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Abstract
For a usual multiwindow Gabor system, all windows share common time-frequency
shifts. A mixed multiwindow Gabor system is one of its generalizations, for which
time-frequency shifts vary with the windows. This paper addresses subspace mixed
multiwindow Gabor systems with rational time-frequency product lattices. It is a
continuation of (Li and Zhang in Abstr. Appl. Anal. 2013:357242, 2013; Zhang and Li in
J. Korean Math. Soc. 51:897–918, 2014). In (Li and Zhang in Abstr. Appl. Anal.
2013:357242, 2013) we dealt with discrete subspace mixed Gabor systems and in
(Zhang and Li in J. Korean Math. Soc. 51:897–918, 2014) with L2(R) ones. In this paper,
using a suitable Zak transform matrix method, we characterize subspace mixed
multiwindow Gabor frames and their Gabor duals, obtain explicit expressions of
Gabor duals, and characterize the uniqueness of Gabor duals. We also provide some
examples, which show that there exist significant differences between mixed
multiwindow Gabor frames and usual multiwindow Gabor frames.

MSC: Primary 42C15; secondary 42C40

Keywords: Gabor frame; Mixed multiwindow Gabor frame; Dual; Oblique dual;
Gabor dual

1 Introduction
Let H be a separable Hilbert space. An at most countable sequence {hi}i∈I in H is called
a frame for H if there exist constants 0 < A ≤ B < ∞ such that

A‖f ‖2 ≤
∑

i∈I

∣∣〈f , hi〉
∣∣2 ≤ B‖f ‖2 for f ∈H, (1)

where A and B are called frame bounds; it is called a Bessel sequence in H if the right-hand
side inequality in (1) holds. In this case, B is called a Bessel bound. A frame for H is said to
be a Riesz basis if it ceases to be a frame forHwhenever an arbitrary element is removed. In
this case, the frame bounds are also called Riesz bounds. The fundamentals of frames can
be found in [3–6]. For λ ∈ R, define the modulation operator Eλ and translation operator
Tλ on L2(R) respectively by

Eλf (·) = e2π iλ·f (·) and Tλf (·) = f (· – λ)
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for f ∈ L2(R). This paper addresses Gabor systems of the form

G(g, a, b) = {Embl Tnal gl : m, n ∈ Z, 1 ≤ l ≤ L}, (2)

where L is a fixed positive integer, g = {gl : 1 ≤ l ≤ L} ⊂ L2(R), a = (a1, a2, . . . , aL), and b =
(b1, b2, . . . , bL) with al, bl > 0, 1 ≤ l ≤ L. We denote by M(g, a, b) the closed linear span
of G(g, a, b) in L2(R). A Gabor system G(g, a, b) is called a single-window Gabor system if
L = 1; it is called a mixed multiwindow Gabor system if L > 1 and al (or bl) with 1 ≤ l ≤ L
are not all the same; it is called a multiwindow Gabor system if L > 1, a1 = a2 = · · · = aL,
and b1 = b2 = · · · = bL. Similarly, G(g, a, b) is called a subspace single-window Gabor frame
if it is a frame for M(g, a, b) and L = 1; it is called a subspace mixed multiwindow Gabor
frame if it is a frame for M(g, a, b), L > 1, and al (or bl) with 1 ≤ l ≤ L are not all the
same; it is called a subspace multiwindow Gabor frame if it is a frame for M(g, a, b), L > 1,
a1 = a2 = · · · = aL, and b1 = b2 = · · · = bL. In particular, when M(g, a, b) = L2(R), these
frames are usual frames, which have been extensively studied [7–12]. To distinguish from
subspace frames, we call them whole space frames.

For a Bessel sequence G(g, a, b) in L2(R), define the associated synthesis operator Tg :
l2(Z2,CL) → L2(R) by

Tgc =
L∑

l=1

∑

m∈Z

∑

n∈Z
cl,m,nEmbl Tnal gl (3)

for c = (c1, c2, . . . , cL) ∈ l2(Z2,CL). Then it is a bounded operator, and its adjoint operator
T ∗

g (so-called analysis operator) is given by

T ∗
g f =

(
c1(f ), c2(f ), . . . , cL(f )

)
for f ∈ L2(R),

where cl(f ) = {〈f , Embl Tnal gl〉}m,n∈Z for 1 ≤ l ≤ L. Similarly, for a Bessel sequence G(h, a, b)
in L2(R) with h = {h1, h2, . . . , hL}, we associate it with Th. Define Sh,g = TgT ∗

h , that is,

Sh,gf =
L∑

l=1

∑

m∈Z

∑

n∈Z
〈f , Embl Tnal hl〉Embl Tnal gl

for f ∈ L2(R). Let G(g, a, b) be a frame for M(g, a, b), and let G(h, a, b) be a Bessel sequence
in L2(R). Then G(h, a, b) is called an oblique Gabor dual for G(g, a, b) if

Sh,gf = f for f ∈M(g, a, b).

Here we do not require that h ⊂M(g, a, b). In particular, an oblique Gabor dual G(h, a, b)
for G(g, a, b) is said to be a Gabor dual of type I for G(g, a, b) if h ⊂ M(g, a, b), and it is
said to be a Gabor dual of type II for G(g, a, b) if range(T ∗

h ) ⊂ range(T ∗
g ). These notions are

borrowed from [13] and [14]. Observe that a Gabor dual of type II is not required to be in
M(g, a, b), but a moment containment relation is required.

For the whole space Gabor frames, single-window ones have been extensively studied
in the past twenty years and more [4, 5, 7, 9, 15, 16]. Multiwindow frames were firstly
studied by Zibulski and Zeevi [10] and Zeevi, Zibulski, and Porat [11]. By introduction
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of a Zak transform they developed a matrix (so-called Zibulski–Zeevi matrix) algebraic
tool for multiwindow Gabor frames and applied it to image processing and computer vi-
sion. Since then, many researchers have studied multiwindow Gabor frames and related
applications [2, 17–20]. It was also pointed out in [12] that the Zibulski–Zeevi matrix
method is not very efficient for mixed Gabor frames. In [2], with the help of a new Zak
transform matrix, different from the Zibulski–Zeevi matrix, Zhang and Li investigated
mixed rational time-frequency multiwindow Gabor frames (Riesz bases and orthonormal
bases) and their Gabor duals in L2(R). For subspace Gabor frames, single-window ones
have been considered by several papers [1, 13, 21–26]. In [24, 26], and [27], a Zak trans-
form matrix different from the Zibulski–Zeevi matrix was introduced and used effectively
to study Gabor systems on periodic subsets of the real line, whereas the Zibulski–Zeevi
matrix method does not work well for such Gabor systems. A variation of this method
was applied to Gabor systems on discrete periodic sets [28, 29]. In [30], a density result
for Gabor frames on periodic subsets of Rd is obtained via the Haar measure of the group
generated by lattices. In [31], subspace multiwindow Gabor frames and their Gabor du-
als were characterized. All works mentioned, except [1] and [2], have not concerned real
mixed multiwindow Gabor systems. Motivated by these observations, this paper is de-
voted to studying mixed multiwindow Gabor systems of the form (2). We work under the
following assumptions:

Assumption 1 L is a positive integer;

Assumption 2 b1 = b2 = · · · = bL = b, and alb = pl
ql

with pl and ql being relatively prime
positive integers for 1 ≤ l ≤ L.

We denote by N the set of positive integers. As it is pointed out in Remark 1.1 of [2], if
b1, b2, . . . , bL in (2) are commensurable (there exist b > 0, β1,β2, . . . , and βL ∈ N such that
b = βlbl for 1 ≤ l ≤ L), then G(g, a, b) is a frame (a Riesz basis, an orthonormal basis) for
M(g, a, b) if and only if

{
e2π imb·g(τl)

l (· – nal) : 1 ≤ l ≤ L, 0 ≤ τl ≤ βl – 1, m, n ∈ Z
}

is a frame (a Riesz basis, an orthonormal basis) for M(g, a, b), where g(τl)
l (·) = e2π iτlbl ·gl(·).

It is well known that b1, b2, . . . , bL are commensurable if they are all rational numbers or
rational multiples of some fixed irrational number. We also remark that the restriction
of “rational time-frequency” here is for using “finite-order” Zak transform matrix-valued
functions. So Assumptions 1 and 2 are relatively general and reasonable to some extent.

Throughout this paper, p and q denote the least common multiple of pl and the greatest
common divisor of ql with 1 ≤ l ≤ L, respectively. It is easy to check that p and q are
relatively prime and that p

q is the least common multiple of pl
ql

with 1 ≤ l ≤ L. So, for each
1 ≤ l ≤ L, there exists a unique λl ∈N such that

p
q

=
λlpl

ql
. (4)

This implies that λlal = p
bq for 1 ≤ l ≤ L by Assumption 2. We write

a =
p

bq
and Q = q

∑
l = 1Lλl, (5)
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and we denote by Nt the set

Nt = {0, 1, . . . , t – 1}

and by It the t × t identity matrix for t ∈ N. Hereinafter we use I to denote the identity
matrix when we need not specify its size. Given a measurable set S in R, a collection {Sk :
k ∈ Z} of measurable sets in R is called a partition of S if

⋃

k∈Z
Sk = S and Sk ∩ Sk′ = ∅ for k �= k′ in Z

up to a set of measure zero. For λ > 0 and measurable sets S, S′ ⊂ R, we say that S is λZ-
congruent to S′ if there exists a partition {Sk : k ∈ Z} of S such that {Sk + λk : k ∈ Z} is a
partition of S′. In particular, only finitely many Sk among Sk , k ∈ Z, are nonempty if, in
addition, both S and S′ are bounded. Obviously, S′ is also λZ-congruent to S if S is λZ-
congruent to S′. So, in this case, we usually say that S and S′ are λZ-congruent. For s, t ∈N,
we denote by Ms,t the set of all s × t complex matrices. Let M ∈Ms,t , which we consider
as a linear mapping from C

t into C
s, and define the mapping M̃: ker(M)⊥ → range(M) by

M̃x = Mx for x ∈ (ker(M))⊥. Then M̃ is a bijection, and thus it has an inverse (M̃)–1. We
extend (M̃)–1 to M†: Cs →C

t by defining

M†(y + z) = (M̃)–1y, y ∈ range(M), z ∈ (
range(M)

)⊥.

The mapping M† is called the pseudo-inverse of M.
The rest of this paper is organized as follows. In Sect. 2, using a suitable Zak transform

matrix method, we characterize subspace mixed multiwindow Gabor frames, their Gabor
duals of types I and II, and the uniqueness of Gabor duals and obtain explicit expressions
of the Gabor duals. In Sect. 3, we give some examples and remarks. They show that there
exist significant differences between mixed multiwindow Gabor frames and usual multi-
window Gabor frames. In particular, not every subspace mixed multiwindow Gabor frame
G(g, a, b) admits an oblique Gabor dual. So there should be many challenging problems in
this direction.

2 Frame and dual characterization
Let L, a, and b satisfy Assumptions 1 and 2. In this section, using a Zak transform ma-
trix method, we characterize the Gabor systems G(g, a, b) that are frames for M(g, a, b)
and Gabor systems G(h, a, b) that are duals of a frame G(g, a, b) of types I and II. We also
characterize the uniqueness of Gabor duals.

For f ∈ L2(R), define the Zak transform Zaqf of f by

(Zaqf )(t, v) :=
∑

�∈Z
f (t + �aq)e2π i�v (6)

for a.e. (t, v) ∈ R
2 and define

Zaqf (t, v) =

⎛

⎜⎜⎜⎜⎝

Zaqf (t, v)
Zaqf (t + 1

b , v)
...

Zaqf (t + p–1
b , v)

⎞

⎟⎟⎟⎟⎠



Zhang and Li Journal of Inequalities and Applications  (2018) 2018:280 Page 5 of 20

for a.e. (t, v) ∈ R
2. It is easy to check that the Zak transform has quasi-periodicity:

(Zaqf )(t + kaq, v + �) = e–2π ikv(Zaqf )(t, v)

for f ∈ L2(R), (k,�) ∈ Z
2 and a.e. (t, v) ∈ E

2.
By Lemma 2.1 in [24], and by Lemma 2.1 in [2] we have the following:

Lemma 2.1
(i) Zaq(EmbTnaq+x0 f )(t, v) = e2π imbte2π invZaqf (t – x0, v) for f ∈ L2(R), x0 ∈ R and a.e.

(t, v) ∈R
2.

(ii) Zaq is a unitary operator from L2(E) onto L2([0, 1
b ) × [0, 1),Cp), and Zaq is a unitary

operator from L2(E) onto L2(S × [0, 1)) for an arbitrary subset S of R thatis
aqZ-congruent to [0, aq).

Definition 2.1 For g = {g1, g2, . . . , gL} ⊂ L2(R), we associate it with a matrix-valued func-
tion G(t, v) : R2 →MQ,p by

G(t, v) =

⎛

⎜⎜⎜⎜⎝

G1(t, v)
G2(t, v)

...
GL(t, v)

⎞

⎟⎟⎟⎟⎠
, (7)

where Gl(t, v) is a block matrix of the form

Gl(t, v) =

⎛

⎜⎜⎜⎜⎝

Gl(t, v)
Gl(t – al, v)

...
Gl(t – (λl – 1)al, v)

⎞

⎟⎟⎟⎟⎠
(8)

with Gl(t, v) : R2 →Mq,p for 1 ≤ l ≤ L and

Gl(t, v)r,k = Zaqgl

(
t – ra +

k
b

, v
)

for r ∈Nq, k ∈ Np.

Remark 2.1 By the quasi-periodicity of Zaq, for an arbitrary f ∈ L2(R), Zaqf is uniquely
determined by the values of (Zaqf )(·, ·) on S × [0, 1) with S being a set aqZ-congruent to
[0, aq). So, by Lemma 2.1(ii) an arbitrary function F ∈ L2(S × [0, 1)) determines a unique
f ∈ L2(R) by

(Zaqf )(t, v) = F(t, v) for (t, v) ∈ S × [0, 1).

Observe that [0, 1
bq ) – aNq + 1

bNp is aqZ-congruent to [0, aq). It is easy to prove that if
a1 = a2 = · · · = aL, then Q = Lq, and an arbitrary function M(t, v) : [0, 1

bq ) × [0, 1) → MLq,p

with all entries in L2([0, 1
bq ) × [0, 1)) determines a unique g = {g1, g2, . . . , gL} ⊂ L2(R) by

G(t, v) = M(t, v) for a.e. (t, v) ∈
[

0,
1

bq

)
× [0, 1).
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However, it is not the case if al , 1 ≤ l ≤ L, are not all the same. By an argument similar to
that in [1], we have Example 2.1, which provides us with a counterexample. Therefore, we
must be careful when we define g by a function M(t, v) : [0, 1

bq ) × [0, 1) →MQ,p via

G(t, v) = M(t, v) for a.e. (t, v) ∈
[

0,
1

bq

)
× [0, 1)

if al , 1 ≤ l ≤ L, are not all the same.

Example 2.1 Suppose al , 1 ≤ l ≤ L, are not all the same. Then there exists 1 ≤ l ≤ L such
that λl > 1. We may as well assume that λ1 > 1. Choose

M(t, v) =

⎛

⎜⎜⎜⎜⎝

M1(t, v)
M2(t, v)

...
ML(t, v)

⎞

⎟⎟⎟⎟⎠
, Ml(t, v) =

⎛

⎜⎜⎜⎜⎝

Ml,0(t, v)
Ml,1(t, v)

...
Ml,λl–1(t, v)

⎞

⎟⎟⎟⎟⎠

for 1 ≤ l ≤ L and (t, v) ∈ [0, 1
bq ) × [0, 1) such that every entry of M(t, v) belongs to

L2([0, 1
bq ) × [0, 1)) and

M1,0(t, v) �= 0, M1,1(t, v) = 0 for (t, v) ∈
[

0,
1

bq

)
× [0, 1). (9)

Suppose there exists g such that G(t, v) = M(t, v) for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1). Then

G1(t, v) = M1,0(t, v), (10)

G1(t – a1, v) = M1,1(t, v) (11)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1), where

G1(t, v)r,k = Zaqg1

(
t – ra +

k
b

, v
)

, G1(t – a1, v)r,k = Zaqg1

(
t – a1 – ra +

k
b

, v
)

for (r, k) ∈ Nq × Np. Since the sets [0, 1
bq ) – aNq + 1

bNp and [0, 1
bq ) – aNq + 1

bNp – a1 are
both aqZ-congruent to [0, aq), by the quasi-periodicity of Zaq we have Zaqg1(t, v) �= 0 for
(t, v) ∈ E and some E ⊂ [0, aq) × [0, 1) with |E| > 0 by (9), (10), whereas Zaqg1(t, v) = 0 for
a.e. (t, v) ∈ [0, aq) × [0, 1) by (9) and (11). This is a contradiction.

Define the Fourier transform F : l2(Z2) → L2([0, 1
b ) × [0, 1)) by

Fc(t, v) =
√

b
∑

m∈Z

∑

n∈Z
cm,ne2π imbte2π inv

for c ∈ l2(Z2) and a.e. (t, v) ∈ [0, 1
b )× [0, 1), and define J : l2(Z2,CL) → L2([0, 1

b )× [0, 1),CQ)
by

J c(t, v) = C(t, v)
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for c = (c1, c2, . . . , cL) ∈ l2(Z2,CL), where

C(t, v) =

⎛

⎜⎜⎜⎜⎝

C1(t, v)
C2(t, v)

...
CL(t, v)

⎞

⎟⎟⎟⎟⎠
, Cl(t, v) =

⎛

⎜⎜⎜⎜⎝

C(0)
l (t, v)

C(1)
l (t, v)

...
C(λl–1)

l (t, v)

⎞

⎟⎟⎟⎟⎠
, (12)

C(βl)
l (t, v) =

⎛

⎜⎜⎜⎜⎝

∑
m∈Z

∑
n∈Z cl,m,nqλl+βl e

2π imbte2π inv
∑

m∈Z
∑

n∈Z cl,m,(nq+1)λl+βl e
2π imbte2π inv

...
∑

m∈Z
∑

n∈Z cl,m,(nq+q–1)λl+βl e
2π imbte2π inv

⎞

⎟⎟⎟⎟⎠
(13)

for 1 ≤ l ≤ L and βl ∈ Nλl . Similarly, for an arbitrary d ∈ l2(Z2,CL), we associate it with
D(t, v).

By a standard argument, we have

Lemma 2.2 The operators F and
√

bJ are unitary operators from l2(Z2,CL) onto
L2([0, 1

b ) × [0, 1)) and L2([0, 1
b ) × [0, 1),CQ), respectively.

By Lemmas 2.4 and 4.1 and by Remarks 2.6 and 2.7 in [31], we have following two lem-
mas.

Lemma 2.3 For g = {g1, g2, . . . , gL} ⊂ L2(R), the following are equivalent:
(i) G(g, a, b) is a Bessel sequence in L2(R) with Bessel bound B.

(ii) G(t, v)G∗(t, v) ≤ bBI for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(iii) (G(t, v)G∗(t, v))2 ≤ bBG(t, v)G∗(t, v) for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(iv) G∗(t, v)G(t, v) ≤ bBI for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(v) (G∗(t, v)G(t, v))2 ≤ bBG∗(t, v)G(t, v) for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(vi) Zaqgl ∈ L∞(R2) for 1 ≤ l ≤ L.

Lemma 2.4 For g = {g1, g2, . . . , gL} ⊂ L2(R), G(g, a, b) is complete in L2(R) if and only if

rank
(
G(t, v)

)
= p ffor a.e. (t, v) ∈

[
0,

1
bq

)
× [0, 1).

Lemma 2.5 For g = {g1, g2, . . . , gL} ⊂ L2(R), we have
(i)

〈f , EmbTnaq+ra+τal gl〉

=
∫ 1

b

0

∫ 1

0

(
Gl(t – τal, v)Zaqf (t, v)

)
re–2π imbte–2π inv dt dv

for f ∈ L2(R), 1 ≤ l ≤ L and (m, n, r, τ ) ∈ Z×Z×Nq ×Nλl .
(ii) G(t + n

bq , v) = e–2π imnvCnG(t, v)Dn for n = knq + (mnq – rn)p with
(kn, rn, mn) ∈Np ×Nq ×Z and a.e. (t, v) ∈R

2, where

Dn =

(
0 e–2π ivIkn

Ip–kn 0

)
,
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Cn = diag(C1,n(v),C2,n(v), . . . ,CL,n(v)), Cl,n(v) denotes the block matrix (with λl blocks)
of the form diag(Cn, Cn, . . . , Cn) with

Cn =

(
0 Iq–rn

e2π ivIrn 0

)
.

(iii) ZaqTgc(t, v) = G∗(t, v)J c(t, v) for a.e. (t, v) ∈R
2 whenever c ∈ l0(Z2,CL) (that is, c is

finitely supported) or G(g, a, b) is a Bessel sequence in L2(R), where Tgc is as in (3).
(iv) If G(g, a, b) is a Bessel sequence in L2(R), then

J T ∗
g f (t, v) =

1
b

G(t, v)Zaqf (t, v)

for f ∈ L2(R) and a.e. (t, v) ∈R
2.

Proof (i), (ii), and (iii) are from Lemmas 2.2, 2.3, 2.5 in [2]. Next, we prove (iv). Write
d = T ∗

g f = (d1, d2, . . . , dL). By Lemma 2.1 we have

dl,m,(nq+r)λl+βl

=
∑

k∈Np

∫ 1
b

0

∫ 1

0
Zaqf

(
t +

k
b

, v
)
Zaqgl

(
t – βlal – ra +

k
b

, v
)

e–2π imbte–2π inv dt dv

=
∫ 1

b

0

∫ 1

0

(
Gl(t – βlal, v)Zaqf (t, v)

)
re–2π imbte–2π inv dt dv (14)

for (r,βl) ∈Nq ×Nλl , 1 ≤ l ≤ L. When G(g, a, b) is a Bessel sequence, the integrand in (14)
belongs to L2([0, 1

b ) × [0, 1)) by Lemma 2.3(vi). It follows that

D(βl)(t, v) =
1
b
Gl(t – βlal, v)Zaqf (t, v)

for a.e (t, v) ∈ [0, 1
b ) × [0, 1). This leads to the lemma. �

Remark 2.2 By Lemma 2.5(ii),

rank

(
G

(
t +

n
bq

, v
))

= rank
(
G(t, v)

)
,

G∗
(

t +
n

bq
, v

)
G

(
t +

n
bq

, v
)

= D∗
nG∗(t, v)G(t, v)Dn,

G
(

t +
n

bq
, v

)
G∗

(
t +

n
bq

, v
)

= CnG(t, v)G∗(t, v)C∗
n

for (t, v) ∈ R
2 and n ∈ Z. It follows that the range of rank(G(t, v)) on [0, 1

bq ) × [0, 1) is that
on R

2, and the spectrum properties of G∗(t, v)G(t, v) and G(t, v)G∗(t, v) on [0, 1
bq ) × [0, 1)

determine their spectrum properties on R
2. For simplicity, all theorems further will be

stated on [0, 1
bq ) × [0, 1).
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By an argument similar to Lemmas 27, 28 in [1] and Lemmas 3.3, 3.4 in [31], we have
the following two lemmas.

Lemma 2.6 For g = {g1, g2, . . . , gL}, h = {h1, h2, . . . , hL} ⊂ L2(R), the following are equiva-
lent:

(i) h ⊂M(g, a, b).
(ii) there exists a measurable function A : [0, 1

bq ) × [0, 1) →MQ,Q such that
H(t, v) = A(t, v)G(t, v) for a.e. (t, v) ∈ [0, 1

bq ) × [0, 1).
(iii) there exists a measurable function A : R2 →MQ,Q such that H(t, v) = A(t, v)G(t, v)

for a.e. (t, v) ∈R
2.

Lemma 2.7 Given g = {g1, g2, . . . , gL}, h = {h1, h2, . . . , hL} ⊂ L2(R), let G(g, a, b) and G(h,
a, b) be Bessel sequences in L2(R). Then the following are equivalent:

(i) range(T ∗
h ) ⊂ range(T ∗

g ).
(ii) there exists a measurable function B : [0, 1

bq ) × [0, 1) →Mp,p such that

H(t, v) = G(t, v)B(t, v) for a.e. (t, v) ∈
[

0,
1

bq

)
× [0, 1).

(iii) there exists a measurable function B : R2 →Mp,p such that

H(t, v) = G(t, v)B(t, v) for a.e. (t, v) ∈R
2.

Lemma 2.8 Given g = {g1, g2, . . . , gL}, h = {h1, h2, . . . , hL} ⊂ L2(R), let G(g, a, b) and G(h,
a, b) be Bessel sequences in L2(R). Then

Zaq(Sh,gf )(t, v) =
1
b

G∗(t, v)H(t, v)Zaqf (t, v) (15)

for f ∈ L2(R) and a.e. (t, v) ∈R
2.

Proof Since Sh,g = TgT ∗
h , applying Lemma 2.5(iii), (iv) leads to the lemma. �

Lemma 2.9 Given g = {g1, g2, . . . , gL}, h = {h1, h2, . . . , hL} ⊂ L2(R), let G(g, a, b) and G(h,
a, b) be Bessel sequences in L2(R). Then the following are equivalent:

(i) G(h, a, b) is an oblique Gabor dual for G(g, a, b).
(ii) G∗(t, v) = 1

b G∗(t, v)H(t, v)G∗(t, v) for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(iii) G∗(t, v) = 1
b G∗(t, v)H(t, v)G∗(t, v) for a.e. (t, v) ∈ R

2.

Proof By Lemma 2.5(ii), (ii) and (iii) are equivalent. So, to prove the lemma, it suffices to
prove the equivalence between (i) and the following equation:

G∗(t, v) =
1
b

G∗(t, v)H(t, v)G∗(t, v) for a.e. (t, v) ∈
[

0,
1
b

)
× [0, 1). (16)

Since range(Tg) is dense in M(g, a, b), (i) holds if and only if

Sh,gTgc = Tgc for c ∈ l2(
Z

2,CL)
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or, equivalently,

G∗(t, v)J c(t, v) =
1
b

G∗(t, v)H(t, v)G∗(t, v)J c(t, v) for c ∈ l2(
Z

2,CL)

by Lemmas 2.1, 2.5, and 2.8, which is in turn equivalent to

G∗(t, v)d(t, v) =
1
b

G∗(t, v)H(t, v)G∗(t, v)d(t, v) (17)

for d(t, v) ∈ L2([0, 1
b )× [0, 1),CQ) by Lemma 2.2. Obviously, (16) implies (17). Now suppose

(17) holds. For arbitrary fixed x ∈C
Q, choose d(t, v) as

d(t, v) = x for (t, v) ∈
[

0,
1
b

)
× [0, 1).

Then d(t, v) ∈ L2([0, 1
b ) × [0, 1),CQ), and thus

G∗(t, v)x =
1
b

G∗(t, v)H(t, v)G∗(t, v)x

for a.e. (t, v) ∈ [0, 1
b ) × [0, 1) by (17). So (16) holds by the arbitrariness of x. The proof is

completed. �

By the definition of pseudo-inverse, we have following two lemmas.

Lemma 2.10 For a d × d matrix A satisfying A∗ = A, we have

AA† = A†A = Prange(A),

where Prange(A) denotes the orthogonal projection from C
d onto range(A).

Lemma 2.11 For an arbitrary s × t matrix A, we have

A∗Prange(A) = A∗, A†Prange(A) = A†,

range
(
AA∗) = range(A), range

(
A∗A

)
= range

(
A∗),

where Prange(A) denotes the orthogonal projection from C
s onto range(A).

Let us check the Gabor system G(g, a, b) under Assumptions 1 and 2. Since Z = λlZ + Nλl

for each 1 ≤ l ≤ L, we have

{EmbTnal gl : m, n ∈ Z} = {EmbT(nλl+γl)al gl : m, n ∈ Z,γl ∈Nλl }
= {EmbTnagl,γl : m, n ∈ Z,γl ∈Nλl },

where λl and a are as in (4) and (5), and gl,γl = Tγlal gl . So G(g, a, b) = G(g̃, a, b), where

G(g̃, a, b) = {EmbTnagl,γl : m, n ∈ Z,γl ∈Nλl , 1 ≤ l ≤ L},
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g̃ = {g1,0, g1,1, . . . , g1,λ1–1; g2,0, g2,1, . . . , g2,λ2–1; . . . ; gL,0, gL,1, . . . , gL,λL–1}.

So the matrix-valued function G(t, v) in Definition 2.1 is exactly �g̃(t, v) by Definition 2.2
in [31]. It follows that G(g, a, b) and G(g̃, a, b) have the same frame properties. Therefore,
using Theorems 2.9 and 2.14 and Remark 2.10 in [31], we have the following two theo-
rems.

Theorem 2.1 For g = {g1, g2, . . . , gL} ⊂ L2(R), the following are equivalent:
(i) G(g, a, b) is a frame for M(g, a, b) with frame bounds A and B.

(ii) bAG(t, v)G∗(t, v) ≤ (G(t, v)G∗(t, v))2 ≤ bBG(t, v)G∗(t, v) for a.e.
(t, v) ∈ [0, 1

bq ) × [0, 1).
(iii) bAG∗(t, v)G(t, v) ≤ (G∗(t, v)G(t, v))2 ≤ bBG∗(t, v)G(t, v) for a.e.

(t, v) ∈ [0, 1
bq ) × [0, 1).

Theorem 2.2 For g = {g1, g2, . . . , gL} ⊂ L2(R), G(g, a, b) is a Riesz basis for M(g, a, b) with
Riesz bounds A and B (an orthonormal basis) if and only if

bAI ≤ G(t, v)G∗(t, v) ≤ bBI
(
G(t, v)G∗(t, v) = bI

)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

By Lemmas 2.6–2.9, we have following theorem, which characterizes the Gabor duals of
type I (resp., type II):

Theorem 2.3 Given g = {g1, g2, . . . , gL} ⊂ L2(R), let G(g, a, b) be a frame for M(g, a, b).
Then, for an arbitrary h = {h1, h2, . . . , hL} ⊂ L2(R) with G(h, a, b) being a Bessel sequence
in L2(R), G(h, a, b) is a Gabor dual of type I (type II) for G(g, a, b) if and only if the follow-
ing hold:

(i) there exists a measurable function A : [0, 1
bq ) × [0, 1) →MQ,Q

(B : [0, 1
bq ) × [0, 1) →Mp,p) such that

H(t, v) = A(t, v)G(t, v)
(
H(t, v) = G(t, v)B(t, v)

)
;

(ii) G∗(t, v) = 1
b G∗(t, v)H(t, v)G∗(t, v) for a.e. (t, v) ∈ [0, 1

bq ) × [0, 1).

Theorem 2.4 Let G(g, a, b) be a frame for M(g, a, b). Then the following are equivalent:
(i) G(g, a, b) has a unique Gabor dual of type I (type II).

(ii) rank(G(t, v)) ∈ {0, Q} (rank(G(t, v)) ∈ {0, p}) for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(iii) rank(G(t, v)) ∈ {0, Q} (rank(G(t, v)) ∈ {0, p}) for a.e. (t, v) ∈R
2.

Proof We only prove “type I” part. The other part can be proved similarly. By Lemma 2.5(ii)
we only need to prove the equivalence between (i) and (ii). By Lemmas 2.6 and 2.9, (i) holds
if and only if for a function A : [0, 1

bq ) × [0, 1) →MQ,Q,

G∗(t, v)A(t, v)G(t, v)G∗(t, v) = 0 (18)
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implies

A(t, v)G(t, v) = 0 for a.e.
[

0,
1

bq

)
× [0, 1). (19)

Next, we prove the equivalence between (ii) and the above implication. Obviously, (ii) leads
to this implication. Next, we prove that the implication fails if (ii) is violated and thus finish
the proof. Suppose (ii) does not hold. Then rank(G(t, v)) /∈ {0, Q} on some subset E0 of
[0, 1

bq )× [0, 1) with |E0| > 0. Suppose {ei : 1 ≤ i ≤ Q} is the orthonormal basis for CQ, where
ei is the vector with the ith component being 1 and others zeros. Since rank(G(t, v)) /∈ {0, Q}
for (t, v) ∈ E0, there exist 1 ≤ r ≤ Q and E1 ⊂ E0 with |E1| > 0 such that

G∗(t, v)er �= 0 and ker
(
G∗(t, v)

) �= {0} for (t, v) ∈ E1.

By the same procedure as in Lemma 4.1 in [31], there exist 1 ≤ k ≤ Q and E2 ⊂ E1 with
|E2| > 0 such that P(t, v)ek �= 0 for (t, v) ∈ E2, where P(t, v) is the orthogonal projection of
C

Q onto ker(G∗(t, v)). By the argument of [8], p. 978, P(t, v) is measurable. Define

A(t, v) =

⎧
⎨

⎩
P(t, v)eke∗

r if (t, v) ∈ E2,

0 otherwise

for (t, v) ∈ [0, 1
bq ) × [0, 1). Then A(·, ·) satisfies (18) but does not satisfy (19). The proof is

completed. �

Theorem 2.5 Given g = {g1, g2, . . . , gL} ⊂ L2(R), let G(g, a, b) be a frame for M(g, a, b).
Then, for an arbitrary h = {h1, h2, . . . , hL} ⊂ L2(R) with G(h, a, b) being a Bessel sequence
in L2(R), we have

(i) G(h, a, b) is a Gabor dual of type I for G(g, a, b) if and only if there exists a
measurable function A : [0, 1

bq ) × [0, 1) →MQ,Q such that

H(t, v) = b
(
G(t, v)G∗(t, v)

)†G(t, v)
[

I –
1
b

G∗(t, v)A(t, v)G(t, v)
]

+ A(t, v)G(t, v) (20)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(ii) G(h, a, b) is a Gabor dual of type II for G(g, a, b) if there exists a measurable
function A : [0, 1

bq ) × [0, 1) →Mp,p such that

H(t, v) = bG(t, v)
(
G∗(t, v)G(t, v)

)†
[

I –
1
b

G∗(t, v)G(t, v)A(t, v)
]

+ G(t, v)A(t, v) (21)

f or a.e. (t, v) ∈ [0, 1
bq ) × [0, 1).

(iii) G(h, a, b) is an oblique dual of G(g, a, b) if one of the following conditions holds:
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(a)

H(t, v) = bG(t, v)
(
G∗(t, v)G(t, v)

)†
[

I –
1
b

G∗(t, v)A(t, v)G(t, v)
]

+ A(t, v)G(t, v)

for some measurable function A : [0, 1
bq ) × [0, 1) →MQ,Q and a.e.

(t, v) ∈ [0, 1
bq ) × [0, 1);

(b)

H(t, v) = b
(
G(t, v)G∗(t, v)

)†G(t, v)
[

I –
1
b

G∗(t, v)G(t, v)A(t, v)
]

+ G(t, v)A(t, v)

for some measurable function A : [0, 1
bq ) × [0, 1) →Mp,p and a.e.

(t, v) ∈ [0, 1
bq ) × [0, 1).

Proof We only prove (i); (ii) and (iii) can be proved similarly. First, we assume that (20)
holds. Then, applying Lemmas 2.10 and 2.11, we have

1
b

G∗(t, v)H(t, v)G∗(t, v) = G∗(t, v),

and thus G(h, a, b) is a Gabor dual of type I for G(g, a, b) by Theorem 2.3.
Now we turn to the converse implication. Suppose G(h, a, b) is a Gabor dual of type I for

G(g, a, b). Then there exists B(t, v) : [0, 1
bq ) × [0, 1) →MQ,Q such that

H(t, v) = B(t, v)G(t, v), G∗(t, v) =
1
b

G∗(t, v)H(t, v)G∗(t, v) (22)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1) by Theorem 2.3. It follows that

b
(
G(t, v)G∗(t, v)

)†G(t, v)G∗(t, v)

=
(
G(t, v)G∗(t, v)

)†G(t, v)G∗(t, v)H(t, v)G∗(t, v)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1), and thus

b
(
G(t, v)G∗(t, v)

)†G(t, v) =
(
G(t, v)G∗(t, v)

)†G(t, v)G∗(t, v)H(t, v) (23)

for a.e. (t, v) ∈ [0, 1
bq ) × [0, 1) since C

p = range(G∗(t, v)) ⊕ ker(G(t, v)). Put A(t, v) = B(t, v) –
(G(t, v)G∗(t, v))†. Then (20) holds by Lemmas 2.10 and 2.11 and by a simple computation.
The proof is completed. �

3 Some examples and remarks
This section is devoted to some examples and remarks. The ideas of this section are bor-
rowed from [1]. Example 2.1 tells us that not every Q × p matrix-valued function with
L2([0, 1

bq ) × [0, 1))-entries determines a g = {g1, g2, . . . , gL} ⊂ L2(R) via the Zak transform
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matrix method if the time shift parameters a1, a2, . . . , aL are not all the same. Example 3.2
shows that not every subspace mixed Gabor frame G(g, a, b) admits an oblique Gabor dual.
Therefore, there exist significant differences between mixed multiwindow Gabor frames
and usual multiwindow Gabor frames, and there should be many challenging problems in
this direction.

Definition 3.1 Given g = {g1, g2, . . . , gL} ⊂ L2(R), let G(g, a, b) be a Bessel sequence in
L2(R). We say that G(g, a, b) has Riesz property if for c ∈ l2(Z2,CL), we must have c = 0
whenever Tgc = 0.

By Lemma 2.5(ii) and Theorem 2.1 in [2] we have the following:

Lemma 3.1 Given g = {g1, g2, . . . , gL} ⊂ L2(R), let G(g, a, b) be a Bessel sequence in L2(R).
Then G(g, a, b) has Riesz property if and only if rank(G(t, v)) = Q for a.e. (t, v) ∈ [0, 1

bq ) ×
[0, 1).

Next we turn to examples of Theorems 2.1 and 2.2 withM(g, a, b) �= L2(R). See Examples
4.1, 4.2, 4.5, and 4.6 in [2], for examples with M(g, a, b) = L2(R). Suppose

a = (6, 4) and b =
(

1
2

,
1
2

)
. (24)

Then ab = 6 with p = 6, q = 1, and Q = 5. For g = {g1, g2} with g1, g2 ∈ L2(R), we associate
it with G as in Definition 2.1. Then

G(t, v) =

(
G1(t, v)
G2(t, v)

)
(25)

with

G1(t, v) =

(
G1(t, v)

G1(t – 6, v)

)
and G2(t, v) =

⎛

⎜⎝
G2(t, v)

G2(t – 4, v)
G2(t – 8, v)

⎞

⎟⎠ ,

where

Gl(t, v) =
(
Z12gl(t + 2k, v)

)
0,k ∈M1,6 (26)

with k ∈ N6 and a.e. (t, v) ∈ [0, 2) × [0, 1) for l = 1, 2. By the quasi-periodicity of the Zak
transform we have:

G1(t – 6, v) =
(
e2π ivZ12g1(t + 6, v), e2π ivZ12g1(t + 8, v), e2π ivZ12g1(t + 10, v),

Z12g1(t, v),Z12g1(t + 2, v),Z12g1(t + 4, v)
)
,

G2(t – 4, v) =
(
e2π ivZ12g2(t + 8, v), e2π ivZ12g2(t + 10, v),Z12g2(t, v),

Z12g2(t + 2, v),Z12g2(t + 4, v),Z12g2(t + 6, v)
)
,

G2(t – 8, v) =
(
e2π ivZ12g2(t + 4, v), e2π ivZ12g2(t + 6, v), e2π ivZ12g2(t + 8, v),
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Z12g2(t + 10, v),Z12g2(t, v),Z12g2(t + 2, v)
)
.

Thus, for a.e. (t, v) ∈ [0, 2) × [0, 1), G1(t – 6, v) and G2(t – 4, v), G2(t – 8, v) are uniquely
determined by G1(t, v) and G2(t, v), respectively. Observe that [0, 2)+2N6 is 12Z-congruent
to [0, 12). It follows that an arbitrary 5 × 6 matrix-valued function K(t, v) on [0, 2) × [0, 1)
of the following form determines a unique g = {g1, g2} by

G(t, v) = K(t, v) for a.e. (t, v) ∈ [0, 2] × [0, 1] : (27)

K(t, v) =
(
K1(t, v),K2(t, v)

)
(28)

with K1(t, v),K2(t, v) ∈M5,3 and

K1(t, v) =

⎛

⎜⎜⎜⎜⎜⎜⎝

a(t, v) λ(t, v)a(t, v) λ2(t, v)a(t, v)
0 0 0

–λ(t, v)a(t, v) a(t, v) 0
0 0 –λ(t, v)a(t, v)
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

K2(t, v) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0
a(t, v) λ(t, v)a(t, v) λ2(t, v)a(t, v)

0 0 0
a(t, v) 0 0

0 –λ(t, v)a(t, v) a(t, v)

⎞

⎟⎟⎟⎟⎟⎟⎠

for a.e. (t, v) ∈ [0, 2) × [0, 1).

Example 3.1 Let a and b be defined as in (24), and define g = {g1, g2} by (27), where λ(·, ·)
and a(·, ·) are continuous on [0, 2] × [0, 1]. Assume that

∣∣λ(t, v)
∣∣ < 1,

∣∣a(t, v)
∣∣2(1 – 2

∣∣λ(t, v)
∣∣4 – 2

∣∣λ(t, v)
∣∣6 –

∣∣λ(t, v)
∣∣8) < 1 –

∣∣λ(t, v)
∣∣3,

∣∣a(t, v)
∣∣2(1 + 2

∣∣λ(t, v)
∣∣3 + 2

∣∣λ(t, v)
∣∣5 +

∣∣λ(t, v)
∣∣7) < 1 +

∣∣λ(t, v)
∣∣3

for (t, v) ∈ [0, 2] × [0, 1] satisfying a(t, v) �= 0. Then G(g, a, b) is a frame for M(g, a, b), and
M(g, a, b) �= L2(R). In particular, G(g, a, b) is a Riesz basis for M(g, a, b) if and only if, in
addition,

a(t, v)λ(t, v) �= 0 for a.e. (t, v) ∈ [0, 2) × [0, 1). (29)

Proof Since G(t, v) is a 5 × 6 matrix, its rank cannot be p = 6. So M(g, a, b) �= L2(R) by
Lemma 2.4. Next, we prove that G(g, a, b) is a frame for M(g, a, b). By a simple computa-
tion we have

〈(
G(t, v)G∗(t, v)

)2x, x
〉
=

∣∣a(t, v)
∣∣2

5∑

l=1

αl(t, v)|xl|2 + β(t, v), (30)
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〈
G(t, v)G∗(t, v)x, x

〉
=

∣∣a(t, v)
∣∣2

5∑

l=1

α̃l(t, v)|xl|2 + β̃(t, v) (31)

for (t, v) ∈ [0, 2] × [0, 1] and x ∈C
5, where

α1(t, v) =
∣∣λ(t, v)

∣∣3 +
(
1 +

∣∣λ(t, v)
∣∣2 +

∣∣λ(t, v)
∣∣4)2∣∣a(t, v)

∣∣2,

α2(t, v) = 1 +
(
1 +

∣∣λ(t, v)
∣∣2 +

∣∣λ(t, v)
∣∣4)2∣∣a(t, v)

∣∣2,

α4(t, v) = 1 +
∣∣λ(t, v)

∣∣3 +
(
1 +

∣∣λ(t, v)
∣∣2)2∣∣a(t, v)

∣∣2,

α3(t, v) = α5(t, v) =
(
1 +

∣∣λ(t, v)
∣∣2)2∣∣a(t, v)

∣∣2,

β(t, v) = 2 Re
([

λ(t, v)3(2 + 2
∣∣λ(t, v)

∣∣2 +
∣∣λ(t, v)

∣∣4)a(t, v)2∣∣a(t, v)
∣∣2]x̄1x4

)

+ 2 Re
([(

2 + 2
∣∣λ(t, v)

∣∣2 +
∣∣λ(t, v)

∣∣4)a(t, v)2∣∣a(t, v)
∣∣2]x̄2x4

)

– 2 Re
(
λ(t, v)3∣∣a(t, v)

∣∣2x̄1x2
)
,

α̃1(t, v) = α̃2(t, v) = 1 +
∣∣λ(t, v)

∣∣2 +
∣∣λ(t, v)

∣∣4,

α̃3(t, v) = α̃4(t, v) = α̃5(t, v) = 1 +
∣∣λ(t, v)

∣∣2,

β̃(t, v) = –2 Re
(
λ(t, v)3a(t, v)2x̄1x4

)
+ 2 Re

(
a(t, v)2x̄2x4

)
.

It is easy to check that

∣∣β(t, v)
∣∣ ≤ ∣∣a(t, v)

∣∣2[
β1(t, v)|x1|2 + β2(t, v)|x2|2 + β4(t, v)|x4|2

]
,

w here

β1(t, v) =
∣∣λ(t, v)

∣∣3 +
∣∣a(t, v)

∣∣2(2
∣∣λ(t, v)

∣∣3 + 2
∣∣λ(t, v)

∣∣5 +
∣∣λ(t, v)

∣∣7),

β2(t, v) =
∣∣λ(t, v)

∣∣3 +
∣∣a(t, v)

∣∣2(2 + 2
∣∣λ(t, v)

∣∣2 +
∣∣λ(t, v)

∣∣4),

β4(t, v) =
∣∣a(t, v)

∣∣2(2 + 2
∣∣λ(t, v)

∣∣2 + 2
∣∣λ(t, v)

∣∣3 +
∣∣λ(t, v)

∣∣4)

+
∣∣a(t, v)

∣∣2(2
∣∣λ(t, v)

∣∣5 +
∣∣λ(t, v)

∣∣7).

We have

∣∣β̃(t, v)
∣∣ ≤ ∣∣a(t, v)

∣∣2[
β̃1(t, v)|x1|2 + β̃2(t, v)|x2|2 + β̃4(t, v)|x4|2

]
,

where

β̃1(t, v) =
∣∣λ(t, v)

∣∣3, β̃2(t, v) = 1, β̃4(t, v) = 1 +
∣∣λ(t, v)

∣∣3.

Write

Cl(t, v) = αl(t, v) + βl(t, v), C̃l(t, v) = αl(t, v) – βl(t, v) for l = 1, 2, 4,

C(t, v) =
(
1 +

∣∣λ(t, v)
∣∣2)2∣∣a(t, v)

∣∣2,

Dl(t, v) = α̃l(t, v) + β̃l(t, v), D̃l(t, v) = α̃l(t, v) – β̃l(t, v) for l = 1, 2, 4,
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D(t, v) =
∣∣λ(t, v)

∣∣2 + 1.

Take

⎧
⎨

⎩
C̃ = min{C(t, v), C̃l(t, v) : l = 1, 2, 4, (t, v) ∈ [0, 2] × [0, 1]},
C = max{C(t, v), Cl(t, v) : l = 1, 2, 4, (t, v) ∈ [0, 2] × [0, 1]},

⎧
⎨

⎩
D̃ = min{D(t, v), D̃l(t, v) : l = 1, 2, 4, (t, v) ∈ [0, 2] × [0, 1]},
D = max{D(t, v), Dl(t, v) : l = 1, 2, 4, (t, v) ∈ [0, 2] × [0, 1]}.

Then

C̃
∣∣a(t, v)

∣∣2‖x‖2 ≤ 〈(
G(t, v)G∗(t, v)

)2x, x
〉 ≤ C

∣∣a(t, v)
∣∣2‖x‖2,

D̃
∣∣a(t, v)

∣∣2‖x‖2 ≤ 〈
G(t, v)G∗(t, v)x, x

〉 ≤ D
∣∣a(t, v)

∣∣2‖x‖2.

It follows that

1
2

A
〈
G(t, v)G∗(t, v)x, x

〉 ≤ 〈(
G(t, v)G∗(t, v)

)2x, x
〉 ≤ 1

2
B
〈
G(t, v)G∗(t, v)x, x

〉

for x ∈C
5and a.e. (t, v) ∈ [0, 2) × [0, 1), and thus

1
2

AG(t, v)G∗(t, v) ≤ (
G(t, v)G∗(t, v)

)2 ≤ 1
2

BG(t, v)G∗(t, v) (32)

for a.e. (t, v) ∈ [0, 2) × [0, 1), where A = 2C̃
D , B = 2C

D̃ . By Theorem 2.1, G(g, a, b) is a frame for
M(g, a, b) with frame bounds A and B.

By simple computation, (29) holds if and only if rank G(t, v) = 5 for a.e. (t, v) ∈ [0, 2) ×
[0, 1) or, equivalently, G(g, a, b) is a Riesz basis for M(g, a, b) by Lemma 3.1. �

Remark 3.1 Not every subspace mixed Gabor frame G(g, a, b) admits an oblique Gabor
dual.

We show it by revisiting Example 3.1. Let us make the additional assumption that λ(t, v) = 0
and a(t, v) �= 0 for a.e. (t, v) ∈ [0, 2) × [0, 1]. Then G(g, a, b) is a frame but not a Riesz basis
for M(g, a, b) by Example 3.1. Suppose G(h, a, b) with h = {h1, h2} is an oblique Gabor dual
for G(g, a, b). Then

G∗(t, v) = 2G∗(t, v)H(t, v)G∗(t, v) for a.e. (t, v) ∈ [0, 2) × [0, 1) (33)

by Lemma 2.9. Writing out (0, 0)-, (3, 1)-, and (5, 4)-entries of both sides, we have

2
(
a(t, v)

)2Z12h1(t, v) = a(t, v), (34)

2
(
a(t, v)

)2Z12h1(t, v) + 2
∣∣a(t, v)

∣∣2Z12h2(t + 2, v) = a(t, v), (35)

2
(
a(t, v)

)2Z12h2(t + 2, v) = a(t, v) (36)
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for a.e. (t, v) ∈ [0, 2) × [0, 1). By (35) and (36) we have 2a(t, v)Z12h1(t, v) = 0 for a.e. (t, v) ∈
[0, 2) × [0, 1). This contradicts (34).

Observe that a1 �= a2 in Remark 3.1 (a1 = 6 and a2 = 4). It is natural to ask:
Does every subspace Gabor frame G(g, a, b) admit no oblique Gabor dual whenever al ,

1 ≤ l ≤ L, are not all the same?
The following example gives a negative answer to this question.

Example 3.2 Let a = (1, 2) and b = ( 1
3 , 1

3 ). Assume that

J (t, v) =

(
J1(t, v)
J2(t, v)

)
and E(t, v) =

(
E1(t, v)
E2(t, v)

)

have the form

J1(t, v) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0(t, v) a0,1(t, v)
a1,0(t, v) a1,1(t, v)
a2,0(t, v) a2,1(t, v)
a2,1(t, v) e–2π iva2,0(t, v)

e2π iva0,1(t, v) a0,0(t, v)
e2π iva1,1(t, v) a1,0(t, v)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E1(t, v) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0(t, v) c0,1(t, v)
c1,0(t, v) c1,1(t, v)
c2,0(t, v) c2,1(t, v)
c2,1(t, v) e–2π ivc2,0(t, v)

e2π ivc0,1(t, v) c0,0(t, v)
e2π ivc1,1(t, v) c1,0(t, v)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

J2(t, v) =

⎛

⎜⎝
b0,0(t, v) b0,1(t, v)
b1,0(t, v) b1,1(t, v)
b2,0(t, v) b2,1(t, v)

⎞

⎟⎠ , E2(t, v) =

⎛

⎜⎝
d0,0(t, v) d0,1(t, v)
d1,0(t, v) d1,1(t, v)
d2,0(t, v) d2,1(t, v)

⎞

⎟⎠

for a.e. (t, v) ∈ [0, 2) × [0, 1) with all entries of J (t, v) and E(t, v) in L∞([0, 2) × [0, 1)), that
(J1(t, v))∗E1(t, v) has the form

(
A(t, v) 0

0 A(t, v)

)

and (J (t, v))∗J (t, v) has the form
(

B(t, v) 0
0 B(t, v)

)

for (t, v) ∈ [0, 2) × [0, 1), and that

(
J2(t, v)

)∗E2(t, v) =

(
1
3 – A(t, v) 0

0 1
3 – A(t, v)

)
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for (t, v) ∈ [0, 2) × [0, 1) satisfying B(t, v) �= 0. Define g = {g1, g2} and h = {h1, h2} by

G(t, v) = J (t, v) and H(t, v) = E(t, v) for (t, v) ∈ [0, 2) × [0, 1).

Then g and h are well defined by the quasi-periodicity of the Zak transform Z6 and 6Z-
congruence between [0, 1) – 2N3 + 3N2 and [0, 6), and G(g, a, b) and G(h, a, b) are both
Bessel sequences by the quasi-periodicity of the Zak transform and Lemma 2.3(vi). A sim-
ple computation shows that

G∗(t, v)G(t, v) = 3G∗(t, v)H(t, v)G∗(t, v)G(t, v)

for (t, v) ∈ [0, 2) × [0, 1). This implies that G∗(t, v) = 3G∗(t, v)H(t, v)G∗(t, v) for (t, v) ∈
[0, 2) × [0, 1) since C

9 = range(G(t, v)) ⊕ ker(G∗(t, v)). So G(h, a, b) is an oblique Gabor
dual for G(h, a, b) by Lemma 2.9.

4 Conclusions
A mixed multiwindow Gabor system is one of generalizations of multiwindow Gabor sys-
tems, whose time-frequency shifts vary with the windows. This paper addresses subspace
mixed multiwindow Gabor systems with rational time-frequency product lattices. Using
a suitable Zak-transform matrix method, in this paper, we characterize subspace mixed
multiwindow Gabor frames and their Gabor duals, obtain explicit expressions of Gabor
duals, and characterize the uniqueness of Gabor duals. Some provided examples show that
there exist significant differences between mixed multiwindow Gabor frames and usual
multiwindow Gabor frames.
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