – yn
∥
∥
)

,

M2 = sup
n

∥
∥L∗(I – T)Lxn

∥
∥.

Therefore it follows from (3.10) and (3.11) that

‖xn+1 – xn‖ ≤ (
1–αn(1–α)

)‖xn – xn–1‖+ M1|λn+1 –λn|+ M2|γn+1 –γn|+ 2|αn –αn–1|K .

Take

βn := αn(1 – α) and

δn := M1|λn+1 – λn| + M2|γn+1 – γn| + 2|αn – αn–1|K .

It follows from Lemma 2.8 that

lim
n→∞‖xn+1 – xn‖ = 0. (3.12)

Now, we write

xn+1 – xn = αnf (xn) + (1 – αn)Sun – xn

= αn
(
f (xn) – xn

)
+ (1 – αn)(Sun – xn).

Since ‖xn+1 – xn‖ → 0 and αn → 0 as n → ∞, we obtain

lim
n→∞‖Sun – xn‖ = 0. (3.13)

Next, we prove that

lim
n→∞‖xn – un‖ = lim

n→∞‖xn – Tnxn‖ = 0.
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In fact, it follows from (3.4) and (3.6) That

‖xn+1 – p‖2 =
∥
∥αnf (xn) + (1 – αn)Sun – p

∥
∥2

≤ αn
∥
∥f (xn) – p

∥
∥2 + (1 – αn)‖Sun – p‖2

≤ αn
∥
∥f (xn) – p

∥
∥2 + (1 – αn)‖un – p‖2

≤ αn
∥∥f (xn) – p

∥∥2 + (1 – αn)
(‖xn – p‖2 – (1 – ξn)‖xn – Tnxn‖2)

≤ αn
∥∥f (xn) – p

∥∥2 + ‖xn – p‖2 – (1 – ξn)‖xn – Tnxn‖2.

Hence, we obtain

(1 – ξn)‖xn – Tnxn‖2 ≤ αn
∥
∥f (xn) – p

∥
∥2 +

(‖xn – p‖2 – ‖xn+1 – p‖2)

≤ αn
∥∥f (xn) – p

∥∥2 +
(‖xn – p‖ + ‖xn+1 – p‖)‖xn – xn+1‖.

Since αn → 0 as n → ∞, and ξn = 3+2γn‖L‖2

4 ∈ ( 3
4 , 1), from (3.12) we obtain

lim
n→∞‖un – xn‖ = ‖xn – Tnxn‖ = 0. (3.14)

Therefore we have

‖Sun – un‖ ≤ ‖Sun – xn‖ + ‖xn – un‖ → 0, as n → ∞. (3.15)

On the other hand, since {xn} is bounded, let {xnj} be any subsequence of {xn} with xnj ⇀ x̂.
Also, we assume that λnj → λ̂ ∈ (0, β

2 ) and γnj → γ̂ ∈ (0, 1
2‖L‖2 ).

Letting

T̂ = JB
λ̂

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
,

we know that T̂ is 3+2γ̂ ‖L‖2

4 -averaged and F(T̂) = �A+B
L,T .

Hence, for each j ∈N we have

‖xnj – T̂xnj‖ ≤ ‖xnj – unj‖ + ‖Tnj xnj – T̂xnj‖
≤ ‖xnj – unj‖ +

∥∥JB
λnj

zj – JB
λ̂

zj
∥∥ +

∥∥JB
λ̂

zj – T̂xnj

∥∥, (3.16)

where zj = ((I –λnj A) –γnj L∗(I – T)L)xnj . Now, we estimate the last term in (3.16). We have

∥
∥JB

λ̂
zj – T̂xnj

∥
∥ =

∥
∥JB

λ̂

(
(I – λnj A) – γnj L

∗(I – T)L
)
xnj – JB

λ̂

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
xnj

∥
∥

≤ ∥∥(
(I – λnj A) – γnj L

∗(I – T)L
)
xnj –

(
(I – λ̂A) – γ̂ L∗(I – T)L

)
xnj

∥∥

≤ ∥∥(λnj – λ̂)Axnj

∥∥ +
∥∥(γnj – γ̂ )L∗(I – T)Lxnj

∥∥

≤ |λnj – λ̂|‖Axnj‖ + 2|γnj – γ̂ |∥∥L∗∥∥‖L‖‖xnj – p‖

for each j ∈N. This implies that

lim
j→∞

∥
∥JB

λ̂
zj – T̂xnj

∥
∥ = 0. (3.17)
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Next, we estimate the second term in (3.16). By Lemma 2.5, we have

∥∥JB
λnj

zj – JB
λ̂

zj
∥∥ =

∥
∥∥
∥JB

λ̂

(
λ̂

λnj

zj +
(

1 –
λ̂

λnj

)
JB
λnj

zj

)
– JB

λ̂
zj

∥
∥∥
∥

≤
∥∥
∥∥

λ̂

λnj

zj +
(

1 –
λ̂

λnj

)
JB
λnj

zj – zj

∥∥
∥∥

=
∥
∥∥
∥

(
1 –

λ̂

λnj

)
JB
λnj

zj –
(

1 –
λ̂

λnj

)
zj

∥
∥∥
∥

=
∥∥
∥∥

(
1 –

λ̂

λnj

)(
JB
λnj

zj – zj
)
∥∥
∥∥

=
∣∣∣
∣1 –

λ̂

λnj

∣∣∣
∣
∥∥JB

λnj
zj – zj

∥∥, ∀j ≥ 1. (3.18)

Also for each j ∈N we have

∥∥JB
λnj

zj – zj
∥∥ = ‖Tnj xnj – zj‖

=
∥∥unj – xnj + λnj Axnj + γnj L

∗(I – T)Lxnj

∥∥

≤ ‖unj – xnj‖ + λnj‖Axnj‖ + γnj

∥∥L∗(I – T)Lxnj

∥∥

≤ ‖unj – xnj‖ + λnj‖Axnj‖ + 2γnj

∥∥L∗∥∥‖L‖‖xnj – p‖.

This shows that {‖(JB
λnj

zj – zj)‖} is a bounded sequence. This, together with (3.18), implies

lim
j→∞

∥
∥JB

λnj
zj – JB

λ̂
zj
∥
∥ = 0. (3.19)

Substituting (3.14), (3.17) and (3.19) into (3.16), we get

lim
j→∞‖xnj – T̂xnj‖ = 0. (3.20)

Thus, by Lemma 2.6, it follows that x̂ ∈ F(T̂) = �A+B
L,T .

Furthermore, it follows from (3.13) and (3.14) that {un}, {xn} and {S(un)} have the same
asymptotical behavior, so {un} also converges weakly to x̂. Since S is nonexpansive, by
(3.13) and Lemma 2.6, we obtain that x̂ ∈ F(S). Thus x̂ ∈ �A+B

L,T ∩ F(S).
Next, we claim that

lim sup
n→∞

〈
f (z) – z, xn – z

〉 ≤ 0, (3.21)

where z = PF(S)∩�A+B
L,T

f (z).
Indeed, we have

lim sup
n→∞

〈
f (z) – z, xn – z

〉
= lim sup

n→∞

〈
f (z) – z, Sun – z

〉

≤ lim sup
n→∞

〈
f (z) – z, un – z

〉
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=
〈
f (z) – z, x̂ – z

〉

≤ 0, (3.22)

since z = PF(S)∩�A+B
L,T

f (z).
Finally, we show that xn → z. Indeed, we have

‖xn+1 – z‖2 =
〈
αnf (xn) + (1 – αn)Sun – z, xn+1 – z

〉

= αn
〈
f (xn) – z, xn+1 – z

〉
+ (1 – αn)〈Sun – z, xn+1 – z〉

≤ αn
〈
f (xn) – z, xn+1 – z

〉
+ (1 – αn)〈un – z, xn+1 – z〉

≤ αn
〈
f (xn) – f (z), xn+1 – z

〉
+ αn

〈
f (z) – z, xn+1 – z

〉

+ (1 – αn)〈xn – z, xn+1 – z〉
≤ αn

2
{∥∥f (x) – f (z)

∥∥2 + ‖xn+1 – z‖2} + αn
〈
f (z) – z, xn+1 – z

〉

+
(1 – αn)

2
{‖xn – z‖2 + ‖xn+1 – z‖2}

≤ 1
2
(
1 – αn

(
1 – α2))‖xn – z‖2 +

(1 – αn)
2

‖xn+1 – z‖2

+
αn

2
‖xn+1 – z‖2 + αn

〈
f (z) – z, xn+1 – z

〉
,

which implies that

‖xn+1 – z‖2 ≤ (
1 – αn

(
1 – α2))‖xn – z‖2 + 2αn

〈
f (z) – z, xn+1 – z

〉
.

Now, by using (3.22) and Lemma 2.8, we deduce that xn → z. Further it follows from ‖un –
xn‖ → 0, un ⇀ x̂ ∈ F(S) ∩ �A+B

L,T and xn → z as n → ∞, that z = x̂. This completes the
proof. �

If A := 0, the zero operator, then the following result can be obtained from Theorem 3.2
immediately.

Corollary 3.3 Let H1 and H2 be Hilbert spaces. Let B : H1 → 2H1 be a maximal monotone
operator, T : H2 → H2 a nonexpansive mapping and L : H1 → H2 a bounded linear opera-
tor. Let S : H1 → H1 be a nonexpansive mapping such that � = F(S) ∩ B–1(0) ∩ L–1(F(T)) =
∅. Let f : H1 → H1 be a contraction mapping with a contractive constant α ∈ (0, 1). For any
given x0 ∈ H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = JB

λn ((I – γnL∗(I – T)L)xn,

xn+1 = αnf (xn) + (1 – αn)Sun,
∀n ≥ 0. (3.23)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z = P�f (z) which is a solution of problem
(1.5) with A = 0.

If H1 = H2, L = I , then by applying Theorem 3.2, we can obtain the following result.
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Corollary 3.4 Let H1 be Hilbert spaces. Let A : H1 → H1 be a β-ism and B : H1 → 2H1

be a maximal monotone operator. Let S : H1 → H1 be a nonexpansive mapping such that
�1 = F(S) ∩ (A + B)–10 ∩ F(T) = ∅. Let f : H1 → H1 be a contraction mapping with constant
α ∈ (0, 1). For any x0 ∈ H1 arbitrarily, let the iterative sequences {un} and {xn} be generated
by

xn+1 = αnf (xn) + (1 – αn)SJB
λn

(
(I – λnA) – γn(I – T)

)
xn. (3.24)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z ∈ �1, where z = P�1 f (z).

4 Applications
In this section, we will utilize the results presented in the paper to study variational in-
equality problems, convex minimization problem and split common fixed point problem
in Hilbert spaces.

4.1 Application to variational inequality problem
Let C be a nonempty closed and convex subset of a Hilbert space H . Recall that the normal
cone to C at u ∈ C is defined by

NC(u) =
{

z ∈ H : 〈z, y – u〉 ≤ 0,∀y ∈ C
}

.

It is well known that NC is a maximal monotone operator. In the case B := NC : H → 2H

we can verify that the problem of finding x∗ ∈ H such that 0 ∈ Ax∗ + Bx∗ is reduced to the
problem of finding x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ 0, ∀x ∈ C. (4.1)

In the sequel, we denote by VIP(C, A) the solution set of problem (4.1). In this case, we also
have JB

λ = PC (the metric projection of H onto C). By the above consideration, problem
(1.5) is reduced to finding

x∗ ∈ VIP(C, A) such that Lx∗ ∈ F(T) and x∗ ∈ F(S). (4.2)

Therefore, the following convergence theorem can be immediately obtained from Theo-
rem 3.2.

Theorem 4.1 Let H1 and H2 be Hilbert spaces. Let A : H1 → H1 be a β-ism operator,
T : H2 → H2 a nonexpansive mapping and L : H1 → H2 a bounded linear operator. Let
S : H1 → H1 be a nonexpansive mapping such that F(S) ∩ �

A,C
L,T = ∅, where

�
A,C
L,T := VIP(C, A) ∩ L–1(F(T)

)
.

Let f : H1 → H1 be a contraction mapping with a contractive constant α ∈ (0, 1). For any
given x0 ∈ H1, let the sequences {un} and {xn} be generated by

⎧
⎨

⎩
un = PC((I – λnA) – γnL∗(I – T)L)xn,

xn+1 = αnf (xn) + (1 – αn)Sun,
(4.3)
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where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=0 αn = ∞,
∑∞

n=1 |αn –αn–1| <
∞, L∗ is the adjoint of L, and the sequences {λn} and {γn} satisfy conditions (i)–(ii) in Theo-
rem 3.2. Then the sequences {un} and {xn} both converge strongly to z = PF(S)∩�

A,C
L,T

f (z), which
is a solution of problem (4.2).

4.2 Application to convex minimization problem
Let g : H → R be a convex function, which is also Fréchet differentiable. Let C be a given
closed convex subset of H . In this case, by setting A := ∇g , the gradient of g , and B = NC ,
the problem of finding x∗ ∈ (A + B)–10 is equivalent to finding a point x∗ ∈ C such that

〈∇g
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C. (4.4)

Note that (4.4) is equivalent to the following minimization problem: find x∗ ∈ C such that

x∗ ∈ arg min
x∈C

g(x).

Thus, in this situation, problem (1.5) is reduced to the problem of finding

x∗ ∈ arg min
x∈C

g(x) such that Lx∗ ∈ F(T) and x∗ ∈ F(S). (4.5)

Denote by

�
g,C
L,T := arg min

x∈C
g(x) ∩ L–1(F(T)

)
.

Then, by using Theorem 3.2, we can obtain the following result.

Theorem 4.2 Let H1 and H2 be Hilbert spaces and let C be a nonempty closed convex
subset of H1. Let g : H1 → R be a convex and Fréchet differentiable function, ∇g be β-
Lipschitz, T : H2 → H2 be a nonexpansive mapping, and let L : H1 → H2 be a bounded
linear operator. Let S : H1 → H1 be a nonexpansive mapping such that F(S) ∩�

g,C
L,T = ∅. Let

f : H1 → H1 be a contraction mapping with a contractive constant α ∈ (0, 1). For any given
x0 ∈ H1, let {un} and {xn} be the sequences generated by

⎧
⎨

⎩
un = PC((I – λn∇g) – γnL∗(I – T)L)xn,

xn+1 = αnf (xn) + (1 – αn)Sun,
∀n ≥ 0. (4.6)

If the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2, then the se-
quences {un} and {xn} both converge strongly to z ∈ F(S) ∩ �

g,C
L,T , where z = PF(S)∩�

g,C
L,T

f (z),
which is a solution of problem (4.5).

Proof Note that if g : H → R is convex and ∇g : H → H is β-Lipschitz continuous for
β > 0 then ∇g is 1

β
-ism (see [24]). Thus, the required result can be obtained immediately

from Theorem 3.2. �
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4.3 Application to split common fixed point problem
Let V : H1 → H1 be a nonexpansive mapping. Then, by Lemma 2.1(iii), we know that
A := I – V is 1

2 -ism. Furthermore, Ax∗ = 0 if and only if x∗ ∈ F(V ). Hence problem (1.5)
can be reduced to the problem of finding

x∗ ∈ F(V ) such that Lx∗ ∈ F(T) and x∗ ∈ F(S), (4.7)

where T : H2 → H2, L : H1 → H2 and S : H1 → H1 are mappings as in Theorem 3.2.
This problem is called the split common fixed point problem (SCFP), and was studied

by many authors (see [25–28], for example). By using Theorem 3.2, we can obtain the
following result.

Theorem 4.3 Let H1 and H2 be Hilbert spaces. Let V : H1 → H1 and T : H2 → H2 be
nonexpansive mappings and L : H1 → H2 a bounded linear operator. Let S : H1 → H1 be a
nonexpansive mapping such that F(S) ∩ �V

L,T = ∅, where

�V
L,T := F(V ) ∩ L–1(F(S)

)
.

Let f : H1 → H1 be a contraction mapping with a contractive constant α ∈ (0, 1). For any
given x0 ∈ H1, let be {un} and {xn} be the iterative sequences generated by

⎧
⎨

⎩
un = (I – λn)xn + λnVxn – γnL∗(I – T)Lxn,

xn+1 = αnf (xn) + (1 – αn)Sun,
∀n ≥ 0, (4.8)

where the sequences {αn}, {λn} and {γn} satisfy all the conditions in Theorem 3.2. Then
the sequences {un} and {xn} both converge strongly to a point z = PF(S)∩�V

L,T
f (z), which is a

solution of problem (4.7).

Proof We consider B := 0, the zero operator. The required result follows from the fact that
the zero operator is monotone and continuous, hence it is maximal monotone. Moreover,
in this case, we see that JB

λ is the identity operator on H1, for each λ > 0. Thus algorithm
(3.4) reduces to (4.8), by setting A := I – V and B := 0. �
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