
Jiang and Wu Journal of Inequalities and Applications  (2018) 2018:275 
https://doi.org/10.1186/s13660-018-1875-8

R E S E A R C H Open Access

The almost sure local central limit
theorem for products of partial sums under
negative association
Yuanying Jiang1* and Qunying Wu1

*Correspondence: jyy@ruc.edu.cn
1College of Science, Guilin
University of Technology, Guilin,
China

Abstract
Let {Xn,n ≥ 1} be a strictly stationary negatively associated sequence of positive
random variables with EX1 =μ > 0 and Var(X1) = σ 2 < ∞. Denote
Sn =

∑n
i=1 Xi ,pk = P(ak ≤ (

∏k
j=1Sj/(k!μ

k))1/(γ σ1
√
k) < bk) and γ = σ /μ the coefficient of

variation. Under some suitable conditions, we derive the almost sure local central
limit theorem

lim
n→∞

1
logn

n∑

k=1

1
kpk

I
{
ak ≤

(∏k
j=1 Sj

k!μk

)1/(γ σ1
√
k)
< bk

}
= 1 a.s.,

where σ 2
1 = 1 + 1

σ 2

∑∞
j=2 Cov(X1,Xj) > 0.
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1 Introduction
Definition 1.1 ([1]) A finite family of random variables X1, X2, . . . , Xn, n ≥ 2, is said to be
negatively associated (NA) if, for every pair of disjoint subsets A and B of {1, 2, . . . , n}, we
have

Cov
(
f1(Xi, i ∈ A), f2(Xj, j ∈ B)

)≤ 0,

where f1 and f2 are coordinatewise increasing and the covariance exists. An infinite family
of random variables (r.v.) is NA if every finite subfamily is NA.

Obviously, if {Xi, i ≥ 1} is NA, and {fi, i ≥ 1} is a sequence of nondecreasing (or nonin-
creasing) functions, then {fi(Xi), i ≥ 1} is also NA. We refer to Roussas [2] for NA’s funda-
mental properties and applications in several fields, Shao [3] for the moment inequalities,
Jing and Liang [4] and Cai [5] for the strong limit theorems, Chen et al. [6] and Sung [7]
for the complete convergence.

Let Sn :=
∑n

i=1 Xi denote the partial sum of {Xi, i ≥ 1} and
∏n

j=1 Sj is known as a product of
partial sum Sj, the study on partial sum has received extensive attention. Such well-known
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classic laws as the central limit theorem (CLT), the almost sure central limit theorem (AS-
CLT), and law of the iterated logarithm (LIL) are known for characterizing the asymptotic
behavior of Sn. However, the study of asymptotic behavior for product of partial sum is
not so far, it was initiated by Arnold and Villaseñor [8]. This paper intends to study the
limit behavior of product

∏n
j=1 Sj under negative association.

Let {Xn, n ≥ 1} be a strictly stationary NA sequence of positive r.v. with EX1 = μ > 0,
Var(X1) = σ 2 < ∞, and the coefficient of variance γ = σ /μ. Assume that

∣
∣Cov(X1, Xn+1)

∣
∣ = O

(
n–1(log n)–2–ε

)
, for some ε > 0, (1.1)

σ 2
1 = 1 +

1
σ 2

∑∞
j=2

Cov(X1, Xj) > 0. (1.2)

1. Li and Wang [9] obtained the following version of the CLT:

(∏n
j=1 Sj

n!μn

)1/(γ σ1
√

n)
d→ exp(

√
2N ), as n → ∞, (1.3)

where N is a standard normal distribution random variable.
2. Li and Wang [10] proved the following ASCLT:

lim
n→∞

1
log n

n∑

k=1

1
k

I
{(∏k

j=1 Sj

k!μk

)1/(γ σ1
√

k)

≤ x
}

= F(x) a.s. for all x ∈R, (1.4)

here and elsewhere, I{A} represents the indicative function of the event A and F(·) is the
distribution function of the log-normal random variable exp(

√
2N ).

The almost sure central limit theorem was proposed by Brosamler [11] and Schatte [12].
In recent years, the ASCLT has been extensively studied, and an attractive research direc-
tion is to prove it under associated or dependent situations. There are some literature
works for α,ρ,φ-mixing and associated random variables, we refer to Matuła [13], Lin
[14], Zhang et al. [15], Matuła and Stȩpień [16], Hwang [17], Li [18], Miao and Xu [19],
Wu and Jiang [20].

A more general version of ASCLT for products of partial sums was proved by Weng et
al. [21]. The following theorem is due to them.

Theorem A Let {Xn, n ≥ 1} be a sequence of independent and identically distributed pos-
itive random variables with EX3

1 < ∞, EX1 = μ, Var(X1) = σ 2,γ = σ /μ. ak , bk satisfy

0 ≤ ak ≤ 1 ≤ bk ≤ ∞, k = 1, 2, . . . (1.5)

Let

pk := P
(

ak ≤
(∏k

j=1
Sj/
(
k!μk)

)1/(γ
√

k)
< bk

)
(1.6)

and assume for sufficiently large k, pk ≥ 1/(log k)δ1 for some δ1 > 0. Then we have

lim
n→∞

1
log n

n∑

k=1

1
kpk

I
{

ak ≤
(∏k

j=1 Sj

k!μk

)1/(γ
√

k)

< bk

}

= 1 a.s. (1.7)
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This result may be called almost sure local central limit theorem (ASLCLT) for the prod-
uct

∏n
j=1 Sj of independent and identically distributed positive r.v., while (1.4) may be called

almost sure global central limit theorem (ASGCLT).
The ASLCLT for partial sums of independent and identically distributed r.v. was stim-

ulated by Csáki et al. [22], and Khurelbaatar [23] extended it to the case of ρ-mixing se-
quences, Jiang and Wu [24] extended it to the case of NA sequences. Zang [25] obtained
the ASLCLT for a sample range.

In this paper, our concern is to give a common generalization of (1.7) to the case of NA
sequences. The remainder of the paper is organized as follows. Section 2 provides our
main result. Section 3 gives some auxiliary lemmas. The proofs of the theorem and some
lemmas are in Sect. 4.

2 Main results
In the following, we assume that {Xn, n ≥ 1} is a strictly stationary negatively associated
sequence of positive r.v.’s with EX1 = μ > 0, Var(X1) = σ 2 < ∞, EX3

1 < ∞, the coefficient of
variation γ = σ /μ. ak , bk satisfy

0 ≤ ak ≤ 1 ≤ bk ≤ ∞, k = 1, 2, . . . (2.1)

and

σ 2
1 := 1 +

1
σ 2

∑∞
j=2

Cov(X1, Xj), (2.2)

pk := P
(

ak ≤
(∏k

j=1
Sj/
(
k!μk)

)1/(γ σ1
√

k)
< bk

)
. (2.3)

Then we study the asymptotic behavior of the logarithmic average

1
log n

n∑

k=1

1
kpk

I
{

ak ≤
(∏k

j=1 Sj

k!μk

)1/(γ σ1
√

k)

< bk

}

, (2.4)

where the expression in the sum above is defined to be one if the denominator is zero.
That is, let {an, n ≥ 1} and {bn, n ≥ 1} be two sequences of real numbers and

αk :=

⎧
⎨

⎩

1
pk

I{ak ≤ (
∏k

j=1 Sj

k!μk )1/(γ σ1
√

k) < bk}, if pk �= 0,

1, if pk = 0.
(2.5)

Therefore, we should study the asymptotic limit properties of 1
log n

∑n
k=1

αk
k under suitable

conditions.
In the following discussion, we shall use the definition of the Cox–Grimmett coefficient

u(n) := sup
k∈N

∑

j:|j–k|≥n

∣
∣Cov(Xj, Xk)

∣
∣, n ∈N∪ {0}, (2.6)

and we can verify that the formula

u(n) = –2
∞∑

k=n+1

Cov(X1, Xk), n ∈N (2.7)
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is correct for a stationary sequence of negatively associated random variables.
In the following, ξn ∼ ηn denotes ξn/ηn → 1, n → ∞. ξn = O(ηn) denotes that there exists

a constant c > 0 such that ξn ≤ cηn for sufficiently large n. The symbols c, c1, c2, . . . represent
generic positive constants.

Theorem 2.1 Let {Xn, n ≥ 1} be a strictly stationary negatively associated sequence of pos-
itive r.v. with EX1 = μ > 0, Var(X1) = σ 2 < ∞, EX3

1 < ∞,γ = σ /μ. ak , bk satisfy (2.1), assume
that (1.1) and (1.2) hold, and

∞∑

n=1

u(n) < ∞, (2.8)

and

pk ≥ 1
(log k)δ1

(2.9)

for sufficiently large k and some 0 < δ1 < 1/4. Then we have

lim
n→∞

1
log n

n∑

k=1

αk

k
= 1, a.s., (2.10)

where αk is defined by (2.5).

Remark 2.2 Let ak = 0 and bk = x in (2.3). By CLT (1.3), we have

pk = P
((∏k

j=1
Sj/
(
k!μk)

)1/(γ σ1
√

k) ≤ x
)

→ P
(
exp(

√
2N ) ≤ x

)
= F(x), as k → ∞.

Obviously (2.9) holds, then (2.10) becomes (1.4), which is the ASGCLT. Thus the ASLCLT
is a general result which contains the ASGCLT.

3 Auxiliary lemmas
In order to prove the main theorem, we need to use the concept of a triangular array of
random variables. Let bk,n =

∑n
i=k 1/i and Yi = (Xi – μ)/σ . We define a triangular array

Z1,n, Z2,n, . . . , Zn,n as Zk,n = bk,nYk and put Sk,n = Z1,n + Z2,n + · · · + Zk,n for 1 ≤ k ≤ n. Let

Uk :=
1

γ σ1
√

2k

k∑

i=1

log
Si

iμ

=
1

γ σ1
√

2k

k∑

i=1

(
Si

iμ
– 1
)

+ Tk

=
1

σ1
√

2k
Sk,k + Tk , (3.1)

where

Tk =
1

γ σ1
√

2k

k∑

i=1

(Si/iμ – 1)2

(1 + θ (Si/iμ – 1))2 , |θ | ≤ 1. (3.2)
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Note that, for l > k, we have

Sl,l – Sk,k =
l∑

j=1

bj,lYj –
k∑

j=1

bj,kYj = bk+1,l(Y1 + · · · + Yk) + (bk+1,lYk+1 + · · · + b1,lYl)

= bk+1,l̃Sk + (bk+1,lYk+1 + · · · + b1,lYl).

So, by the property of NA sequences, Sl,l – Sk,k – bk+1,l̃Sk and Uk are negatively associated.
The following Lemma 3.1 is due to Liang et al. [26].

Lemma 3.1 Let {Xn, n ≥ 1} be a sequence of NA random variables with EXn = 0 and
{ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers such that supn

∑n
i=1 a2

ni < ∞ and
max1≤i≤n |ani| → 0 as n → ∞. Assume that

∑
j:|k–j|≥n |Cov(Xk , Xj)| → 0 as n → ∞ uni-

formly for k ≥ 1. If Var(
∑n

i=1 aniXi) = 1 and {X2
n , n ≥ 1} is a uniformly integrable family,

then
∑n

i=1 aniXi
d→N , where N is a standard normal distribution random variable.

Now we obtain the CLT for triangular arrays.

Lemma 3.2 Let {Yn, n ≥ 1} be a strictly stationary sequence of negatively associated ran-
dom variables with EY1 = 0, Var(Y1) = 1 and σ 2

1 = 1 +
∑∞

j=2 Cov(Y1, Yj) > 0. Suppose that
there exist constants δ2 and δ3 such that 0 < δ2, δ3 < 1. Assume also that (1.1) and (1.2)
hold. If

log l > (log n)δ2 , k <
l

(log l)2+δ3
(3.3)

for sufficiently large n, then

1
σ1

√
2l – 2k

l∑

j=k+1

bj,lYj
d→N as n → ∞. (3.4)

The proof is quite long and will be left to Sect. 4.
The following Lemma 3.3 is a corollary to Corollary 2.2 in Matuła [27] under a strictly

stationary condition.

Lemma 3.3 If the conditions of Lemma 3.2 and (2.8) hold, assume also E|Y1|3 < ∞. Let

Fn(y) := P
(∑n

j=1 bj,nYj

σ1
√

2n
< y
)

, Fk,l(y) := P
(∑l

j=k+1 bj,lYj

σ1
√

2l – 2k
< y
)

.

Then we have

sup
y∈R

∣
∣Fn(y) – Φ(y)

∣
∣ = O

(
n–1/5) (3.5)

and

sup
y∈R

∣
∣Fk,l(y) – Φ(y)

∣
∣ = O

(
(l – k)–1/5). (3.6)
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Lemma 3.4 If the conditions of Theorem 2.1 hold, and assume that there exists δ4 such
that 0 < δ1 < δ4 < 1/4. Let εl = 1/(log l)δ4 , where l = 3, 4, . . . , n, then the following asymptotic
relations hold:

∑

H

1
kl(l – k)1/5pl

= O
(
(log n)2–ε

)
, (3.7)

∑

H

1
l3/2

√
l – kpl

= O
(
(log n)2–ε

)
, (3.8)

∑

H

εl

k
√

l
√

l – kpl
= O

(
(log n)2–ε

)
, (3.9)

∑

H

1
klpkpl

P
{∣
∣
∣
∣

1
σ1

√
2l

Sk,k

∣
∣
∣
∣≥ εl

}

= O
(
(log n)2–ε

)
, (3.10)

∑

H

1
klpkpl

P
{∣
∣
∣
∣

1
σ1

√
2l

bk+1,l̃Sk

∣
∣
∣
∣≥ εl

}

= O
(
(log n)2–ε

)
, (3.11)

∑

H

1
klpkpl

P
{|Tl| ≥ εl

}
= O

(
(log n)2–ε

)
, (3.12)

where H := {(k, l) : 1 ≤ k < l ≤ n, log l > (log n)δ2 and k < l/(log l)2+δ3} and 0 < ε < 1 – 2(δ1 +
δ4).

The proof will be left to Sect. 4.
The following result is due to Khurelbaatar [23].

Lemma 3.5 Assume that {ξn, n ≥ 1} is a non-negative random sequence such that Eξk =
1, k = 1, 2, . . . , and

Var

( n∑

k=1

ξk

k

)

≤ c(log n)2–ε , (3.13)

for some ε > 0 and positive constant c, then

lim
n→∞

1
log n

n∑

k=1

1
k
ξk = 1 a.s. (3.14)

The following Lemma 3.6 is obvious.

Lemma 3.6 Assume that the non-negative random sequence {ξn, n ≥ 1} satisfies (3.14) and
the sequence {ηn, n ≥ 1} is such that, for any ε > 0, there exists k0 = k0(ε,ω) for which

(1 – ε)ξk ≤ ηk ≤ (1 + ε)ξk , k > k0.

Then we also have

lim
n→∞

1
log n

n∑

k=1

1
k
ηk = 1 a.s.



Jiang and Wu Journal of Inequalities and Applications  (2018) 2018:275 Page 7 of 16

4 Proofs of the main result and lemmas
The main aspect of our proof of Theorem 2.1 is verification condition (3.13) for αk , where
αk is defined by (2.5). We use ASCLT (1.4) with remainders and the following elementary
inequalities:

∣
∣Φ(x) – Φ(y)

∣
∣≤ c|x – y| for every x, y ∈ R, (4.1)

with some constant c. Moreover, for each k > 0, there exists c1 = c1(k) such that

∣
∣Φ(x) – Φ(y)

∣
∣≥ c1|x – y| for every x, y ∈R and |x| + |y| ≤ k. (4.2)

Proof of Theorem 2.1 Let

âk =
1√

2 log ak
, b̂k =

1√
2 log bk

, k = 1, 2, . . . (4.3)

Thus, –∞ ≤ âk ≤ 0 ≤ b̂k ≤ ∞ by (2.1). By the definition of Uk in (3.1), we have pk = P(âk ≤
Uk < b̂k) and

αk :=

⎧
⎨

⎩

I{âk≤Uk <b̂k}
pk

, if pk �= 0,

1, if pk = 0.
(4.4)

First assume that

bk – ak ≤ c, k = 1, 2, . . . , (4.5)

with some constant c. Note that

Var

( n∑

k=1

αk

k

)

=
n∑

k=1

Var(αk)
k2 + 2

∑

1≤k<l≤n

Cov(αk ,αl)
kl

=
n∑

k=1

Var(αk)
k2 + 2

[ ∑

1≤k<l≤n
log l≤(log n)δ2

+
∑

1≤k<l≤n
log l>(log n)δ2
k>l/(log l)2+δ3

+
∑

1≤k<l≤n
log l>(log n)δ2
k≤l/(log l)2+δ3

]
Cov(αk ,αl)

kl

:=
∑

1
+
∑

2
+
∑

3
+
∑

4
, (4.6)

where δ2, δ3 are defined by Lemma 3.2. Note also that Var(αk) = 0 if pk = 0 and

Var(αk) =
1 – pk

pk
≤ 1

pk
if pk �= 0.

And by the condition of (2.9), we have

∑

1
≤
∑

1≤k≤n
pk �=0

1
k2pk

≤ c(log n)2–ε . (4.7)



Jiang and Wu Journal of Inequalities and Applications  (2018) 2018:275 Page 8 of 16

If either pk = 0 or pl = 0, then obviously Cov(αk ,αl) = 0, so we may assume that pkpl �= 0,
by (2.1), we have

∑

2
= 2

∑

1≤k<l≤n
log l≤(log n)δ2

1
kl

P(âk ≤ Uk < b̂k , âl ≤ Ul < b̂l) – pkpl

pkpl

≤ 2
∑

1≤k<l≤n
log l≤(log n)δ2

1
kl

1 – pk

pk
≤ 2

∑

1≤k<l≤n
log l≤(log n)δ2

1
kl

1
pk

≤ 2(log n)δ1+2δ2 ≤ c(log n)2–ε (4.8)

for δ1 < 1/4 and δ2 < 7/8. Now we estimate the bound of
∑

3. Let An be an integer such
that log An ∼ (log n)δ2 for sufficiently large n. Then

∑

3
≤ 2

n∑

l=An

l–1∑

k=l/(log l)2+δ3

1
kl

1
pk

≤ 2(log n)δ1

[ n∑

l=A

1
l

(log l)2+δ3

l
+

n∑

l=A

1
l

l∑

k=1+l/(log l)2+δ3

1
k

]

≤ c(log n)δ1
n∑

l=A

1
l

log(log l)2+δ3

≤ c(log n)2–ε . (4.9)

So, it remains to estimate the bound of
∑

4. Let 1 ≤ k < l and εl = 1/(log l)δ4 , where 0 < δ1 <
δ4 < 1/4, we have

Cov(αk ,αl)

=
1

pkpl
Cov

(
I{âk ≤ Uk < b̂k}, I{âl ≤ Ul < b̂l}

)

=
1

pkpl

[

P
{

âk ≤ Uk < b̂k , âl ≤ 1
σ1

√
2l

Sl,l + Tl < b̂l

}

– P{âk ≤ Uk < b̂k}P
{

âl ≤ 1
σ1

√
2l

Sl,l + Tl < b̂l

}]

≤ 1
pkpl

[P
{

âk ≤ Uk < b̂k , âl – 3εl ≤ 1
σ1

√
2l

(Sl,l – Sk,k – bk+1,lS̃k) < b̂l + 3εl

}

+ 2P
{∣
∣
∣
∣

1√
2l

Sk,k

∣
∣
∣
∣≥ εl

}

+ 2P
{∣
∣
∣
∣

1
σ1

√
2l

bk+1,lS̃k

∣
∣
∣
∣≥ εl

}

+ 2P
{|Tl| ≥ εl

}

– P{âk ≤ Uk < b̂k}
[

P
{

âl – εl ≤ 1
σ1

√
2l

Sl,l < b̂l + εl

}

– 2P
{|Tl| ≥ εl

}
]

}

≤ 1
pl

B1 + B2,
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where

B1 = P
{

âl – 3εl ≤
√

1 –
k
l

Sl,l – Sk,k – bk+1,lS̃k

σ1
√

2l – 2k
< b̂l + 3εl

}

– P
{

âl – εl ≤ 1
σ1

√
2l

Sl,l < b̂l + εl

}

and

B2 =
1

pkpl

[

2P
{∣
∣
∣
∣

Sk,k

σ1
√

2l

∣
∣
∣
∣≥ εl

}

+ 2P
{∣
∣
∣
∣
bk+1,lS̃k

σ1
√

2l

∣
∣
∣
∣≥ εl

}

+ 4P
{|Tl| ≥ εl

}
]

.

So by (3.3), Lemma 3.3, and (4.1), we obtain

B1 ≤
[

Fk,l

(
b̂l + 3εl√

1 – k/l

)

– Φ

(
b̂l + 3εl√

1 – k/l

)]

–
[

Fk,l

(
âl – 3εl√

1 – k/l

)

– Φ

(
âl – 3εl√

1 – k/l

)]

+
[

Φ

(
b̂l + 3εl√

1 – k/l

)

– Φ

(
âl – 3εl√

1 – k/l

)]

–
[
Fl(b̂ – εl) – Φ(b̂ – εl)

]

+
[
Fl(b̂ + εl) – Φ(â + εl)

]
–
[
Φ(b̂ – εl) – Φ(â – εl)

]

≤ c
1

(l – k)1/5 + Φ

(
b̂l + 3εl√

1 – k/l

)

– Φ

(
âl – 3εl√

1 – k/l

)

+
c

l1/5 – Φ(b̂ – εl) + Φ(â + εl)

≤ c
1

(l – k)1/5 +
( √

l√
l – k

– 1
)

(b̂l – âl) + 6εl

√
l√

l – k
+ 2εl

≤ c
(

1
(l – k)1/5 +

k√
l(l – k)

+ εl

√
l√

l – k

)

.

So, by using Lemma 3.4, we have

∑

4
≤ 2

∑

1≤k<l≤n
log l>(log n)δ2
k≤l/(log l)2+δ3

1
kl

(
1
pl

B1 + B2

)

≤ c(log n)2–ε . (4.10)

Combining (4.7)–(4.10) implies that

Var

( n∑

k=1

αk

k

)

≤ c(log n)2–ε , as n → ∞.

Hence applying Lemma 3.5, our theorem is proved under the restricting condition (4.5).
Then, we remove the restricting condition (4.5). Fix x > 0 and define

ãk = max(ak , –x),

b̃k = min(bk , x),

p̃k = P(̃ak ≤ Uk < b̃k).
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Clearly b̃k – ãk ≤ min(2x, c) and p̃k ≤ pk , so assuming p̃k �= 0, then we also have pk �= 0, thus

αk =
1
pk

I
{

ak ≤
(∏k

j=1 Sj

k!μk

)1/(γ σ1
√

k)

< bk

}

=
1
pk

[
I {̃ak ≤ Uk < b̃k} + I{ak ≤ Uk < ãk} + I {̃bk ≤ Uk < bk}

]

≤ 1
p̃k

I {̃ak ≤ Uk < b̃k} +
1
pk

[
I{ak ≤ Uk < ãk} + I {̃bk ≤ Uk < bk}

]

≤ 1
p̃k

I {̃ak ≤ Uk < b̃k} +
I{Uk < –x}

P(–x ≤ Uk < 0)
+

I{Uk ≥ x}
P(0 ≤ Uk < x)

. (4.11)

By the law of large numbers, we get ( Si
iμ –1) P→ 0. Noting that x2/(1+θx)2 ≤ 4x2 for |x| < 1/2

and θ ∈ (0, 1), and by using Markov’s inequality, ∀ε > 0, we have

P
{|Tk| ≥ ε

}
= P

{∣
∣
∣
∣
∣

1
γ σ1

√
2k

k∑

i=1

( Si
iμ – 1)2

(1 + θ ( Si
iμ – 1))2

∣
∣
∣
∣
∣
≥ ε

}

≤ P

{∣
∣
∣
∣
∣

4
γ σ1

√
2k

k∑

i=1

(
Si

iμ
– 1
)2
∣
∣
∣
∣
∣
≥ ε

}

≤ 2
√

2
∑k

i=1 E( Si
iμ – 1)2

γ σ1
√

kε
≤

2
√

2
∑k

i=1
σ 2

i2μ2 Var(
∑i

j=1 Yj)

γ σ1
√

kε

≤ 2
√

2σ 2∑k
i=1

1
i

γμ2σ1
√

kε
≤ 2

√
2γ log k

σ1
√

kε
. (4.12)

Then we have Tk
P→ 0 by (4.12) and Sk,k/(σ1

√
2k) d→N by Lemma 2.4 of Li and Wang [10].

So, by Slutsky’s theorem, we have

Uk = Tk +
1

σ1
√

2k
Sk,k

d→N . (4.13)

Thus, we obtain

lim
k→∞

P(–x ≤ Uk < 0) = Φ(0) – Φ(–x) (4.14)

and

lim
k→∞

P(0 ≤ Uk < x) = Φ(x) – Φ(0). (4.15)

Applying ASCLT (1.4), i.e.,

lim
n→∞

1
log n

n∑

k=1

1
k

I{Uk ≤ x} = Φ(x) a.s. for all x ∈R, (4.16)

and Lemma 3.6, (4.14), and (4.15), we obtain

lim
n→∞

1
log n

n∑

k=1

I{Uk < –x}
kP(–x ≤ Uk < 0)

=
Φ(–x)

Φ(0) – Φ(–x)
a.s. (4.17)
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and

lim
n→∞

1
log n

n∑

k=1

I{Uk > x}
kP(0 ≤ Uk < x)

=
1 – Φ(x)

Φ(x) – Φ(0)
a.s. (4.18)

Since ãk and b̃k satisfy (4.5), we get

lim
n→∞

1
log n

n∑

k=1

α̃k

k
= 1 a.s., (4.19)

where

α̃k =

⎧
⎨

⎩

1
p̃k

I{̃ak ≤ Uk < b̃k}, if p̃k �= 0,

1, if p̃k = 0.

Equations (4.11) and (4.17)–(4.19) together imply that

lim sup
n→∞

1
log n

n∑

k=1

αk

k
≤ 1 + 2

1 – Φ(x)
Φ(x) – Φ(0)

a.s.

On the other hand, if p̃k �= 0, then we have

1
pk

I
{

ak ≤
(∏k

j=1 Sj

k!μk

)1/(γ σ1
√

k)

< bk

}

≥ 1
p̃k

I{̃ak ≤ Uk < b̃k}
(

1 –
pk – p̃k

pk

)

≥ α̃k

(

1 –
P(Uk < –x) + P(Uk > x)

min{P(0 ≤ Uk < x), P(–x ≤ Uk < 0)}
)

, (4.20)

and by Lemma 3.6 and (4.13),

lim
k→∞

P(Uk < –x) + P(Uk > x)
min{P(0 ≤ Uk < x), P(–x ≤ Uk < 0)} = 1 – 2

1 – Φ(x)
Φ(x) – Φ(0)

.

Applying Lemma 3.6, (4.19), and (4.20) implies that

lim inf
n→∞

1
log n

n∑

k=1

αk

k
≥ 1 – 2

1 – Φ(x)
Φ(x) – Φ(0)

a.s.

Hence

1 + 2
1 – Φ(x)

Φ(x) – Φ(0)
≥ lim sup

n→∞
1

log n

n∑

k=1

αk

k

≥ lim inf
n→∞

1
log n

n∑

k=1

αk

k

≥ 1 – 2
1 – Φ(x)

Φ(x) – Φ(0)
a.s. (4.21)
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By the arbitrariness of x, let x → ∞ in (4.21), we have

1 ≥ lim sup
n→∞

1
log n

n∑

k=1

αk

k
≥ lim inf

n→∞
1

log n

n∑

k=1

αk

k
≥ 1 a.s.

Thus

lim
n→∞

1
log n

n∑

k=1

αk

k
= 1 a.s.

This completes the proof of Theorem 2.1. �

Proof of Lemma 3.2 Let σ 2
k,l := Var(

∑l
j=k+1 bj,lYj). First, we prove that

σ 2
k,l = 2(l – k)σ 2

1
(
1 + o(1)

)
, (4.22)

where k and l satisfy (3.3). Note that {Yn, n ≥ 1} is a strictly stationary NA sequence with
E(Y1) = 0 and Var(Y1) = 1, we have

σ 2
k,l =

l∑

i=k+1

b2
i,l + 2

l–1∑

i=k+1

l∑

j=i+1

bi,lbj,l Cov(Yi, Yj)

=
l∑

i=k+1

b2
i,l + 2

l–1∑

i=k+1

l–i∑

j=1

bi,lbi+j,l Cov(Y1, Yj+1)

=
l∑

i=k+1

b2
i,l + 2

l∑

j=2

l–k–j+1∑

i=1

bk+i,lbk+i+j–1,l Cov(Y1, Yj)

=
l∑

i=k+1

b2
i,l + 2

l∑

j=2

( l∑

i=1

–
l∑

i=l–k–j+2

)
(
b2

k+i,l – bk+i,lbk+i,k+i+j–2
)

Cov(Y1, Yj)

=
l∑

i=k+1

b2
i,l + 2

l∑

j=2

l∑

i=1

b2
k+i,l Cov(Y1, Yj)

– 2
l∑

j=2

l∑

i=l–k–j+2

b2
k+i,l Cov(Y1, Yj)

– 2
l∑

j=2

l–k–j+1∑

i=1

bk+i,lbk+i,k+i+j–2 Cov(Y1, Yj). (4.23)

By elementary calculations, under condition (3.3), we obtain

l∑

i=k+1

b2
i,l =

l∑

i=k+1

( l∑

j=i

1/i

)2

=
(
2l – 2k – k log2 l

)(
1 + o(1)

)

= 2(l – k)
(
1 + o(1)

)
. (4.24)
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Thus, by (4.23) and (4.24), we get

∣
∣
∣
∣

σ 2
k,l

2(l – k)
– σ 2

1

∣
∣
∣
∣ ≤ 1

l – k

l∑

j=2

l∑

i=l–k–j+2

b2
k+i,l

∣
∣Cov(Y1, Yj)

∣
∣

+
1

l – k

l∑

j=2

l–k–j+1∑

i=1

bk+i,lbk+i,k+i+j–2
∣
∣Cov(Y1, Yj)

∣
∣

+ 2
∞∑

j=l+1

∣
∣Cov(Y1, Yj)

∣
∣

:= I1 + I2 + I3. (4.25)

By the condition of (1.1), for some ε > 0, we have

I1 ≤ c
log2 l
l – k

l∑

j=2

(k + j – 1)
1

(j – 1) log2+ε(j – 1)
≤ c

log2 l
l – k

l
log2+ε(l)

≤ c(log l)–ε → 0, as n → ∞, (4.26)

I3 ≤ c(log l)–1–ε → 0, as n → ∞. (4.27)

And

I2 = c
1

l – k

l∑

j=2

[l–k–j+1∑

i=1

bk+i,k+i+j–2

l∑

p=k+i

1
p

]
∣
∣Cov(Y1, Yj)

∣
∣

= c
1

l – k

l∑

j=2

[ l∑

p=k+1

1
p

(p–k)
∧

(l–k–j+1)∑

i=1

bk+i,k+i+j–2

]
∣
∣Cov(Y1, Yj)

∣
∣

= c
1

l – k

l∑

j=2

[ l–k–j∑

p=k+1

1
p

p–k∑

i=1

bk+i,k+i+j–2 +
l∑

p=l–k–j+1

1
p

l–k–j+1∑

i=1

bk+i,k+i+j–2

]
∣
∣Cov(Y1, Yj)

∣
∣

:= c
1

l – k

l∑

j=2

[I21 + I22]
∣
∣Cov(Y1, Yj)

∣
∣, (4.28)

where

I21 =
l–k–j∑

p=k+1

1
p

p–k∑

i=1

k+i+j–2∑

q=k+i

1
q

≤
l–k–j∑

p=k+1

1
p

p+j–2∑

q=k+1

j – 1
q

≤
l–k–j∑

p=k+1

j – 1
p

log(p + j – 2),
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and

I22 =
l∑

p=l–k–j+1

1
p

l–k–j+1∑

i=1

k+i+j–2∑

q=k+i

1
q

≤
l∑

p=l–k–j+1

1
p

l–1∑

q=k+1

j – 1
q

≤
l∑

p=l–k–j+1

j – 1
p

log l.

Hence, by (4.23), we get

I2 ≤ c
1

l – k

l∑

j=2

l∑

p=l–k–j+1

j – 1
p

(log l)
∣
∣Cov(Y1, Yj)

∣
∣

≤ c
1

l – k

l∑

j=2

(j – 1)
log2 l

(j – 1) log2+ε(j – 1)

≤ c
log2 l
l – k

l∑

j=2

1
log2+ε(j – 1)

≤ c
log2 l

log2+ε l
→ 0, as n → ∞. (4.29)

Equation (4.22) immediately follows from (4.25), (4.26), (4.27), and (4.29).
Let al,j = bj,l/σk,l, k + 1 ≤ j ≤ l, l ≥ 1. Obviously, Var(

∑l
j=1 al,jYj) = 1 and

∑∞
j=l+1 |Cov(Y1,

Yj)| → 0 as l → ∞ by (1.1). Note that σ 2
k,l = 2(l – k)σ 2

1 (1 + o(1)), hence by (4.24) we have
supl

∑l
j=k+1 a2

nj < ∞ and maxk+1≤j≤l |alj| → 0 as l → ∞. Hence (3.4) is satisfied by applying
Lemma 3.1.

This completes the proof of Lemma 3.2. �

Proof of Lemma 3.4 By the condition of (2.9), we have

∑

H

1
kl(l – k)1/5pl

≤ c
n∑

l=1

(log l)δ1

l(l – l/(log l)2+δ3 )1/5

l∑

k=1

1
k

≤ c
n∑

l=1

(log l)1+δ1

l1/5 = O
(
(log n)2–ε

)
. (4.30)

It proves (3.7). The proofs of (3.8) and (3.9) are similar to the proof of (3.7). By using
Markov’s inequality, (4.22), and εl = 1/(log l)δ4 , we have

P
{∣
∣
∣
∣

1
σ1

√
2l

Sk,k

∣
∣
∣
∣≥ εl

}

≤ Var(Sk,k)
2lσ 2

1 ε2
l

≤ 2kσ 2
1

2lσ 2
1 ε2

l
=

k
l

(log l)2δ4 , (4.31)

P
{∣
∣
∣
∣

1
σ1

√
2l

bk+1,l̃Sk

∣
∣
∣
∣≥ εl

}

≤ b2
k+1,l Var(S̃k)

2lσ 2
1 ε2

l
≤ (

∑l
i=k+1)2k

2lσ 2
1 ε2

l
≤ c

k
l

(log l)2+2δ4 . (4.32)
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Noting the condition of 0 < ε < 1 – 2(δ1 + δ4), we get

∑

H

1
klpkpl

k
l

(log l)2+2δ4 ≤
n∑

l=1

(log l)2+δ1+2δ4

l2

l/(log l)2+δ3∑

k=1

(log k)δ1

<
n∑

l=1

(log l)2+2δ1+2δ4

l2
l

(log l)2+δ3

≤
n∑

l=1

(log l)2δ1+2δ4–δ3

l
= O

(
(log n)2–ε

)
. (4.33)

It proves (3.10) and (3.11). By (4.12), we have

P
{|Tl| ≥ εl

}≤ 2
√

2γ
∑l

i=1
1
i

σ1
√

lεl
≤ c

(log l)1+δ4

l1/2 . (4.34)

Thus

∑

H

1
klpkpl

P
{|Tl| ≥ εl

} ≤ c
n∑

l=1

(log l)1+δ1+δ4

l3/2

l∑

k=1

(log k)δ1

k
≤ c

n∑

l=1

(log l)2+2δ1+δ4

l3/2

≤ c
n∑

l=1

(log l)1+2δ1+δ4

l
= O

(
(log n)2–ε

)
. (4.35)

It proves (3.12). This completes the proof of Lemma 3.4. �

5 Conclusions
In this paper, we study the almost sure local central limit theorem (ASLCLT) for products
of partial sums of negatively associated random variables. The obtained results extend the
theorem of Weng et al. [21] for i.i.d. random variables to NA random variables, and it is a
generalization of the result given by Jiang and Wu [24] from partial sums to products of
partial sums under NA random variables. The main idea of the proofs relies on estimate
of the covariance structure of the underlying NA sequence. It is a classic and effective
technique for this kind of the problem.

Matuła and Stȩpień [16] provided a very mild assumption on the summability on co-
variances to obtain limit theorems (CLT and ASCLT). As we all know, the ASLCLT is a
general result which contains the ASCLT. In this paper, the optimality of the assumptions
of Theorem 2.1 is not discussed, in particular assumptions (1.1), (1.2), and (2.8). This will
be another interesting topic of research, and we will leave this topic for the future.

Acknowledgements
The authors would like to thank the editor (Andrei I. Volodin) and three anonymous referees for careful reading of the
paper and constructive feedback.

Funding
This work is jointly supported by the National Natural Science Foundation of China (71471173, 71873137, 11661029), the
MOE Project of Key Research Institute of Humanities and Social Sciences at Universities (14JJD910002), and Research
Project of Guangxi Distinguished Expert (2018).

Competing interests
The authors declare that they have no competing interests.



Jiang and Wu Journal of Inequalities and Applications  (2018) 2018:275 Page 16 of 16

Authors’ contributions
YJ carried out the design of the study and performed the analysis. QW participated in its design and coordination. All
authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 May 2018 Accepted: 2 October 2018

References
1. Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11(1), 286–295

(1983)
2. Roussas, G.G.: Positive and negative dependence with some statistical application. In: Ghosh, S., Puri, M.L. (eds.)

Asymptotics Nonparametrics and Time Series, pp. 757–788. Marcel Dekker, New York (1999)
3. Shao, Q.M.: A comparison theorem on moment inequalities between negatively associated and independent

random variables. J. Theor. Probab. 13(2), 343–356 (2000)
4. Jing, B.Y., Liang, H.Y.: Strong limit theorems for weighted sums of negatively associated random variables. J. Theor.

Probab. 21(4), 890–909 (2008)
5. Cai, G.H.: Strong laws for weighted sums of NA random variables. Metrika 68(3), 323–331 (2008)
6. Chen, P.Y., Hu, T.C., Liu, X., Volodin, A.: On complete convergence for arrays of row-wise negatively associated random

variables. Theory Probab. Appl. 52(2), 323–328 (2008)
7. Sung, S.H.: On complete convergence for weighted sums of arrays of dependent random variables. Abstr. Appl. Anal.

2011, Article ID 630583 (2011)
8. Arnold, B.C., Villaseñor, J.A.: The asymptotic distribution of sums of records. Extremes 1(3), 351–363 (1999)
9. Li, Y.X., Wang, J.F.: Asymptotic distribution for products of sums under dependence. Metrika 66, 75–82 (2007)
10. Li, Y.X., Wang, J.F.: An almost sure central limit theorem for products of sums under association. Stat. Probab. Lett.

78(4), 367–375 (2008)
11. Brosamler, G.A.: An almost everywhere central limit theorem. Math. Proc. Camb. Philos. Soc. 104(3), 561–574 (1988)
12. Schatte, P.: On strong versions of the central limit theorem. Math. Nachr. 137(1), 249–256 (1988)
13. Matuła, P.: On almost sure limit theorems for positively dependent random variables. Stat. Probab. Lett. 74(1), 59–66

(2005)
14. Lin, F.M.: Almost sure limit theorem for the maxima of strongly dependent Gaussian sequences. Electron. Commun.

Probab. 14, 224–231 (2009)
15. Zhang, Y., Yang, X.Y., Dong, Z.S.: An almost sure central limit theorem for products of sums of partial sums under

association. J. Math. Anal. Appl. 355, 708–716 (2009)
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