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Abstract
We present two classes of asymptotic expansions related to Somos’ quadratic
recurrence constant and provide the recursive relations for determining the
coefficients of each class of the asymptotic expansions by using Bell polynomials and
other techniques. We also present continued fraction approximations related to
Somos’ quadratic recurrence constant.
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1 Introduction
Somos [1] (see [2, p. 446] and [3]) defined the sequence

g0 = 1, gn = ng2
n–1, n ∈N := {1, 2, 3, . . .}.

The first few terms are

g0 = 1, g1 = 1, g2 = 2, g3 = 12, g4 = 576, g5 = 1,658,880, . . . .

The following asymptotic expansion is known in the literature:

gn ∼ σ 2n

n

(
1 +

2
n

–
1
n2 +

4
n3 –

21
n4 +

138
n5 –

1091
n6 + · · ·

)–1

, (1.1)

where

σ =

√
1
√

2
√

3 · · · =
∞∏

n=1

n1/2n
= 1.66168794 . . . (1.2)

is known as Somos’ quadratic recurrence constant. Formula (1.1) was proved by Somos,
and it is cited in Finch’s book [2, p. 446] as Somos’ result. Note that the coefficient of 1/n5

in Finch’s book is 137, but actually it is incorrect and its correct value is 138 (see Weis-
stein, Eric W. “Somos’s Quadratic Recurrence Constant.” From MathWorld–A Wolfram
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Web Resource [3]). The constant σ appears in important problems from pure and applied
analysis, it has motivated a large number of research papers (see, for example, [4–17]).

Nemes [15] studied the coefficients in the asymptotic expansion (1.1) and developed
recurrence relations. More precisely, Nemes [15, Theorem 1] proved that

gn ∼ σ 2n

n

(
a0 +

a1

n
+

a2

n2 +
a3

n3 + · · ·
)–1

, (1.3)

where the coefficients ak (for k ∈ N0 := N∪ {0}) are given by the recurrence relation

a0 = 1, a1 = 2, a2 = –1, ak =
k–1∑
j=1

(
(–1)k–j

(
k – 3
k – j

)
aj – ak–jaj

)
for k ≥ 3.

The coefficients ak also satisfy the following recurrence relation [15, Theorem 3]:

a0 = 1, ak =
1
k

k∑
j=1

(–1)j–12bjak–j for k ∈N, (1.4)

where bk are the ordered Bell numbers defined by the exponential generating function [18,
p. 189]

1
2 – ex =

∞∑
k=0

bk

k!
xk . (1.5)

The ordered Bell numbers bk are given explicitly by the formula

bk =
∞∑
j=0

jk

2j+1 .

The first few ordered Bell numbers are

b0 = 1, b1 = 1, b2 = 3, b3 = 13, b4 = 75,

b5 = 541, b6 = 4683, . . . .

Nemes [15, Theorem 2] proved that the generating function A(x) =
∑∞

k=0 akxk of the coef-
ficients ak has the following representation:

A(x) = exp

( ∞∑
k=1

(–1)k–12bk

k
xk

)
. (1.6)

Chen [5, Theorem 2.1] presented a class of asymptotic expansions related to Somos’
quadratic recurrence constant, which includes formula (1.1) as its special case. Let r �= 0
be a given real number. The sequence gn has the following asymptotic formula:

gn =
σ 2n

n

(
1 +

c1

n
+ · · · +

cj

nj + · · ·
)–1/r

as n → ∞ (1.7)
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with the coefficients cj ≡ cj(r) (j = 1, 2, . . . , m) given by

cj = (–1)j
∑

k1+2k2+···+jkj=j

(–2r)k1+k2+···+kj

k1!k2! · · ·kj!

(
b1

1

)k1(b2

2

)k2

· · ·
(

bj

j

)kj

, (1.8)

where bk (k ∈ N) denotes the ordered Bell numbers and the summation in (1.8) is taken
over all nonnegative integers k1, k2, . . . , kj satisfying the equation k1 + 2k2 + · · · + jkj = j.

The first aim of the present paper is to give recursive relations for determining the co-
efficients cj in (1.7) (Theorem 2.1). The second aim of the present paper is to establish a
more general result, which includes expansion (1.7) as its special case (Theorem 2.2). Our
last aim in this paper is to present continued fraction approximations related to Somos’
quadratic recurrence constant (Theorems 3.1 and 3.2).

2 Asymptotic expansions
Theorem 2.1 below gives recursive relations for determining the coefficients cj in (1.7) by
using the Bell polynomials.

The Bell polynomials, named in honor of Eric Temple Bell, are a triangular array of
polynomials given by (see [19, pp. 133–134] and [20, 26])

Bn,k(x1, x2, . . . , xn–k+1)

=
∑ n!

j1!j2! · · · jn–k+1!

(
x1

1!

)j1(x2

2!

)j2
· · ·

(
xn–k+1

(n – k + 1)!

)jn–k+1

, (2.1)

where the sum is taken over all sequences j1, j2, j3, . . . , jn–k+1 of nonnegative integers such
that

j1 + j2 + · · · + jn–k+1 = k and j1 + 2j2 + · · · + (n – k + 1)jn–k+1 = n.

The sum

Bn(x1, x2, . . . , xn) =
n∑

k=1

Bn,k(x1, x2, . . . , xn–k+1) (2.2)

is sometimes called the nth complete Bell polynomial. The complete Bell polynomials
satisfy the following identity:

Bn(x1, x2, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
(n–1

1
)
x2

(n–1
2

)
x3

(n–1
3

)
x4

(n–1
4

)
x5 · · · · · · xn

–1 x1
(n–2

1
)
x2

(n–2
2

)
x3

(n–2
3

)
x4 · · · · · · xn–1

0 –1 x1
(n–3

1
)
x2

(n–3
2

)
x3 · · · · · · xn–2

0 0 –1 x1
(n–4

1
)
x2 · · · · · · xn–3

0 0 0 –1 x1 · · · · · · xn–4

0 0 0 0 –1 · · · · · · xn–5
...

...
...

...
...

. . . . . .
...

0 0 0 0 0 · · · –1 x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.3)
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In order to contrast them with complete Bell polynomials, the polynomials Bn,k defined
above are sometimes called partial Bell polynomials. The complete Bell polynomials ap-
pear in the exponential of a formal power series

exp

( ∞∑
n=1

xn

n!
un

)
=

∞∑
n=0

Bn(x1, . . . , xn)
n!

un. (2.4)

The Bell polynomials are quite general polynomials and they have been found in many
applications in combinatorics. Comtet [19] devoted much to a thorough presentation of
the Bell polynomials in the chapter on identities and expansions. For more results, the
reader is referred to [21, Chap. 11] and [22, Chap. 5].

Theorem 2.1 Let r be a given nonzero real number. Then the sequence gn has the following
asymptotic expansion:

gn ∼ σ 2n

n

( ∞∑
k=0

ck(r)
nk

)–1/r

as n → ∞, (2.5)

with the coefficients ck(r) (for k ∈N0) given by the recursive relation

c0 = 1 and ck(r) =
2r
k

k–1∑
�=0

(–1)k–�–1bk–�c�(r), (2.6)

where bk (for k ∈N0) denotes the ordered Bell numbers defined by (1.5).

Proof From (1.3), it follows that

(
σ 2n

ngn

)r

∼ Ar(1/n). (2.7)

On the other hand, from the definition of A(x), it follows that

Ar(1/n) =
∞∑

k=0

ck(r)
nk as n → ∞, (2.8)

where ck(r) (for k ∈ N0) are real numbers to be determined. By using (1.6) and (2.4), we
have

Ar(1/n) = exp

( ∞∑
k=1

(–1)k–12rbk

k
1
nk

)

= exp

( ∞∑
k=1

(–1)k–1(k – 1)!2rbk

k!
1
nk

)

=
∞∑

k=0

Bk(2rb1, –2rb2, . . . , (–1)k–1(k – 1)!2rbk)
k!

1
nk .
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Therefore it is seen that the ck(r) in (2.8) can be expressed in terms of the Bell polynomials

ck(r) =
Bk(2rb1, –2rb2, . . . , (–1)k–1(k – 1)!2rbk)

k!
. (2.9)

Bulò et al. [23, Theorem 1] proved that the complete Bell polynomials can be expressed
using the following recursive formula:

Bk(x1, x2, . . . , xk) =

⎧⎨
⎩

∑k–1
�=0

(k–1
�

)
xk–�B�(x1, x2, . . . , x�) if k ∈N,

1 if k = 0.

Thus, formula (2.9) can be rewritten as

c0 = 1 and

ck(r) =
1
k!

k–1∑
�=0

(
k – 1

�

)
(–1)k–�–1(k – � – 1)!2rbk–�

× B�

(
2rb1, –2rb2, . . . , (–1)�–1(� – 1)!2rb�

)

=
1
k!

k–1∑
�=0

(
k – 1

�

)
(–1)k–�–1(k – � – 1)!2rbk–��!c�(r)

=
k–1∑
�=0

(–1)k–�–12rbk–�

k
c�(r) for k ∈N.

The proof of Theorem 2.1 is complete. �

Remark 2.1 The representation using a recursive algorithm for the coefficients cj in (1.7)
is more practical for numerical evaluation than the expression in (1.8). We can directly
calculate ck(r) in (2.9) by using identity (2.3).

Remark 2.2 We find that a special case of (2.5) when r = 1 yields immediately the asymp-
totic formula (1.1). Here, taking r = –1 and –1/2 in (2.5), respectively, we give two explicit
expressions

gn ∼ σ 2n

n

(
1 –

2
n

+
5
n2 –

16
n3 +

66
n4 –

348
n5 + · · ·

)
as n → ∞ (2.10)

and

gn ∼ σ 2n

n

(
1 –

1
n

+
2
n2 –

6
n3 +

25
n4 + · · ·

)2

as n → ∞. (2.11)

Theorem 2.2 establishes a more general result, which includes Theorem 2.1 as its special
case.
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Theorem 2.2 Let r be a given nonzero real number and m be a given nonnegative integer.
Then the sequence gn has the following asymptotic expansion:

gn ∼ σ 2n

n

( ∞∑
k=0

dk(r, m)
nk

)–nm/r

as n → ∞, (2.12)

with the coefficients dk(r, m) (for k ∈N0) given by the recursive relation

d0 = 1 and dk(r, m) =
r
k

k–m∑
j=1

(–1)j–12bj(j + m)
j

dk–m–j(r, m), (2.13)

where bk (for k ∈N0) denotes the ordered Bell numbers defined by (1.5).

Proof From (2.5), it follows that

Ar(1/n) ∼
( ∞∑

k=0

dk(r, m)
nk

)nm

as n → ∞, (2.14)

where dk(r, m) (for k ∈N0) are real numbers to be determined.
Taking the logarithm of (2.14) and applying (1.6) yields

r

( ∞∑
k=1

(–1)k–12bk

k
1

nk+m

)
∼ ln

( ∞∑
k=0

dk(r, m)
nk

)
as n → ∞.

Replacing n by x gives

r

( ∞∑
k=1

(–1)k–12bk

k
1

xk+m

)
∼ ln

( ∞∑
k=0

dk(r, m)
xk

)
.

Differentiating each side with respect to x yields

r

( ∞∑
k=0

dk(r, m)
xk

)( ∞∑
k=1

(–1)k–12bk(k + m)
k

1
xk+m+1

)
∼

∞∑
k=1

kdk(r, m)
xk+1 .

Hence,

kdk(r, m) = r
k–m∑
j=1

(–1)j–12bj(j + m)
j

dk–m–j(r, m)

and formula (2.13) follows. The proof of Theorem 2.2 is complete. �

Remark 2.3 Setting (r, m) = (–1, 1) and (r, m) = (1, 1) in (2.12), respectively, we give two
explicit expressions

gn ∼ σ 2n

n

(
1 –

2
n2 +

3
n3 –

20
3n4 + · · ·

)n

as n → ∞ (2.15)
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and

gn ∼ σ 2n

n

(
1 +

2
n2 –

3
n3 +

32
3n4 –

87
2n5 + · · ·

)–n

as n → ∞. (2.16)

Remark 2.4 Setting ck(r) := dk(r, 0), we obtain from (2.13) that

c0 = 1 and ck(r) =
r
k

k∑
j=1

(–1)j–12bjck–j(r). (2.17)

It is easy to see that (2.6) is equivalent to (2.17). Setting ak := ck(1), (2.17) becomes (1.4).

3 Continued fraction approximations
We define the sequence (un)n∈N by

un =
ngn

σ 2n –
(

1 +
a

n + b + c
n+d+ p

n+q

)
. (3.1)

We are interested in finding fixed parameters a, b, c, d, p, and q such that (un)n∈N converges
as fast as possible to zero. This provides the best approximations of the form

gn ≈ σ 2n

n

(
1 +

a
n + b + c

n+d+ p
n+q

)
. (3.2)

Our study is based on the following lemma, which is useful for accelerating some conver-
gences, or in constructing some better asymptotic expansions.

Lemma 3.1 ([24, 25]) If the sequence (λn)n∈N converges to zero and if the following limit

lim
n→∞ nk(λn – λn+1) = l ∈R, k > 1

exists, then

lim
n→∞ nk–1λn =

l
k – 1

, k > 1,

where R denotes the set of real numbers.

Theorem 3.1 Let the sequence (un)n∈N be defined by (3.1). Then, for

a = –2, b =
5
2

, c = –
7
4

, d =
69
14

, p = –
376
49

, q =
5171
658

, (3.3)

we have

lim
n→∞ n8(un – un+1) = –

158,319
47

and lim
n→∞ n7un = –

22,617
47

. (3.4)

The speed of convergence of the sequence (un)n∈N is given by the order estimate O(n–7) as
n → ∞.
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Proof First of all, we write the difference un – un+1 as the following power series in n–1:

un – un+1 = –
a + 2

n2 +
12 + a + 2ab

n3 –
65 – 3ac + a + 3ab + 3ab2

n4

+
382 + a – 8abc – 4acd + 4ab – 6ac + 6ab2 + 4ab3

n5

–
(
2587 – 5acd2 + a + 5acp – 15cab2 – 20abc – 10acd – 10abcd

+ 5ab – 10ac + 10ab2 + 10ab3 + 5ac2 + 5ab4) 1
n6

+
(
20,600 – 15acd2 + a + 15acp – 45cab2 – 40abc – 20acd

– 30abcd – 18cdab2 + 12abcp – 12abcd2 + 6acpq + 12acdp

+ 6ab – 15ac + 15ab2 + 20ab3 + 12ac2d + 18abc2 – 24cab3

– 6acd3 + 15ac2 + 15ab4 + 6ab5) 1
n7

–
(
192,649 – 35acd2 + a + 35acp – 105cab2 – 70abc – 7ac3 + 7acpq2

+ 42c2dab + 21apcd2 – 28cdab3 + 21ab2cp – 21ab2cd2 – 14abcd3

– 14ac2p + 42c2ab2 – 35cab4 – 35acd – 70abcd – 63cdab2

+ 42abcp – 42abcd2 + 21acpq + 42acdp + 7ab – 21ac + 21ab2

+ 35ab3 + 42ac2d + 63abc2 – 84cab3 – 21acd3 + 35ac2

+ 35ab4 + 21ab5 – 7acp2 – 7acd4 + 21c2d2a + 14abcpq

+ 14acdpq + 7ab6 + 28abcdp
) 1

n8 + O
(

1
n9

)
. (3.5)

The fastest sequence (un)n∈N is obtained when the first six coefficients of this power series
vanish. In this case

a = –2, b =
5
2

, c = –
7
4

, d =
69
14

, p = –
376
49

, q =
5171
658

,

we have

un – un+1 = –
158,319

47n8 + O
(

1
n9

)
.

Finally, by using Lemma 3.1, we obtain assertion (3.4) of Theorem 3.1. �

Solution (3.3) provides the best approximation of type (3.2),

gn ≈ σ 2n

n

(
1 +

–2

n + 5
2 + – 7

4

n+ 69
14 +

– 376
49

n+ 5171
658

)
. (3.6)
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Now we define the sequence (vn)n∈N by

vn =
ngn

σ 2n – exp

(
a1

n + b1 + c1
n+d1+ p1

n+q1+ r1
n+s1

)
. (3.7)

We are interested in finding fixed parameters a1, b1, c1, d1, p1, q1, r1, and s1 such that
(vn)n∈N converges as fast as possible to zero. This provides the best approximations of the
form

gn ≈ σ 2n

n
exp

(
a1

n + b1 + c1
n+d1+ p1

n+q1+ r1
n+s1

)
. (3.8)

Following the same method used in the proof of Theorem 3.1, we can prove Theorem 3.2,
we omit it.

Theorem 3.2 Let the sequence (vn)n∈N be defined by (3.7). Then, for

a1 = –2, b1 =
3
2

, c1 = –
25
12

, d1 =
219
50

,

p1 = –
15,653
1875

, q1 =
5,676,423
782,650

, r1 = –
645,255,151,929
34,302,297,260

,

s1 =
113,583,705,304,934,619
11,222,420,992,382,930

,

(3.9)

we have

lim
n→∞ n10(vn – vn+1) = –

34,622,675,505,712,426,801
175,652,791,358,450

(3.10)

and

lim
n→∞ n9(vn – vn+1) = –

34,622,675,505,712,426,801
1,580,875,122,226,050

. (3.11)

The speed of convergence of the sequence (vn)n∈N is given by the order estimate O(n–9) as
n → ∞.

Solution (3.9) provides the best approximation of type (3.8)

gn ≈ σ 2n

n
exp

(
–2

n + 3
2 + – 25

12

n+ 219
50 +

– 15,653
1875

n+ 5,676,423
782,650 +

– 645,255,151,929
34,302,297,260

n+ 113,583,705,304,934,619
11,222,420,992,382,930

)
. (3.12)

4 Conclusions
In this paper, we give asymptotic expansions related to the generalized Somos’ quadratic
recurrence constant (Theorems 2.1 and 2.2). We present continued fraction approxima-
tions related to Somos’ quadratic recurrence constant (Theorems 3.1 and 3.2).
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