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conditions for checking the AE solvability of two-sided interval systems in max-plus alge-
bra are formulated in Sects. 4 and 5. Then, in Sect. 6, we present an efficient method to
find the AE solution set of two-sided interval linear systems. In Sect. 7, we show that each
particular result of weak, strong, tolerance and control solutions established for interval
linear systems in existing literature is a special case of the main results of this paper. The
conclusion and future application are drawn in Sect. 8.

2 Preliminaries
In this section, let us introduce some notations first (see [9]). By a max-plus algebra we
understand a triple (Rmax,⊕,⊗), whereRmax =R∪{ε},R is the set of all real numbers and
⊕,⊗ are binary operations defined as

a ⊕ b = max{a,b}, a ⊗ b = a + b,

where ε = –∞. Let E be amatrix consisting entirely of ε. The operations⊕,⊗ are extended
to matrices and vectors in the same way as in conventional linear algebra. If A ∈R

m×n
max ,B ∈

R
n×p
max , we define the product A⊗B ∈R

m×p
max with entries (A⊗B)ij defined for i = 1, . . . ,m, j =

1, . . . ,p as follows:

(A ⊗ B)ij =
n⊕

k=1

aik ⊗ bkj = max
1≤k≤n

{aik + bkj}.

If A ∈R
m×n
max ,B ∈R

m×n
max , we define the sum A ⊕ B ∈ R

m×n
max with entries (A ⊕ B)ij defined for

i = 1, . . . ,m, j = 1, . . . ,n as follows:

(A ⊕ B)ij = max{aij,bij}.

An interval matrix is defined as

A = [A,A] =
{
A ∈R

m×n
max |A ≤ A ≤ A

}
,

where A,A ∈ R
m×n
max , A ≤ A, and “≤” is understood componentwise. An interval vector

b = [b,b] = {b ∈ R
m
max|b ≤ b ≤ b} is understood as one-column interval matrix. In themax-

plus algebra, the set of all m × n interval matrices will be denoted by IRm×n
max , and the set

of all m-dimensional interval vectors by IRm
max.

Given A ∈ IR
m×n
max and B ∈ IR

m×n
max , the corresponding two-sided interval linear system of

inequalities

A ⊗ x ≤ B ⊗ x (2.1)

is the family of systems

A ⊗ x ≤ B ⊗ x, (2.2)

where A ∈ A,B ∈ B.
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Similarly, the corresponding interval system of equations of the form

A ⊗ x = B ⊗ x (2.3)

represents the set of all systems of linear max-plus systems of the form

A ⊗ x = B ⊗ x, (2.4)

where A ∈ A,B ∈ B.
The following lemmas will be used in the proofs of our results.

Lemma 2.1 Let A = (aij) ∈R
m×n
max , B = (bij) ∈R

m×n
max . If A ≤ B, then A ⊗ x ≤ B ⊗ x.

Proof Note that aij ≤ bij, and for i = 1, . . . ,m, we have

[A ⊗ x]i =
n⊕

j=1

(aij ⊗ xj) =
n⊕

j=1

(aij + xj) = max
1≤j≤n

{aij + xj}

and

[B ⊗ x]i =
n⊕

j=1

(bij ⊗ xj) =
n⊕

j=1

(bij + xj) = max
1≤j≤n

{bij + xj}.

Thus, [A ⊗ x]i ≤ [B ⊗ x]i, for i = 1, . . . ,m, i.e., A ⊗ x ≤ B ⊗ x. �

Lemma 2.2 Let A = (aij) ∈R
m×n
max , B = (bij) ∈R

m×n
max ,C = (cij) ∈R

m×n
max . If A ≤ C, then A⊕B ≤

B ⊕ C.

Proof Note that aij ≤ cij, we have

(A ⊕ B)ij = max{aij,bij} ≤ max{cij,bij} = (B ⊕ C)ij

for i = 1, . . . ,m, j = 1, . . . ,n, i.e., A ⊕ B ≤ B ⊕ C. �

3 AE solutions to interval max-plus systems
Let us recall the concept of AE solutions of interval inequalities in classical algebra [19, 21,
22]. The interval matrix can be split as A = A∀ + A∃, where A∀ is the interval matrix com-
prising universally quantified coefficients, and A∃ concerns existentially quantified coeffi-
cients. A vector x ∈R

n is an AE solution of Ax ≤ b if

∀A∀ ∈ A∀, ∀b∀ ∈ b∀, ∃A∃ ∈ A∃, ∃b∃ ∈ b∃

such that

(
A∀ + A∃)x ≤ b∀ + b∃.

Analogously, in the max-plus algebra, by using forall-exists quantification of interval
parameters, we decompose the interval matrix as A = A∀ ⊕ A∃, where the components in
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the matrix A∀ at the positions associated with the existential quantifier are intervals [ε, ε]
and components in the matrix A∃ at the positions associated with the universal quantifier
are intervals [ε, ε].
Now we extend the concept of AE solutions of an interval linear system in classical al-

gebra to the max-plus algebra.

Definition 3.1 A vector x ∈ R
n
max is an AE solution of system A ⊗ x ≤ B ⊗ x(or A ⊗ x =

B ⊗ x) if for ∀A∀ ∈ A∀,∀B∀ ∈ B∀,∃A∃ ∈ A∃,∃B∃ ∈ B∃ such that

(
A∀ ⊕ A∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x (3.1)
(
or

(
A∀ ⊕ A∃) ⊗ x =

(
B∀ ⊕ B∃) ⊗ x

)
. (3.2)

The next example demonstrates how this type of solution can be applied to an applica-
tion problem.

Example 1 A sportswear company produces m types of sport suit, including top and bot-
tom. All the clothes are made from three kinds of material: cotton, polyester fibre and
chemical fiber. Due to the varieties of product and material, the production time of each
type of suit corresponding to three different kinds of material is different. Each clothing
item is finished only after all the material is completed.

Suppose that the production time data of each type of top and bottom, corresponding to
three different kinds of material are interval times [aij,aij] and [bij,bij]. Before processing,
preparing time xj for each material is required. If the working durations aij and bij are
fixed, the time at which each type of top and bottom are completed is

max
{
a1

i1 + x1,a1
i2 + x2, . . . ,a1

in + xn
}

and

max
{
b1

i1 + x1,b1
i2 + x2, . . . ,b1

in + xn
}
.

The packaging should be completed only after the suits, including both tops and the bot-
toms, are finished.
To optimize production, the company needs to set the preparation time xj for each ma-

terial such that each type of top and bottom is completed at the same time. This task is
equivalent to solving the system of equations

max
{
a1

i1 + x1,a1
i2 + x2, . . . ,a1

in + xn
}
= max

{
b1

i1 + x1,b1
i2 + x2, . . . ,b1

in + xn
}
,

for each i ∈ {1, 2, . . . ,m}, which can be simplified to the matrix form

⎡

⎢⎢⎣

a11 a12 . . . a1n
...

...
...

am1 am2 . . . amn

⎤

⎥⎥⎦ ⊗

⎡

⎢⎢⎣

x1
...

xn

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

b11 b12 . . . b1n
...

...
...

bm1 bm2 . . . bmn

⎤

⎥⎥⎦ ⊗

⎡

⎢⎢⎣

x1
...

xn

⎤

⎥⎥⎦ .
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Under uncertain working durations, it becomes the interval system

⎡

⎢⎢⎣

[a11,a11] . . . [a1n,a1n]
...

...
[am1,am1] . . . [amn,amn]

⎤

⎥⎥⎦ ⊗

⎡

⎢⎢⎣

x1
...

xn

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

[b11,b11] . . . [b1n,b1n]
...

...
[bm1,bm1] . . . [bmn,bmn]

⎤

⎥⎥⎦ ⊗

⎡

⎢⎢⎣

x1
...

xn

⎤

⎥⎥⎦ . (3.3)

In production, the company may not be able to improve parts of its interval production
times [aij,aij] and [bij,bij]. In this situation, an AE solution (x1,x2, . . . ,xn)T of system (3.3),
when n = 3, may exist if the company is able to fix the other parts of production times aij

and bij.

4 Characterization of AE solutions for two-sided interval linear inequalities
Consider a two-sided interval system of equations of the following form:

A ⊗ x ≤ B ⊗ x,

where A ∈ IR
m×n
max , B ∈ IR

m×n
max .

A sufficient and necessary characterization of AE solutions to interval system of max-
plus linear inequalities (2.1) is described in the following theorem.

Theorem 4.1 A vector x ∈ R
n
max is an AE solution of two-sided interval linear max-plus

inequalities (2.1) if and only if

(
A∀ ⊕ A∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x. (4.1)

Proof Assume that x is an AE solution of system A ⊗ x ≤ B ⊗ x. Then for ∀A∀ ∈ A∀, ∀B∀ ∈
B∀, system (2.1) is solvable for some A∃ = A∃

0 and B∃ = B∃
0. That is, for ∀A∀ ∈ A∀, ∀B∀ ∈ B∀,

(
A∀ ⊕ A∃

0
) ⊗ x ≤ (

B∀ ⊕ B∃
0
) ⊗ x.

Due to the isotone properties presented in Lemmas 2.1 and 2.2, we have

(
A∀ ⊕ A∃) ⊗ x ≤ (

A∀ ⊕ A∃
0
) ⊗ x ≤ (

B∀ ⊕ B∃
0
) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x. (4.2)

Particularly, letting A∀ = A∀ and B∀ = B∀ in (4.2), we have

(
A∀ ⊗ x

) ⊕ (
A∃ ⊗ x

) ≤ (
B∀ ⊗ x

) ⊕ (
B∃ ⊗ x

)
.

Therefore, inequalities (4.1) hold.
Conversely, assume that vector x ∈ R

n
max satisfies inequalities (4.1). According to

Lemma 2.1, for all A∀ ∈ A∀, B∀ ∈ B∀, we have

(
A∀ ⊕ A∃) ⊗ x ≤ (

A∀ ⊕ A∃) ⊗ x ≤ (
B∀ ⊕ B∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x.
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Therefore, for all A∀ ∈ A∀, B∀ ∈ B∀, there exist A∃ = A∃, B∃ = B∃ such that the inequalities

(
A∀ ⊕ A∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x

hold.
Hence x ∈R

n
max is an AE solution of A ⊗ x ≤ B ⊗ x. This completes the proof. �

5 Characterization of AE solutions for two-sided interval linear equations
Consider a two-sided interval system of equations of the following form:

A ⊗ x = B ⊗ x,

where A ∈ IR
m×n
max , B ∈ IR

m×n
max .

A sufficient and necessary characterization of AE solutions to interval system of max-
plus linear equations (2.3) is described in the following theorem.

Theorem 5.1 A vector x ∈ R
n
max is an AE solution of two-sided interval linear max-plus

equations (2.3) if and only if

(
A∀ ⊕ A∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x, (5.1)
(
A∀ ⊕ A∃) ⊗ x ≥ (

B∀ ⊕ B∃) ⊗ x. (5.2)

Proof Assume that x is an AE solution of system A ⊗ x = B ⊗ x, then it is an AE solution of
A ⊗ x ≤ B ⊗ x and an AE solution of B ⊗ x ≤ A ⊗ x. Therefore, inequalities (5.1) and (5.2)
hold due to Theorem 4.1.
Conversely, assume that vector x ∈ R

n
max satisfies inequalities (5.1) and (5.2). For the

opposite implication, suppose that vector x is not an AE solution of A ⊗ x = B ⊗ x. Then,
by definition, ∃Ã∀ ∈ A∀, ∃B̃∀ ∈ B∀, ∀A∃ ∈ A∃, ∀B∃ ∈ B∃ such that

(
Ã∀ ⊕ A∃) ⊗ x �= (

B̃∀ ⊕ B∃) ⊗ x.

Therefore, there exists an i0 ∈ {1, . . . ,m} such that

((
Ã∀ ⊕ A∃) ⊗ x

)
i0
>

((
B̃∀ ⊕ B∃) ⊗ x

)
i0

(5.3)

or

((
Ã∀ ⊕ A∃) ⊗ x

)
i0
<

((
B̃∀ ⊕ B∃) ⊗ x

)
i0
. (5.4)

If inequality (5.3) is satisfied, due to the isotone property, we have

((
A∀ ⊕ A∃) ⊗ x

)
i0

≥ ((
Ã∀ ⊕ A∃) ⊗ x

)
i0
>

((
B̃∀ ⊕ B∃) ⊗ x

)
i0

≥ ((
B∀ ⊕ B∃) ⊗ x

)
i0
,

which leads to a contradiction of (5.1).
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If inequality (5.4) is satisfied, due to the isotone property, we have

((
A∀ ⊕ A∃) ⊗ x

)
i0

≤ ((
Ã∀ ⊕ A∃) ⊗ x

)
i0
<

((
B̃∀ ⊕ B∃) ⊗ x

)
i0

≤ ((
B∀ ⊕ B∃) ⊗ x

)
i0
,

which leads to a contradiction of (5.2).
Thus vector x is an AE solution of A ⊗ x = B ⊗ x. This completes the proof. �

6 Deriving the solution algorithm
From Theorems 4.1 and 5.1, we observe that the equivalent systems of AE solutions are
both in a general form of a two-sided systems of max-plus linear inequalities

A ⊗ x ≤ B ⊗ x.

In this section, we present Example 2 in order to show how to find the AE solution set
of a two-sided interval linear system of inequalities A ⊗ x ≤ B ⊗ x, by using the following
theorems proposed in [10]. And this method is also suitable for finding the AE solution
set of A ⊗ x = B ⊗ x.

Theorem 6.1 ([10]) Let A ∈ R
m×n
max and B ∈ R

m×n
max . If there exists an i ∈ M = {1, 2, . . . ,m}

such that {j ∈ N = {1, 2, . . . ,n} : aij ≤ bij} = ∅, then the trivial solution x = (ε, ε, . . . , ε)T is a
unique solution of system A ⊗ x = B ⊗ x.

Theorem 6.2 ([10]) Let A = [aij] and B = [bij] be in R
m×n
max . A vector x ∈ R

n
max is a solution

of A ⊗ x ≤ B ⊗ x if and only if x belongs to the set

⋃

(ji)i∈M′ ∈H

{
x ∈R

n
max : C ⊗ x ≤ x

}
,

where Hi = {j ∈ N : aij ≤ bij} for each i ∈ M, M′ = {i ∈ M : Hi �= N}, H =
∏

i∈M′ Hi, (ji)i∈M′ =
(ji1 , . . . , ji|M′ | ), i1 < · · · < i|M′| and C ∈R

n×n
max has the following components:

cjk =

⎧
⎨

⎩
ε, j = k

maxji=j,i∈M′ {aik – bij}, j �= k.

Theorem 6.3 ([10]) Let C = [cij] ∈ R
n×n
max be such that cij = ε for all i = j. If cij + cji > 0 for

some i > j, then C ⊗ x ≤ x has no non-trivial solution.

Theorem 6.4 ([10]) Let C = [cij] ∈ R
n×n
max be such that cij = ε for all i = j and cij + cji ≤ 0

for all i > j. A vector x ∈ R
n
max is a solution of C ⊗ x ≤ x if and only if x is a solution of the

interval inclusion linear system

Dx ∈ h,
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in which

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 –1
...

. . .
1 –1

1 –1
...

. . .
1 –1

. . .
1 –1
1 –1

1 –1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈R
n(n–1)

2 ×n and

h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[c12, –c21]
...

[c1n, –cn1]
[c23, –c32]

...
[c2n, –cn2]

...
[cn–2,n–1, –cn–1,n–2]
[cn–2,n, –cn,n–2]
[cn–1,n, –cn,n–1]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ IR

n(n–1)
2

max .

Example 2 Consider the system

⎡

⎢⎢⎢⎣

[1, 4] [0, 1] [2, 6]
[2, 4] [4, 6] [1, 3]
[3, 5] 3 [1, 4]
[2, 3] [0, 1] [2, 3]

⎤

⎥⎥⎥⎦ ⊗
⎡

⎢⎣
x1
x2
x3

⎤

⎥⎦ ≤

⎡

⎢⎢⎢⎣

[0, 1] [5, 8] [1, 3]
[3, 5] [3, 4] [0, 1]
[0, 2] [0, 4] [1, 2]
[2, 4] [1, 2] [–2,–1]

⎤

⎥⎥⎥⎦ ⊗
⎡

⎢⎣
x1
x2
x3

⎤

⎥⎦ , (6.1)

where

A∀ =

⎡

⎢⎢⎢⎣

[1, 4] [0, 1] ε

ε [4, 6] ε

ε ε ε

[2, 3] [0, 1] [2, 3]

⎤

⎥⎥⎥⎦ , A∃ =

⎡

⎢⎢⎢⎣

ε ε [2, 6]
[2, 4] ε [1, 3]
[3, 5] 3 [1, 4]

ε ε ε

⎤

⎥⎥⎥⎦ ,

B∀ =

⎡

⎢⎢⎢⎣

ε ε [1, 3]
[3, 5] ε [0, 1]
[0, 2] [0, 4] ε

ε ε ε

⎤

⎥⎥⎥⎦ , B∃ =

⎡

⎢⎢⎢⎣

[0, 1] [5, 8] ε

ε [3, 4] ε

ε ε [1, 2]
[2, 4] [1, 2] [–2,–1]

⎤

⎥⎥⎥⎦ .

By Theorem 4.1, we can obtain the equivalent system of AE solutions,

(
A∀ ⊕ A∃) ⊗ x ≤ (

B∀ ⊕ B∃) ⊗ x,
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that is,

⎡

⎢⎢⎢⎣

4 1 2
2 6 1
3 3 1
3 1 3

⎤

⎥⎥⎥⎦ ⊗
⎡

⎢⎣
x1
x2
x3

⎤

⎥⎦ ≤

⎡

⎢⎢⎢⎣

1 8 1
3 4 0
0 0 2
4 2 –1

⎤

⎥⎥⎥⎦ ⊗
⎡

⎢⎣
x1
x2
x3

⎤

⎥⎦ . (6.2)

By Theorem 6.1, we know that the trivial solution x = (ε, ε, . . . , ε)T is not a unique solu-
tion of system (6.2), because {j ∈ N = {1, 2, 3} : aij ≤ bij} �= ∅ for each i ∈ M = {1, 2, 3, 4}.
Next, by Theorem 6.2, we have H1 = {2},H2 = {1},H3 = {3},H4 = {1, 2},M′ = {1, 2, 3, 4},

H =
∏4

i=1 Hi and

⋃

(ji)i∈M′ ∈H

{
x ∈R

n
max : C ⊗ x ≤ x

}

equals

⎧
⎪⎨

⎪⎩
x ∈R

n
max :

⎡

⎢⎣
ε 3 –2
1 ε 1
1 1 ε

⎤

⎥⎦ ⊗ x ≤ x

⎫
⎪⎬

⎪⎭
∪

⎧
⎪⎨

⎪⎩
x ∈R

n
max :

⎡

⎢⎣
ε 3 –1
–4 ε –6
1 1 ε

⎤

⎥⎦ ⊗ x ≤ x

⎫
⎪⎬

⎪⎭
. (6.3)

By Theorems 6.3 and 6.4, we derive that the solution set is

⎧
⎪⎨

⎪⎩
x ∈R

n
max :

⎡

⎢⎣
ε 3 –2
1 ε 1
1 1 ε

⎤

⎥⎦ ⊗ x ≤ x

⎫
⎪⎬

⎪⎭
= ∅ (6.4)

because c21 + c12 = 4 > 0, and the solution set

⎧
⎪⎨

⎪⎩
x ∈R

n
max :

⎡

⎢⎣
ε 3 –1
–4 ε –6
1 1 ε

⎤

⎥⎦ ⊗ x ≤ x

⎫
⎪⎬

⎪⎭
(6.5)

equals

{
x ∈R

n
max : Dx ∈ h

}
,

D =

⎡

⎢⎣
1 –1 0
1 0 –1
0 1 –1

⎤

⎥⎦ , h =

⎡

⎢⎣
[3, 4]
–1

[–6,–1]

⎤

⎥⎦ .

Thus, a vector x is an AE solution of system (6.1) if and only if x satisfies

⎡

⎢⎣
3
–1
–6

⎤

⎥⎦ ≤
⎡

⎢⎣
1 –1 0
1 0 –1
0 1 –1

⎤

⎥⎦x ≤
⎡

⎢⎣
4
–1
–1

⎤

⎥⎦ , (6.6)

for instance, vector x = (0,–3, 1)T is an AE solution of system (6.1).
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7 Special cases of AE solutions of two-sided interval linear systems
As we know, mathematical definitions of various traditional solution types (weak, strong,
tolerance, control) of the two-sided interval linear systems of equations A⊗x = B ⊗x were
presented in [10] as follows:

Definition 7.1 ([10]) A vector x ∈R
n
max is called

(i) a weak solution of system (2.3) if A ⊗ x = B ⊗ x for some A ∈ A, B ∈ B;
(ii) a strong solution of system (2.3) if A ⊗ x = B ⊗ x for all A ∈ A, B ∈ B;

(iii) a tolerance solution of system (2.3) if A ⊗ x = B ⊗ x for all A ∈ A for some B ∈ B;
(iv) a control solution of system (2.3) if A ⊗ x = B ⊗ x for some A ∈ A for all B ∈ B.

In this section, we first extend the analogous concepts of solutions for two-sided interval
linear systems of inequalities A ⊗ x ≤ B ⊗ x.

Definition 7.2 A vector x ∈R
n
max is called

(i) a weak solution of system (2.1) if A ⊗ x ≤ B ⊗ x for some A ∈ A, B ∈ B;
(ii) a strong solution of system (2.1) if A ⊗ x ≤ B ⊗ x for all A ∈ A, B ∈ B;

(iii) a tolerance solution of system (2.1) if A ⊗ x ≤ B ⊗ x for all A ∈ A for some B ∈ B;
(iv) a control solution of system (2.1) if A ⊗ x ≤ B ⊗ x for all B ∈ B for some A ∈ A.

From the definition of AE solutions, it is easy to obtain that the weak, strong, tolerance
and control solutions are all special cases of AE solutions.
Then we propose the full characterizations of four different types of solution of system

A ⊗ x ≤ B ⊗ x.

Corollary 7.1 A vector x ∈ R
n
max is a weak solution of the interval system (2.1) if and only

if

A ⊗ x ≤ B ⊗ x.

Proof The assertion follows immediately from Theorem 4.1 if we set A∀ = E ,B∀ = E . �

Corollary 7.2 A vector x ∈R
n
max is a strong solution of the interval system (2.1) if and only

if

A ⊗ x ≤ B ⊗ x.

Proof The assertion follows immediately from Theorem 4.1 if we set A∃ = E ,B∃ = E . �

Corollary 7.3 A vector x ∈ R
n
max is a tolerance solution of the interval system (2.1) if and

only if

A ⊗ x ≤ B ⊗ x.

Proof The assertion follows immediately from Theorem 4.1 if we set A∃ = E ,B∀ = E . �
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Corollary 7.4 A vector x ∈R
n
max is a control solution of the interval system (2.1) if and only

if

A ⊗ x ≤ B ⊗ x.

Proof The assertion follows immediately from Theorem 4.1 if we set A∀ = E ,B∃ = E . �

Moreover, we find that the equivalent conditions for checking such solvability types of
two-sided interval systems of equations in the max-plus algebra formulated in [10] are
also special cases in Theorem 5.1.

Corollary 7.5 ([10]) A vector x ∈R
n
max is a weak solution of the interval system (2.3) if and

only if

A ⊗ x ≤ B ⊗ x,

A ⊗ x ≥ B ⊗ x.

Proof The assertion follows immediately from Theorem 5.1 if we set A∀ = E ,B∀ = E . �

Corollary 7.6 ([10]) A vector x ∈ R
n
max is a strong solution of the interval system (2.3) if

and only if

A ⊗ x ≤ B ⊗ x,

A ⊗ x ≥ B ⊗ x.

Proof The assertion follows immediately from Theorem 5.1 if we set A∃ = E ,B∃ = E . �

Corollary 7.7 ([10]) A vector x ∈R
n
max is a tolerance solution of the interval system (2.3) if

and only if

A ⊗ x ≤ B ⊗ x,

A ⊗ x ≥ B ⊗ x.

Proof The assertion follows immediately from Theorem 5.1 if we set A∃ = E ,B∀ = E . �

Corollary 7.8 ([10]) A vector x ∈ R
n
max is a control solution of the interval system (2.3) if

and only if

A ⊗ x ≤ B ⊗ x,

A ⊗ x ≥ B ⊗ x.

Proof The assertion follows immediately from Theorem 5.1 if we set A∀ = E ,B∃ = E . �
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8 Conclusion
We introduced a new concept of AE solutions to two-sided interval linear systems over
the max-plus algebra. The full characterizations of AE solutions to the two-sided interval
max-plus systems, including both inequalities (2.1) and equations (2.3), were developed.
Furthermore, we presented a specific example to illustrate an efficient algorithm of finding
the AE solution set of two-sided interval linear systems. The characterizations of several
traditional solutions for interval max-plus linear systems are all special cases of of our
main results.
An interesting direction for further research is to characterize the so-called EA solutions

to two-sided interval linear systems over the max-plus algebra, which can be regarded as
dual to AE solutions. In the definition of EA solutions, the separating predicate is such
that all the occurrences of the existential quantifier “∃” precede the occurrences of the
universal quantifier “∀”. More specifically, a vector x ∈ R

n
max is an EA solution of system

(2.1) (or system (2.3)) if, for ∃A∃ ∈ A∃,∃B∃ ∈ B∃,∀A∀ ∈ A∀,∀B∀ ∈ B∀, (2.2) (or (2.4)) holds.
Recently, the characteristics of EA solutions over ordinary interval algebra have just been
established [31]. The characterization of EA solutions to interval linear systems over the
max-plus algebra remains to be an open problem, which is worth studying further.
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