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1 Introduction
Consider the partially linear model (PLM)

yi=xiB+f(t)+e, 1<i<n, (1)

where the superscript 7" denotes the transpose, y; are scalar response variables, x; =
(%i1,...,%4)T are explanatory variables, 8 is a d-dimensional column vector of the un-
known parameter, f(-) is an unknown function, ¢; are deterministic with 0 < ¢ <--- <
t, <1, and e; are random errors.

PLM was first considered by Engle et al. [1], and now is one of the most widely used
statistical models. It can be applied in almost every field, such as engineering, economics,
medical sciences and ecology, etc. There are many authors (see [2—8]) concerned with var-
ious estimation methods to obtain estimators of the unknown parameters and nonparam-
eters for partially linear model. Deep results such as asymptotic normality of estimators
have been obtained.

In this paper, by a difference-based approach, we will use the ordinary least square and
wavelet to investigate model (1). The differencing procedures provide a convenient means
for introducing nonparametric techniques to practitioners in a way which parallels their
knowledge of parametric techniques, and differencing procedures may easily be combined
with other procedures. For example, Wang et al. [9] obtained a difference-based approach
to the semiparametric partially linear model. Tabakan et al. [10] studied a difference-based
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ridge in partially linear model. Duran et al. [11] investigated the difference-based ridge and
Liu type estimators in semiparametric regression models. Hu et al. [12] used a difference-
based Huber Dutter estimator (DHD) to obtain the root variance o and parametric g for
partially linear model. Wu [13] constructed the restricted difference-based Liu estima-
tor for the parametric component of partially linear model. However, in the majority of
the previous work it is assumed that errors are independent. The asymptotic problem of
difference-based estimators of partially linear model with dependent errors is in practice
important. In this paper, we use a difference-based and ordinary least square method to
study the partially linear model with dependent errors.

For the dependent errors e; we confine ourselves to negatively superadditive dependent
(NSD) random variables. There are many applications of NSD random variables in multi-
variate statistical analysis; see [14—23]. Hence, it is meaningful to study the properties of

NSD random variables. The formal definition of NSD random variables is the following.

Definition 1 (Kemperman [24]) A function ®: R” — R is called superadditive if ®(x v
¥)+ P Ay) > O(x) + P(y) for all v, y € R”, where V stands for componentwise maximum,

and A for componentwise minimum.

Definition 2 (Hu [25]) A sequence {ej,es,...,e,} is said to be NSD if

Eq)(elreb“wen) SECD(Yb Yz)"‘1YH)7 (2)
where Y7, Ys,..., Y, are independent with e; 4 Y; for each i, and @ is a superadditive func-

tion such that the expectations in (2) exist. An infinite sequence {e,,n > 1} of random
variables is said to be NSD if {ej,e,,...,e,} is NSD for all # > 1.

In addition, using the wavelet method (see [26-29]), the weak convergence rate and
asymptotic normality of the estimator of f(-) are obtained.

Throughout the paper we fix the following notations. f is the true value of the unknown
parameter f. Z is the set of integers, N is the set of natural numbers, R is the set of real
numbers. Denote x* = max(x,0), and x~ = (—x)*. Let Cy, C;, C3, Cy are positive constants.
For a sequence of random variables 5, and a positive sequence d,,, write n,, = o(d,,) if n,,/d,
converges to 0 and 7, = O(d,,) if n,/d, is bounded. We can similarly define the notations
of op and Op for stochastic convergence and stochastic bounded. Weak convergence of
a distribution is denoted by H, 2 H, and for random variables by Y, Zy. llx| is the

Euclidean norm of x, and |x| = max{k € Z: k < «x}.

2 Estimation method

Define the (n — m) x n differencing matrix D as

L N S AR

0 -+ i i e e 0 dy dy do - dy,
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where the positive integer number m is the order of differencing and dy,d;,...,d,, are
differencing weights satisfying

Xm:dqzo, idﬁ:l. (3)
gq=0 q=0

This differencing matrix is given by Yatchew [30]. Using the differencing matrix to
model (1), we have

DY = DXB + Df + De. (4)

From Yatchew [30], the application of differencing matrix D in model (1) can remove the
nonparametric effect in large samples, so we will ignore the presence of Df. Thus, we can

rewrite (4) as
Y=X B +e, (5)

where ¥ = (1, ¥uem) 'y X = G1,..., &pom)” and I, = XTX is nonsingular for large n,
e= (ély cees én—m)T; 5’1' = Z;io dqyi+q; 9~Ci = Z;io dqxi+q: éi = Z;io dqei+qr i=1,...,n—m.
As a usual regression model, the ordinary least square estimator 8, of the unknown

parameter S is given as
n-m
A . T 2
Br=argmin } (5 -5/ )". 6)
i=1

Then the estimator satisfies

and hence

~ ~

Bn=XXTY. )

In the following, we use wavelet techniques to estimate f(-) if B, is known.
Suppose that there exists a scaling function ¢(-) in the Schwartz space S; and a multires-
olution analysis {V;} in the concomitant Hilbert space L?(R), with the reproducing kernel

E; (t,s) given by

En(t,s) = 2"Eo(27£,27s) = 2™ > " (27"t - k)p(2™s - k).

keZ

Let A; = [s;_1,s;] denote intervals that partition [0, 1] with ; € A; for 1 <i < n. Then the

estimator of the nonparameter f(t) is given by

n

Ful) = Z(y,-—xiTﬁ,,)/IE,;,(t,s)ds. (8)

i=1 A
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3 Preliminary conditions and lemmas
In this section, we give the following conditions and lemmas which will be used to obtain
the main results.

(C1) maxi<i<y |||l = C1 < 00.

(C2) f(-) € H* (Sobolev space), for some « > 1/2.

(C3) f(-) is Lipschitz function of order y > 0.

(C4) ¢(-) belongs to S;, which is a Schwartz space for / > «. ¢(-) is a Lipschitz function
of order 1 and has compact support, in addition to |p(E) = 1| = O(€) as € — O,
where ¢ denotes Fourier transform of ¢.

(C5) s;, 1 <i < n, satisfy max;<;<,(s; — s;.1) = O(n~1), and 2 = O(n'73).

Remark 3.1 Condition (C1) is standard and often imposed in the estimator of partial linear
models, once can refer to Zhao et al. [31]. Conditions (C2)—(C5) are used by Hu et al. [29].
Therefore, our conditions are very mild and can easily be satisfied.

Lemma 3.1 (Hu [25]) Suppose that {ey,es,...,e,} is NSD.
(i) Ifg1,82,...,44 are nondecreasing functions, then {g1(e1),g2(e2),...,gu(e,)} is NSD.

(ii) Forany2<m<nand1l <ij<ipg<---<ipy, {€;,€i,...,€;,} is NSD.

Lemma 3.2 (Wang et al. [17]) Let p > 1. Let {e,,n > 1} be a sequence of NSD random
variables with Ee, = 0 and Ele,|P < 0o for each n > 1. Then for all n > 1,

max
1<k<n
max
1<k<n

Lemma 3.3 Letp > 1. Let {e,, n > 1} be a sequence of NSD random variables with Ee, = 0

Zez

i=1

)5231"ZE|ei|p forl<p<2 9)

and

>

Yol e (] e

i=1

and Ele,|P < oo for all n > 1, and {c;,0 < g < m} be a sequence of real constants. Then for

alln>1,
kK m I3 n m
<1<r;131xm ; Xz(;cqew ) < 4mP! ; ;E|cqei+q|p forl<p<2 (11)
and, for p > 2,
kK m »
<1<1]P<%1xm ;Z:;quiw ) (12)

p/2
< 2P+1m17—1(15p> |:Z ZE|quHq| + (Z ZE(quHq) ) :|

i=1 q=0 i=1 q=0

Proof Letz; = Zq 0 Ch€irgs Z2i = Zq 0C,€ivg» then Z;":O Cqirg = 21— Zap and {cfeiiq, i > 1}
and {c‘;eiw,i > 1} are both NSD random variables for all 0 < g < m by Lemma 3.1. By the
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C,-inequality,

max E E Cq€;
<1<k<n m i )
i=1 =0
k P
=F max E (le' 221')
1<k<n-m|%< 1
i=

m
< 2P~ Lyp-l Z E| max
1<k<n-m

q=0

o)}

1

In the case 1 < p <2, it follows from Lemma 3.2 that

max E E Cy€;
<1<k<n —m e )
k=1 g=0
m k r k p
< 2Lyt E E| max c;ei+q +E| max € €itg
1<k<n-m|*“ 1<k<n-m|%
q=0 i=1 i=1

n-m m n-m m
< 4mP! (Z Y Elcieng"+ ZE{cqe,»+q|”>. (13)

i=1 =0 i=1 =0

Note that |c,I? = |c} |7 + |c; |7, the desired result (11) follows from (13) immediately. In the
same way, we also have (12). The proof is completed. d

Remark 3.2 From Lemma 3.3 and Lemma 3.1, we have, for 1 <p <2,

p m
E( ) < 4mp_1[ZZE|qui+q|p} (14)

ieS g=0
and, for p > 2,
p)

d

pl2
521’+1m"‘1(15p) [ZZEicquqi +(ZZ <>) } (15)
S q

ieS q=0 =0

m
DD Cafisg

ieS q=0

m
E E Cq€irq

ieS g=0

where S C {1,2,...,n}.

Lemma 3.4 Let A and B be disjoint subsets of N, and {X;,j € AU B} be a sequence of NSD
random variables. Let f: R — R and g: R — R be differentiable with bounded derivatives,
and || - ||« Stand for supnorm. Then

cotf(Sax).a(Sax) || <Ll

jeA

COV(Z aiX;, Z a/)(j> )

icA jeB
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provided the covariation on the right hand side exists, where {a;,1 < i < n} is an array of

real numbers.

Proof For a pair of random variables Zy = )", , a;X;, Z» = ZjGB

a;X;, we have
H(z1,z0) = P(Zy < 21,23 < z3) — P(Zy < 21)P(Zy < z3).

Denote by F(z1,2;) the joint distribution functions of (Z1,25), and Fz, (z3), Fz,(z;) the
marginal distribution function of Z;, Z,, one gets

Cov(Z1,25) = E(Z125) — E(Z1)E(Z,)

=//[F(szz)—le(zl)Fzz(Zz)] d21d22=/fH(Z1,Zz)d21 dzy,

this relation was established in Lehmann [32] for any two random variables Z; and Z, with
Cov(Z1,Z,) exist. Let f, g are complex valued function on R with derivatives f', g’ < 0o, then

we have

Cov(£(21),8(22))|

://f/(zl)g/(zz)H(Zl,Zz)dzl dz,
S//v/(zl)Hg,(Zz”|H(21,Zz)|dZ1 dz; < Hf/”OOHg’HOO|COV(Zl,ZZ)i,

The proof is completed. d

Lemma 3.5 Let {e,,n > 1} be a sequence of NSD random variable with Ee, = 0. Let &;, =
>0 Aq€izng, and |ij — ix| > m if j # k. Then

n n m m
=- Z Z Z Z tg Cov(eij+q1’ eik+q2): (16)

j=1 k=j+141=042=0

n n
Eexp (i Z tijéij) - HEGXP(iti,éij)
j=1

j=1

where i=+/-1, Z;"ZO dy=0and Z;"ZO d; =1, tiy, tiy, .., i, are real numbers with |t;| < to.

Proof Notice that the result is true for n = 1.
For n = 2, let f(e;) = explit; e;,},g(é;,) = exp{it;,e;,}. Then, by Lemma 3.4 and
m 2 _
q=0 dq =1
’E explit; e;, +it;,e;,} — Eexplit;, &;, }E expliti,e;, } ’
= |C0v(exp{iti1 e;, },explit;, é;, }) |

m m

<t Z Z dg1 dgp Covie; +q1,€iprq2)

q1=042=0

m m
2
<-f § E COV(ei1+q1:ei2+q2)~

q1=042=0
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Hence, the result is true for n = 2.
Moreover, suppose that (16) holds for # — 1. By Lemma 3.4, we have, for n,

n n
Eexp{i Z ti,é,,] - l—[Eexp{itiI,éi/ }
j=1

i=1

j=1
n n-1
< |Eexp { i Z ti],éi], } — Eexp { i Z ti/éij }Eexp{itinéin}
j=1 j=1
n-1 n-1
+ |Eexp { i Z & éi/, ]Eexp{itin e, — H E exp{iti},éil, JE explit;, é;,}
i=1 j=1
n-1 n—1 n—1
< |Cov (exp{i Z tiiéii } ,explit;, é;, }) + |Eexp { i Z ti/éi/ } - HEexp{iti/éi/}
i=1 j=1 j=1
n-1 n-1 n-1 m m
< |Cov (exp{i Z ti,éi, } ,explit;, é;, }) + Z Z tg |C0v(e,~i+q1, eik+q2)|
1

j=1 k=j+141=042=0

n n m m
= _tg Z Z Z Z Cov(ei]-+q1: eik+q2);

j=1 k=j+14q1=042=0
which completes the proof. O

Lemma 3.6 (Hu et al. [29]) If Condition (C3) holds, then
(al) |Eo(t,s)| < (H‘f—fs‘)k, |E(t,s)] < m;;”ﬁ (where k € N and C = C(k) is a constant
depending on k only).
(22) Supgzycy |Enlt,5)] = O27).
(3) sup, [ |En(t,)lds < Cs.
(ad) fol E;\(t,s)ds — 1,n — oo.

Lemma 3.7 (Rao [33]) Suppose that {X,,,n > 1} are independent random variables with
EX, = 0 and s, P E|X;|*** — 0 for some § > 0. Then

n
51X BN, 1),
j-1
where s, =3 EX? = Var(3_, X)).

Lemma 3.8 (Yuetal. [34]) Let{e,,n > 1} be a sequence of NSD random variable satisfying
Ee, =0, sup;.; Zi:\i—jlzu | Cov(e;, e))] — 0 as u — oo, and {a,;, 1 <i <n,n>1} bean array
of real numbers with maxi<;<y |a,| — 0 and Y, a?; = O(1). Suppose that {e,,n > 1} is
uniformly integral in Ly, then

n
0,1 awe: 3 N(O,1),
i=1

where o> = Var(Y_1| ane;).
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4 Main results and their proofs
Theorem 4.1 Under Condition (C1), suppose that {e,, n > 1} is a sequence of NSD random
variables with Ee, = 0 and

(i) sup,; Elen|** < 0o for some § > 0,

(ii) sup;; Zi:|i—j|2u | Cov(e;, e))| = 0 as u — oo. Then

. D
(n—m) 25 E,(B, - fo) — N(0,1) (17)
provided that
75 = nlingo(n m)~ lex Var(g;) + 22 lex Cov(e; &) (18)
i=1 j=i+1

is a positive definite matrix, where 1; is the identity matrix of order d.

Proof By Condition (i), we have

supEe, <oco and  lim supEe,I{|e,| >x} =0,
n>1 X0 y>1

from which it follows that

n-m m

Cs:=sup (n — m)71 Z Z Var(dqenq) < 00,
nem i=1 q=0
and forall e >0
n-m m
-m)7! ZEd eirg)’I{|dgeirgl = Vn—me} -0 asn— occ.
i=1 q=0

Then we can find a positive number sequence {¢,,n > 1} with ¢, — 0 such that

n—m

m
) ZE (dgeirg)I{ldgeingl = NV —me,} >0 asn— oc.

i=1 =0

BN

Now, we define the integers: m = 0, and, for eachj=0,1,2,..., put

m' m
Majs1 = min{m’ cm' > myj, (n— m)! Z ZVar(dquq) > /ety
i=m2/-+1 q=0

1
Mojyp = Mojr1 + | — | + 1.
€n

Denote

I ={k:my <k <myj1,j=0,...,l} and

Jj = {k:myjq <k < myj),j=0,...,1}



Zeng and Liu Journal of Inequalities and Applications (2018) 2018:267 Page 9 of 16

where [ = [(n) is the number of blocks of indices J;. Then

l m n-m m
IJ/en <(n— m)_l Z Z Zvar(dqeﬁq) <(n- m)_l Z ZE(dquq)z <G, (19)
j=1 iel; q=0 i=1 gq=0

and hence we have [ < C3/.,/¢,. If the number of the remainder term is not zero when the
construction ends, then we put all the remainder terms into a block denoted by J;. By (7),
we have

n-m
Zu(Bu — Po) = Z&iéi' (20)
i=1
Then to prove (17), it is enough to prove that

n-m
n—m) V25" 58 5 N, ). (21)
i=1

—

Let u be an arbitrary d-dimensional column vector with ||| = 1, and set a; = u” t;'%,.
Then, by the Cramér—Wold device, to prove (21) it suffices to prove that

1 n-m D
a;e; — N(0,1). (22)
n—m“—
Write
1 n-m 1 1 1 !
wi= Y S ass > Y aa
oM = =M
=1+].

Moreover, note that maxo<,< |d,;| < 1 and max;<;<, |4;| < 0o by Condition (C1), then
applying Lemma 3.3 with p = 2 we have

E<J}i_m Xl:Zaiéi)z

j=1 i€jj

1 I m 2
e mE(Z Z Z ﬂidqehq)

j=1 i€j; q=0

1 m

Z Z ZE|aidqei+q|2

j=1 iej; q=0

dm ! m
< ( max al«z) E E E E|dqei+q|2
n—m \m<i<myo

j=1 ieJ; q=0

4m
m

= u_

! m
4m( max a?)ZZZE|dqei+q|21{|dqei+q|zx/n—men}

T n—m \mi<i<m
1 20+2 j=1 ief; =0
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! m
4m< max a?)ZZZE|dqei+q|21{|dqei+q|<«/n—m8n}

n—m \mj<i<m
1 2042 =1 i), 420

! m
4m< max zziz)ZZZE|dqei+q|21{|dqei+q|zx/n—msn}

T n—m \m<i<m
1 2042 j=1 i€/]' q:0

4m ) B .
Y- m (mlgr?;)n(zm 4 )l(L‘gn | +m)(n-m)e;,

n-m m

max af) Z ZE(dquq)zl{ |dgeirgl = /11— man}

my <i<m
1=1=m3 2 i=1 q=0

4m (

T n-m

+ 4m( max a?) Cgsn_l/z(Ls;IJ + m)sﬁ
M <<yl

—0 asn— 0o, (23)
which follows from
P
J—0 asnm— o0
by the Markov inequality. Therefore, to prove (22), it suffices to show that

!
\/nl__m 3N a3 N, 1. (24)

j=1 i€l

On the one hand, by the definition of r}%, it is easy to show that

1 n-m
lim Var< aiél) =1.
n—00 n—m#*

Therefore by the above formula and (23),

i
nlLrI;o Var(\/nl__m Z Zaié,) =1. (25)

j=1 iel;

On the other hand, by Lemma 3.5 and (ii), we have

! !
Eexp (i Z Z tié,») - l_[ E(Z eXp(itiéi)) ‘
j=1

j=1 i€l iel;

! ! m m
< _t(% Z Z Z Z Z Z COV(ei+q1’ ej+q2)

p=1 s=p+1 ielp jels q1=042=0
m m
=t Z Z Z Cov(eirg1, €j4q2)
11=042=0 41 q1-j-g2> | L J+m

— 0 asn— 00, (26)
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which implies that the problem now is reduced to study the asymptotic behavior of inde-
pendent and non-identically distribution random variables {} ,_, a;e;}.

To complete the proof of (24), it is enough to show that random variables {>_, J ae;}
satisfies the condition of Lemma 3.7. Set

1 n—m
Ci= max |a;**® and r,f = Var E ag; .
I<i=mypio Jn—-m*

By the definition of I,

(n—m)™ Y E(dgeins)’

i€l; q=0

mj+l m

- Z Z E(dqei+q)2

maj q=0

maj1—1 4y

=(n- m)_l Z ZE(dquq)Z +(n— m)_l ZE(dqem2,~+1+q)2

myj  q=0 d=0

= \/a +(n— m)_l ZE(dqem2/+1+q)2

q=0
< /&, + (n—m) ' supEe’. (27)
n>1

By Lemma 3.3 with p =2 + § and (27), and recalling that / < C3/,/e,,,

2+68
(n—m)™"? Zﬂiéi

iEI/'

!
2+6 Z
j=1

2+6

‘L' —(2+9) (l’l Wl) (2+8)/ Z

ZZ&Z idgeiig

j=1 ielj q=0
15(2 +8)\**
8) 8)/ ) 8 8
ET 2+ (}’l Wl) 2+ 2C2+3 +l(m) ZZZE|dquq|2+
j=1 i€l q=0
(2+8)/2
152 +8)\** I
# o G2 (m) {3 Y Bldgerg)?
+ j=1 i€lj =0

15(2 +8)\ 2"
<t (29) (1 — 1) 312,23 m (2+9) sup Ele, |2
ln(2 5) nzl

15(2 + 68) 28 (2+8)/2
2+5 5+3 -1/2 -1 2

)Cy2 - C. [‘/ - E }

+T m’ (ln(2 +3) ) 3€;, &, + (n—m) 3121[1) e,

— 0, (28)

since 7, — 1 and (i).

Hence, by Lemma 3.7, (24) holds and the proof is completed. O
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Corollary 4.1 Under Condition (C1), let {e,, n > 1} be a sequence of independent random
variables with Ee, = 0, and suppose that (i) of Theorem 4.1 holds and Eefl =o2foralln>1.
Then

(1= m) 33 5, (B — o) —> N(O,1)

provided that

m m
T = Jim (2 - m)”! Kk 0" +2 Z %%l (dodi + dudy + -+ + dm—kdm)az}

is a positive definite matrix.

Proof Since {e,,n > 1} is a sequence of independent random variables, we have Cov(e;,
e;) = 0if i #j and hence Cov(g; &) = 0 if |i — j| > m. It follows that

n—00
i=1 i=1 j=1,j#i
n-m m n-m—k
= lim (1 — m) 1[ R 0% +2) Y E] (dodi + drdgar + -
i=1 k=1 i=1
+ dm—kdm)02 } (29)

from the conditions of Corollary 4.1, we see that 1:; is a positive definite matrix. Thus the
result follows from (29). 0

Theorem 4.2 Assume the conditions of Theorem 4.1, and further assume that Conditions
(C2)—(C5) hold. Then

sup [fu(8) —f(8)| = Op(n™) + Op(ti) + Op(n™*M,) asn— oo, (30)
1

0<t=<

where M,, — 00 in arbitrary slowly rate, and t; = 2712 if1/2 < a < 3/2, 1 = /2 ™"
ifa=3/2,and t; = 27" ifa > 3/2.

Proof We can prove Theorem 4.2 by a similar argument to Theorem 3.2 of Hu et al. [12],
so we omit the detail. O

Theorem 4.3 Under the Conditions of Theorem 4.2, we have

I -f0) p

T

N(0,1), (31)

where T} = Var(3__, e; fAi Eju(t,5)ds).



Zeng and Liu Journal of Inequalities and Applications (2018) 2018:267 Page 13 0of 16

Proof Note

n

Ju0-10)= 3 0i-aTh) |

i=1 A

E;\(t,s)ds—f(t)

n

= Z(";Tﬁ +f(t) +e _xLTBn)/ E;\(t,s)ds — f(t)

i=1 Ay

R Tig_ 4 )
le B-F) /A Exlt)ds

+ [;:f(ti) /AiEfn(t,s)ds —f(t)] +;ei /qu’h(t’s)ds
=h+hL+15, -

from the proof of Theorem 3.2 in Hu et al. [12], we get I; = Op(n~'/2), I = Op(n™") + Op(t;,)
and I3 = Op(n~3*M,,), and it implies that

I = op(I3)
and
I, = op(I3).

Then we should prove

i1€i [y En(t,s)d.
b Tmaly Falb9ds 2 N@©,1). (33)
7 \/Var(z;;l i [, Et,s)ds)

i=1"%ni

Leta,; =1;! fAi E;(t,s)ds, then, by Lemma 3.6 and (C5), max; <;<y |@,;| — 0,and Y, a?, =
O(1), and condition (i) implies that {e,,#n > 1} is a uniformly integral family on L,, then,
by Lemma 3.8 and (ii), we have

o (fu) £ ) 3 N(O, 1). (34)
The proof is completed. O

5 A simulation example
In this section, we perform a simulation example to verify the accuracy of Theorem 4.1
and Theorem 4.3. Consider the partially linear model

yi=xB+f(t)+e, i=12,...,n,

where x; = cos(2rt;),f(8;) = sin(2w¢;), Bo = 5,4 = i/n, e; is NSD sequence and raised as fol-
lows.

Let {e1,ey,...,e,} be asequence of independent and identically distributed random vari-
ables with common probability mass function P(e; = 0) = 2P(e; = 1) = P(e; = 2) = 0.4.
Then {ej,ey,...,e,} given S, = n is NSD by Theorem 3.1 in Hu [25], where §,, = Zle e;.
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Figure 1 A comparison fitted distribution functions of Mﬁnfﬁo and N(O, 1), and QQ-plot of Mﬁnfﬁo’ where
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Figure 2 A comparison fitted distribution functions of Mﬁnfﬁo and N(0, 1), and QQ-plot of Mﬁnfﬁo’ where
n=128

Set m = 3 and the difference sequence d, = V3/4,dy = dy = d3 = —/1/12 (Wang et al.
[9]). We first evaluate the M ufo = (n— m)‘% 17 1 E,,(/.‘},, — Bo) approximation. Figures 1 and
2 show the results for two sample size specifications (n = 64, n = 128). Panel 1 in Fig. 1 com-
pares the empirical distribution functions of Mz _, and N(0,1). Panel 2 in Fig. 1 gives the
QQ-plotof M fn—po- Figure 1 shows that the distribution of M 4,—f, Canapproximate N (0,1)
well even if the sample size are not large (1 = 64). Comparison of Fig. 2 with Fig. 1 indicates
that the distribution approximation for the larger sample size is much more accurate than
that for the small one.

Choose the Daubechies scaling function 2¢(¢) as in Hu et al. [29]. Figures 3 and 4 show
that the distribution of Mj’n—f =1, 1(}A”,,(t) —f(#)) is closer and closer to N(0,1) with the

increasing sample size.

6 Conclusions

In this paper, we use a difference-based and ordinary least square (DOLS) method to ob-
tain the estimator of the unknown parametric component 8 of the partial linear model
with dependent errors. In addition, we investigate the asymptotic normality for the DOLS
estimator of 8 and wavelet estimator of f(-). Thus, we extend some results of Hu et al. [12]
to the partially linear model with NSD errors. Furthermore, NSD random variables con-
tain negatively associated random variables. Therefore, it is an interesting subject to in-
vestigate the limit properties of the difference-based estimator for a partially linear model

with NSD errors in future studies.
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