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Abstract
We study asymptotic properties of estimators of parameter and non-parameter in a
partially linear model in which errors are dependent. Using a difference-based and
ordinary least square (DOLS) method, the estimator of an unknown parametric
component is given and the asymptotic normality of the DOLS estimator is obtained.
Meanwhile, the estimator of a nonparametric component is derived by the wavelet
method, and asymptotic normality and the weak convergence rate of the wavelet
estimator are discussed. Finally, the performance of the proposed estimator is
evaluated by a simulation study.
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1 Introduction
Consider the partially linear model (PLM)

yi = xT
i β + f (ti) + ei, 1 ≤ i ≤ n, (1)

where the superscript T denotes the transpose, yi are scalar response variables, xi =
(xi1, . . . , xid)T are explanatory variables, β is a d-dimensional column vector of the un-
known parameter, f (·) is an unknown function, ti are deterministic with 0 ≤ t1 ≤ · · · ≤
tn ≤ 1, and ei are random errors.

PLM was first considered by Engle et al. [1], and now is one of the most widely used
statistical models. It can be applied in almost every field, such as engineering, economics,
medical sciences and ecology, etc. There are many authors (see [2–8]) concerned with var-
ious estimation methods to obtain estimators of the unknown parameters and nonparam-
eters for partially linear model. Deep results such as asymptotic normality of estimators
have been obtained.

In this paper, by a difference-based approach, we will use the ordinary least square and
wavelet to investigate model (1). The differencing procedures provide a convenient means
for introducing nonparametric techniques to practitioners in a way which parallels their
knowledge of parametric techniques, and differencing procedures may easily be combined
with other procedures. For example, Wang et al. [9] obtained a difference-based approach
to the semiparametric partially linear model. Tabakan et al. [10] studied a difference-based
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ridge in partially linear model. Duran et al. [11] investigated the difference-based ridge and
Liu type estimators in semiparametric regression models. Hu et al. [12] used a difference-
based Huber Dutter estimator (DHD) to obtain the root variance σ and parametric β for
partially linear model. Wu [13] constructed the restricted difference-based Liu estima-
tor for the parametric component of partially linear model. However, in the majority of
the previous work it is assumed that errors are independent. The asymptotic problem of
difference-based estimators of partially linear model with dependent errors is in practice
important. In this paper, we use a difference-based and ordinary least square method to
study the partially linear model with dependent errors.

For the dependent errors ei we confine ourselves to negatively superadditive dependent
(NSD) random variables. There are many applications of NSD random variables in multi-
variate statistical analysis; see [14–23]. Hence, it is meaningful to study the properties of
NSD random variables. The formal definition of NSD random variables is the following.

Definition 1 (Kemperman [24]) A function �: Rn → R is called superadditive if �(x ∨
y) + �(x ∧ y) ≥ �(x) + �(y) for all x, y ∈ Rn, where ∨ stands for componentwise maximum,
and ∧ for componentwise minimum.

Definition 2 (Hu [25]) A sequence {e1, e2, . . . , en} is said to be NSD if

E�(e1, e2, . . . , en) ≤ E�(Y1, Y2, . . . , Yn), (2)

where Y1, Y2, . . . , Yn are independent with ei
d= Yi for each i, and � is a superadditive func-

tion such that the expectations in (2) exist. An infinite sequence {en, n ≥ 1} of random
variables is said to be NSD if {e1, e2, . . . , en} is NSD for all n ≥ 1.

In addition, using the wavelet method (see [26–29]), the weak convergence rate and
asymptotic normality of the estimator of f (·) are obtained.

Throughout the paper we fix the following notations. β0 is the true value of the unknown
parameter β . Z is the set of integers, N is the set of natural numbers, R is the set of real
numbers. Denote x+ = max(x, 0), and x– = (–x)+. Let C1, C2, C3, C4 are positive constants.
For a sequence of random variables ηn and a positive sequence dn, write ηn = o(dn) if ηn/dn

converges to 0 and ηn = O(dn) if ηn/dn is bounded. We can similarly define the notations
of oP and OP for stochastic convergence and stochastic bounded. Weak convergence of
a distribution is denoted by Hn

D→ H , and for random variables by Yn
D→ Y . ‖x‖ is the

Euclidean norm of x, and 	x
 = max{k ∈ Z : k ≤ x}.

2 Estimation method
Define the (n – m) × n differencing matrix D as

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d0 d1 d2 · · · dm 0 · · · · · · · · · · · · · · · 0
0 d0 d1 d2 · · · dm 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
0 · · · · · · · · · · · · 0 d0 d1 d2 · · · · · · 0
0 · · · · · · · · · · · · · · · 0 d0 d1 d2 · · · dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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where the positive integer number m is the order of differencing and d0, d1, . . . , dm are
differencing weights satisfying

m∑
q=0

dq = 0,
m∑

q=0

d2
q = 1. (3)

This differencing matrix is given by Yatchew [30]. Using the differencing matrix to
model (1), we have

DY = DXβ + Df + De. (4)

From Yatchew [30], the application of differencing matrix D in model (1) can remove the
nonparametric effect in large samples, so we will ignore the presence of Df . Thus, we can
rewrite (4) as

Ỹ = X̃β + ẽ, (5)

where Ỹ = (ỹ1, . . . , ỹn–m)T , X̃ = (x̃1, . . . , x̃n–m)T and �n = X̃T X̃ is nonsingular for large n,
ẽ = (ẽ1, . . . , ẽn–m)T , ỹi =

∑m
q=0 dqyi+q, x̃i =

∑m
q=0 dqxi+q, ẽi =

∑m
q=0 dqei+q, i = 1, . . . , n – m.

As a usual regression model, the ordinary least square estimator β̂n of the unknown
parameter β is given as

β̂n = arg min
β

n–m∑
i=1

(
ỹi – x̃T

i β
)2. (6)

Then the estimator satisfies

–2
n–m∑
i=1

x̃i
(
ỹi – x̃T

i β̂n
)

= 0,

and hence

β̂n = �–1
n X̃T Ỹ . (7)

In the following, we use wavelet techniques to estimate f (·) if β̂n is known.
Suppose that there exists a scaling function φ(·) in the Schwartz space Sl and a multires-

olution analysis {Vm̃} in the concomitant Hilbert space L2(R), with the reproducing kernel
Em̃(t, s) given by

Em̃(t, s) = 2m̃E0
(
2m̃t, 2m̃s

)
= 2m̃

∑
k∈Z

φ
(
2m̃t – k

)
φ
(
2m̃s – k

)
.

Let Ai = [si–1, si] denote intervals that partition [0, 1] with ti ∈ Ai for 1 ≤ i ≤ n. Then the
estimator of the nonparameter f (t) is given by

f̂n(t) =
n∑

i=1

(
yi – xT

i β̂n
)∫

Ai

Em̃(t, s) ds. (8)
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3 Preliminary conditions and lemmas
In this section, we give the following conditions and lemmas which will be used to obtain
the main results.

(C1) max1≤i≤n ‖xi‖ = C1 < ∞.
(C2) f (·) ∈ Hα (Sobolev space), for some α > 1/2.
(C3) f (·) is Lipschitz function of order γ > 0.
(C4) φ(·) belongs to Sl , which is a Schwartz space for l ≥ α. φ(·) is a Lipschitz function

of order 1 and has compact support, in addition to |φ̂(ξ ) – 1| = O(ξ ) as ξ → 0,
where φ̂ denotes Fourier transform of φ.

(C5) si, 1 ≤ i ≤ n, satisfy max1≤i≤n(si – si–1) = O(n–1), and 2m̃ = O(n1/3).

Remark 3.1 Condition (C1) is standard and often imposed in the estimator of partial linear
models, once can refer to Zhao et al. [31]. Conditions (C2)–(C5) are used by Hu et al. [29].
Therefore, our conditions are very mild and can easily be satisfied.

Lemma 3.1 (Hu [25]) Suppose that {e1, e2, . . . , en} is NSD.
(i) If g1, g2, . . . , gn are nondecreasing functions, then {g1(e1), g2(e2), . . . , gn(en)} is NSD.

(ii) For any 2 ≤ m ≤ n and 1 ≤ i1 < i2 < · · · < im, {ei1 , ei2 , . . . , eim} is NSD.

Lemma 3.2 (Wang et al. [17]) Let p > 1. Let {en, n ≥ 1} be a sequence of NSD random
variables with Een = 0 and E|en|p < ∞ for each n ≥ 1. Then for all n ≥ 1,

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣
p)

≤ 23–p
n∑

i=1

E|ei|p for 1 < p ≤ 2 (9)

and

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣
p)

≤ 2
(

15p
ln p

)p
[ n∑

i=1

E|ei|p +

( n∑
i=1

Ee2
i

)p/2]
for p > 2. (10)

Lemma 3.3 Let p > 1. Let {en, n ≥ 1} be a sequence of NSD random variables with Een = 0
and E|en|p < ∞ for all n ≥ 1, and {cq, 0 ≤ q ≤ m} be a sequence of real constants. Then for
all n ≥ 1,

E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

m∑
q=0

cqei+q

∣∣∣∣∣
p)

≤ 4mp–1
n∑

i=1

m∑
q=0

E|cqei+q|p for 1 < p ≤ 2 (11)

and, for p > 2,

E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

m∑
q=0

cqei+q

∣∣∣∣∣
p)

(12)

≤ 2p+1mp–1
(

15p
ln p

)p
[ n∑

i=1

m∑
q=0

E|cqei+q|p +

( n∑
i=1

m∑
q=0

E(cqei+q)2

)p/2]
.

Proof Let z1i =
∑m

q=0 c+
q ei+q, z2i =

∑m
q=0 c–

q ei+q, then
∑m

q=0 cqei+q = z1i – z2i, and {c+
q ei+q, i ≥ 1}

and {c–
q ei+q, i ≥ 1} are both NSD random variables for all 0 ≤ q ≤ m by Lemma 3.1. By the
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Cr-inequality,

E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

m∑
q=0

cqei+q

∣∣∣∣∣
p)

= E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

(z1i – z2i)

∣∣∣∣∣
p)

≤ 2p–1

{
E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

z1i

∣∣∣∣∣
p)

+ E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

z2i

∣∣∣∣∣
p)}

≤ 2p–1mp–1
m∑

q=0

{
E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

c+
q ei+q

∣∣∣∣∣
p)

+ E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

c–
q ei+q

∣∣∣∣∣
p)}

.

In the case 1 < p ≤ 2, it follows from Lemma 3.2 that

E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

k=1

m∑
q=0

cqei+q

∣∣∣∣∣
p)

≤ 2p–1mp–1
m∑

q=0

{
E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

c+
q ei+q

∣∣∣∣∣
p)

+ E

(
max

1≤k≤n–m

∣∣∣∣∣
k∑

i=1

c–
q ei+q

∣∣∣∣∣
p)}

≤ 4mp–1

(n–m∑
i=1

m∑
q=0

E
∣∣c+

q ei+q
∣∣p +

n–m∑
i=1

m∑
q=0

E
∣∣c–

q ei+q
∣∣p
)

. (13)

Note that |cq|p = |c+
q |p + |c–

q |p, the desired result (11) follows from (13) immediately. In the
same way, we also have (12). The proof is completed. �

Remark 3.2 From Lemma 3.3 and Lemma 3.1, we have, for 1 < p ≤ 2,

E

(∣∣∣∣∣
∑
i∈S

m∑
q=0

cqei+q

∣∣∣∣∣
p)

≤ 4mp–1

{∑
i∈S

m∑
q=0

E|cqei+q|p
}

(14)

and, for p > 2,

E

(∣∣∣∣∣
∑
i∈S

m∑
q=0

cqei+q

∣∣∣∣∣
p)

≤ 2p+1mp–1
(

15p
ln p

)p
[∑

i∈S

m∑
q=0

E|cqei+q|p +

(∑
i∈S

m∑
q=0

E(cqei+q)2

)p/2]
, (15)

where S ⊂ {1, 2, . . . , n}.

Lemma 3.4 Let A and B be disjoint subsets of N, and {Xj, j ∈ A ∪ B} be a sequence of NSD
random variables. Let f : R → R and g : R → R be differentiable with bounded derivatives,
and ‖ · ‖∞ stand for supnorm. Then

∣∣∣∣Cov

{
f
(∑

i∈A

aiXi

)
, g
(∑

j∈A

ajXj

)}∣∣∣∣≤
∥∥f ′∥∥∞

∥∥g ′∥∥∞

∣∣∣∣Cov

(∑
i∈A

aiXi,
∑
j∈B

ajXj

)∣∣∣∣,
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provided the covariation on the right hand side exists, where {ai, 1 ≤ i ≤ n} is an array of
real numbers.

Proof For a pair of random variables Z1 =
∑

i∈A aiXi, Z2 =
∑

j∈B ajXj, we have

H(z1, z2) = P(Z1 ≤ z1, Z2 ≤ z2) – P(Z1 ≤ z1)P(Z2 ≤ z2).

Denote by F(z1, z2) the joint distribution functions of (Z1, Z2), and FZ1 (z2), FZ2 (z2) the
marginal distribution function of Z1, Z2, one gets

Cov(Z1, Z2) = E(Z1Z2) – E(Z1)E(Z2)

=
∫ ∫ [

F(z1, z2) – FZ1 (z1)FZ2 (z2)
]

dz1 dz2 =
∫ ∫

H(z1, z2) dz1 dz2,

this relation was established in Lehmann [32] for any two random variables Z1 and Z2 with
Cov(Z1, Z2) exist. Let f , g are complex valued function on R with derivatives f ′, g ′ < ∞, then
we have

∣∣Cov
(
f (Z1), g(Z2)

)∣∣

=
∫ ∫

f ′(Z1)g ′(Z2)H(z1, z2) dz1 dz2

≤
∫ ∫ ∣∣f ′(Z1)

∣∣∣∣g ′(Z2)
∣∣∣∣H(z1, z2)

∣∣dz1 dz2 ≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

∣∣Cov(Z1, Z2)
∣∣.

The proof is completed. �

Lemma 3.5 Let {en, n ≥ 1} be a sequence of NSD random variable with Een = 0. Let ẽij =∑m
q=0 dqeij+q, and |ij – ik| > m if j �= k. Then

∣∣∣∣∣E exp

(
i

n∑
j=1

tij ẽij

)
–

n∏
j=1

E exp(itij ẽij )

∣∣∣∣∣≤ –
n∑

j=1

n∑
k=j+1

m∑
q1=0

m∑
q2=0

t2
0 Cov(eij+q1, eik +q2), (16)

where i =
√

–1,
∑m

q=0 dq = 0 and
∑m

q=0 d2
q = 1, ti1 , ti2 , . . . , tin are real numbers with |tij | ≤ t0.

Proof Notice that the result is true for n = 1.
For n = 2, let f (ẽi1 ) = exp{iti1 ẽi1}, g(ẽi2 ) = exp{iti2 ẽi2}. Then, by Lemma 3.4 and∑m
q=0 d2

q = 1,

∣∣E exp{iti1 ẽi1 + iti2 ẽi2} – E exp{iti1 ẽi1}E exp{iti2 ẽi2}
∣∣

=
∣∣Cov

(
exp{iti1 ẽi1}, exp{iti2 ẽi2}

)∣∣

≤ t2
0

∣∣∣∣∣
m∑

q1=0

m∑
q2=0

dq1 dq2 Cov(ei1+q1, ei2+q2)

∣∣∣∣∣

≤ –t2
0

m∑
q1=0

m∑
q2=0

Cov(ei1+q1, ei2+q2).
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Hence, the result is true for n = 2.
Moreover, suppose that (16) holds for n – 1. By Lemma 3.4, we have, for n,

∣∣∣∣∣E exp

{
i

n∑
j=1

tij ẽij

}
–

n∏
j=1

E exp{itij ẽij}
∣∣∣∣∣

≤
∣∣∣∣∣E exp

{
i

n∑
j=1

tij ẽij

}
– E exp

{
i

n–1∑
j=1

tij ẽij

}
E exp{itin ẽin}

∣∣∣∣∣

+

∣∣∣∣∣E exp

{
i

n–1∑
i=1

tij ẽij

}
E exp{itin ẽin} –

n–1∏
j=1

E exp{itij ẽij}E exp{itin ẽin}
∣∣∣∣∣

≤
∣∣∣∣∣Cov

(
exp

{
i

n–1∑
i=1

tij ẽij

}
, exp{itin ẽin}

)∣∣∣∣∣ +

∣∣∣∣∣E exp

{
i

n–1∑
j=1

tij ẽij

}
–

n–1∏
j=1

E exp{itij ẽij}
∣∣∣∣∣

≤
∣∣∣∣∣Cov

(
exp

{
i

n–1∑
i=1

tij ẽij

}
, exp{itin ẽin}

)∣∣∣∣∣ +
n–1∑
j=1

n–1∑
k=j+1

m∑
q1=0

m∑
q2=0

t2
0
∣∣Cov(eij+q1, eik +q2)

∣∣

≤ –t2
0

n∑
j=1

n∑
k=j+1

m∑
q1=0

m∑
q2=0

Cov(eij+q1, eik +q2),

which completes the proof. �

Lemma 3.6 (Hu et al. [29]) If Condition (C3) holds, then
(a1) |E0(t, s)| ≤ Ck

(1+|t–s|)k , |Em̃(t, s)| ≤ 2m̃C
(1+2m̃|t–s|)k (where k ∈ N and C = C(k) is a constant

depending on k only).
(a2) sup0≤s≤1 |Em̃(t, s)| = O(2m̃).
(a3) supt

∫ 1
0 |Em̃(t, s)|ds ≤ C2.

(a4)
∫ 1

0 Em̃(t, s) ds → 1, n → ∞.

Lemma 3.7 (Rao [33]) Suppose that {Xn, n ≥ 1} are independent random variables with
EXn = 0 and s–(2+δ)

n
∑n

j=1 E|Xj|2+δ → 0 for some δ > 0. Then

s–1
n

n∑
j=1

Xj
D→ N(0, 1),

where s2
n =

∑n
j=1 EX2

j = Var(
∑n

j=1 Xj).

Lemma 3.8 (Yu et al. [34]) Let {en, n ≥ 1} be a sequence of NSD random variable satisfying
Een = 0, supj≥1

∑
i:|i–j|≥u |Cov(ei, ej)| → 0 as u → ∞, and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array

of real numbers with max1≤i≤n |ani| → 0 and
∑n

i=1 a2
ni = O(1). Suppose that {en, n ≥ 1} is

uniformly integral in L2, then

σ –1
n

n∑
i=1

aniei
D→ N(0, 1),

where σ 2
n = Var(

∑n
i=1 aniei).
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4 Main results and their proofs
Theorem 4.1 Under Condition (C1), suppose that {en, n ≥ 1} is a sequence of NSD random
variables with Een = 0 and

(i) supn≥1 E|en|2+δ < ∞ for some δ > 0,
(ii) supj≥1

∑
i:|i–j|≥u |Cov(ei, ej)| → 0 as u → ∞. Then

(n – m)– 1
2 τ–1

β �n(β̂n – β0)
D−→ N(0, Id) (17)

provided that

τ 2
β = lim

n→∞(n – m)–1

{n–m∑
i=1

x̃ix̃T
i Var(ẽi) + 2

n–m∑
i=1

n–m∑
j=i+1

x̃ix̃T
j Cov(ẽi, ẽj)

}
(18)

is a positive definite matrix, where Id is the identity matrix of order d.

Proof By Condition (i), we have

sup
n≥1

Ee2
n < ∞ and lim

x→∞ sup
n≥1

Ee2
nI
{|en| > x

}
= 0,

from which it follows that

C3 := sup
n>m

(n – m)–1
n–m∑
i=1

m∑
q=0

Var(dqei+q) < ∞,

and for all ε > 0

(n – m)–1
n–m∑
i=1

m∑
q=0

E(dqei+q)2I
{|dqei+q| ≥

√
n – mε

}→ 0 as n → ∞.

Then we can find a positive number sequence {εn, n ≥ 1} with εn → 0 such that

(n – m)–1
n–m∑
i=1

m∑
q=0

E(dqei+q)2I
{|dqei+q| ≥

√
n – mεn

}→ 0 as n → ∞.

Now, we define the integers: m0 = 0, and, for each j = 0, 1, 2, . . . , put

m2j+1 = min

{
m′ : m′ ≥ m2j, (n – m)–1

m′∑
i=m2j+1

m∑
q=0

Var(dqei+q) >
√

εn

}
,

m2j+2 = m2j+1 +
⌊

1
εn

⌋
+ m.

Denote

Ij = {k : m2j < k ≤ m2j+1, j = 0, . . . , l} and

Jj = {k : m2j+1 < k ≤ m2(j+1), j = 0, . . . , l},
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where l = l(n) is the number of blocks of indices Ij. Then

l
√

εn ≤ (n – m)–1
l∑

j=1

∑
i∈Ij

m∑
q=0

Var(dqei+q) ≤ (n – m)–1
n–m∑
i=1

m∑
q=0

E(dqei+q)2 ≤ C3, (19)

and hence we have l ≤ C3/√εn. If the number of the remainder term is not zero when the
construction ends, then we put all the remainder terms into a block denoted by Jl . By (7),
we have

�n(β̂n – β0) =
n–m∑
i=1

x̃iẽi. (20)

Then to prove (17), it is enough to prove that

(n – m)–1/2τ–1
β

n–m∑
i=1

x̃iẽi
D→ N(0, Id). (21)

Let u be an arbitrary d-dimensional column vector with ‖u‖ = 1, and set ai = uTτ–1
β x̃i.

Then, by the Cramér–Wold device, to prove (21) it suffices to prove that

1√
n – m

n–m∑
i=1

aiẽi
D→ N(0, 1). (22)

Write

1√
n – m

n–m∑
i=1

aiẽi =
1√

n – m

l∑
j=1

∑
i∈Ij

aiẽi +
1√

n – m

l∑
j=1

∑
i∈Jj

aiẽi

:= I + J .

Moreover, note that max0≤q≤m |dq| ≤ 1 and max1≤i≤n |ai| < ∞ by Condition (C1), then
applying Lemma 3.3 with p = 2 we have

E

(
1√

n – m

l∑
j=1

∑
i∈Jj

aiẽi

)2

=
1

n – m
E

( l∑
j=1

∑
i∈Jj

m∑
q=0

aidqei+q

)2

≤ 4m
n – m

l∑
j=1

∑
i∈Jj

m∑
q=0

E|aidqei+q|2

≤ 4m
n – m

(
max

m1≤i≤m2l+2
a2

i

) l∑
j=1

∑
i∈Jj

m∑
q=0

E|dqei+q|2

≤ 4m
n – m

(
max

m1≤i≤m2l+2
a2

i

) l∑
j=1

∑
i∈Jj

m∑
q=0

E|dqei+q|2I
{|dqei+q| ≥

√
n – mεn

}
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+
4m

n – m

(
max

m1≤i≤m2l+2
a2

i

) l∑
j=1

∑
i∈Jj

m∑
q=0

E|dqei+q|2I
{|dqei+q| <

√
n – mεn

}

≤ 4m
n – m

(
max

m1≤i≤m2l+2
a2

i

) l∑
j=1

∑
i∈Jj

m∑
q=0

E|dqei+q|2I
{|dqei+q| ≥

√
n – mεn

}

+
4m

n – m

(
max

m1≤i≤m2l+2
a2

i

)
l
(⌊

ε–1
n
⌋

+ m
)
(n – m)ε2

n

≤ 4m
n – m

(
max

m1≤i≤m2l+2
a2

i

) n–m∑
i=1

m∑
q=0

E(dqei+q)2I
{|dqei+q| ≥

√
n – mεn

}

+ 4m
(

max
m1≤i≤m2l+2

a2
i

)
C3εn

–1/2(⌊ε–1
n
⌋

+ m
)
ε2

n

→ 0 as n → ∞, (23)

which follows from

J P→ 0 as n → ∞

by the Markov inequality. Therefore, to prove (22), it suffices to show that

1√
n – m

l∑
j=1

∑
i∈Ij

aiẽi
D→ N(0, 1). (24)

On the one hand, by the definition of τ 2
β , it is easy to show that

lim
n→∞ Var

(
1√

n – m

n–m∑
i=1

aiẽi

)
= 1.

Therefore by the above formula and (23),

lim
n→∞ Var

(
1√

n – m

l∑
j=1

∑
i∈Ij

aiẽi

)
= 1. (25)

On the other hand, by Lemma 3.5 and (ii), we have

∣∣∣∣∣E exp

(
i

l∑
j=1

∑
i∈Ij

tiẽi

)
–

l∏
j=1

E
(∑

i∈Ij

exp(itiẽi)
)∣∣∣∣∣

≤ –t2
0

l∑
p=1

l∑
s=p+1

∑
i∈Ip

∑
j∈Is

m∑
q1=0

m∑
q2=0

Cov(ei+q1, ej+q2)

= –t2
0

m∑
q1=0

m∑
q2=0

∑

i+q1–j–q2≥	 1
εn 
+m

Cov(ei+q1, ej+q2)

→ 0 as n → ∞, (26)
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which implies that the problem now is reduced to study the asymptotic behavior of inde-
pendent and non-identically distribution random variables {∑i∈Ij

aiẽi}.
To complete the proof of (24), it is enough to show that random variables {∑i∈Ij

aiẽi}
satisfies the condition of Lemma 3.7. Set

C4 = max
1≤i≤m2l+2

|ai|2+δ and τ 2
n = Var

(
1√

n – m

n–m∑
i=1

aiẽi

)
.

By the definition of Ij,

(n – m)–1
∑
i∈Ij

m∑
q=0

E(dqei+q)2

= (n – m)–1
m2j+1∑
m2j

m∑
q=0

E(dqei+q)2

= (n – m)–1
m2j+1–1∑

m2j

m∑
q=0

E(dqei+q)2 + (n – m)–1
m∑

d=0

E(dqem2j+1+q)2

≤ √
εn + (n – m)–1

m∑
q=0

E(dqem2j+1+q)2

≤ √
εn + (n – m)–1 sup

n≥1
Ee2

n. (27)

By Lemma 3.3 with p = 2 + δ and (27), and recalling that l ≤ C3/√εn,

τ–(2+δ)
n

l∑
j=1

E
∣∣∣∣(n – m)–1/2

∑
i∈Ij

aiẽi

∣∣∣∣
2+δ

= τ–(2+δ)
n (n – m)–(2+δ)/2

l∑
j=1

E

∣∣∣∣∣
∑
i∈Ij

m∑
q=0

aidqei+q

∣∣∣∣∣
2+δ

≤ τ–(2+δ)
n (n – m)–(2+δ)/2C42δ+3mδ+1

(
15(2 + δ)
ln(2 + δ)

)2+δ l∑
j=1

∑
i∈Ij

m∑
q=0

E|dqei+q|2+δ

+ τ–(2+δ)
n C42δ+3mδ+1

(
15(2 + δ)
ln(2 + δ)

)2+δ l∑
j=1

{
(n – m)–1

∑
i∈Ij

m∑
q=0

E(dqei+q)2

}(2+δ)/2

≤ τ–(2+δ)
n (n – m)–δ/2C42δ+3mδ+2

(
15(2 + δ)
ln(2 + δ)

)2+δ

sup
n≥1

E|en|2+δ

+ τ–(2+δ)
n C42δ+3mδ+1

(
15(2 + δ)
ln(2 + δ)

)2+δ

· C3ε
–1/2
n

{√
εn + (n – m)–1 sup

n≥1
Ee2

n

}(2+δ)/2

→ 0, (28)

since τn → 1 and (i).
Hence, by Lemma 3.7, (24) holds and the proof is completed. �
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Corollary 4.1 Under Condition (C1), let {en, n ≥ 1} be a sequence of independent random
variables with Een = 0, and suppose that (i) of Theorem 4.1 holds and Ee2

n = σ 2 for all n ≥ 1.
Then

(n – m)– 1
2 τ–1

β �n(β̂n – β0)
D−→ N(0, Id),

provided that

τ 2
β = lim

n→∞(n – m)–1

{n–m∑
i=1

x̃ix̃T
i σ 2 + 2

m∑
k=1

n–m–k∑
i=1

x̃ix̃T
i+k(d0dk + d1dk + · · · + dm–kdm)σ 2

}

is a positive definite matrix.

Proof Since {en, n ≥ 1} is a sequence of independent random variables, we have Cov(ei,
ej) = 0 if i �= j and hence Cov(ẽi, ẽj) = 0 if |i – j| > m. It follows that

τ 2
β = lim

n→∞(n – m)–1

{n–m∑
i=1

x̃ix̃T
i Var(ẽi) +

n–m∑
i=1

n–m∑
j=1,j �=i

x̃ix̃T
j Cov(ẽi, ẽj)

}

= lim
n→∞(n – m)–1

{n–m∑
i=1

x̃ix̃T
i σ 2 + 2

m∑
k=1

n–m–k∑
i=1

x̃ix̃T
i+k(d0dk + d1dk+1 + · · ·

+ dm–kdm)σ 2

}
(29)

from the conditions of Corollary 4.1, we see that τ 2
β is a positive definite matrix. Thus the

result follows from (29). �

Theorem 4.2 Assume the conditions of Theorem 4.1, and further assume that Conditions
(C2)–(C5) hold. Then

sup
0≤t≤1

∣∣f̂n(t) – f (t)
∣∣ = OP

(
n–γ

)
+ OP(τm̃) + OP

(
n–1/3Mn

)
as n → ∞, (30)

where Mn → ∞ in arbitrary slowly rate, and τm̃ = 2–m̃(α–1/2) if 1/2 < α < 3/2, τm̃ =
√

m̃2–m̃

if α = 3/2, and τm̃ = 2–m̃ if α > 3/2.

Proof We can prove Theorem 4.2 by a similar argument to Theorem 3.2 of Hu et al. [12],
so we omit the detail. �

Theorem 4.3 Under the Conditions of Theorem 4.2, we have

f̂n(t) – f (t)
τt

D→ N(0, 1), (31)

where τ 2
t = Var(

∑n
i=1 ei

∫
Ai

Em̃(t, s) ds).
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Proof Note

f̂n(t) – f (t) =
n∑

i=1

(
yi – xT

i β̂n
)∫

Ai

Em̃(t, s) ds – f (t)

=
n∑

i=1

(
xT

i β + f (ti) + ei – xT
i β̂n

)∫
Ai

Em̃(t, s) ds – f (t)

=
n∑

i=1

xT
i (β – β̂n)

∫
Ai

Em̃(t, s) ds

+

{ n∑
i=1

f (ti)
∫

Ai

Em̃(t, s) ds – f (t)

}
+

n∑
i=1

ei

∫
Ai

Em̃(t, s) ds

:= I1 + I2 + I3, (32)

from the proof of Theorem 3.2 in Hu et al. [12], we get I1 = OP(n–1/2), I2 = OP(n–γ )+OP(τm̃)
and I3 = OP(n–1/3Mn), and it implies that

I1 = oP(I3)

and

I2 = oP(I3).

Then we should prove

I3

τt
=

∑n
i=1 ei

∫
Ai

Em̃(t, s) ds√
Var(

∑n
i=1 ei

∫
Ai

Em̃(t, s) ds)

D→ N(0, 1). (33)

Let ani = τ–1
t
∫

Ai
Em̃(t, s) ds, then, by Lemma 3.6 and (C5), max1≤i≤n |ani| → 0, and

∑n
i=1 a2

ni =
O(1), and condition (i) implies that {en, n ≥ 1} is a uniformly integral family on L2, then,
by Lemma 3.8 and (ii), we have

τ–1
t
(
f̂n(t) – f (t)

) D→ N(0, 1). (34)

The proof is completed. �

5 A simulation example
In this section, we perform a simulation example to verify the accuracy of Theorem 4.1
and Theorem 4.3. Consider the partially linear model

yi = xiβ + f (ti) + ei, i = 1, 2, . . . , n,

where xi = cos(2π ti), f (ti) = sin(2π ti),β0 = 5, ti = i/n, ei is NSD sequence and raised as fol-
lows.

Let {e1, e2, . . . , en} be a sequence of independent and identically distributed random vari-
ables with common probability mass function P(e1 = 0) = 2P(e1 = 1) = P(e1 = 2) = 0.4.
Then {e1, e2, . . . , en} given Sn = n is NSD by Theorem 3.1 in Hu [25], where Sn =

∑n
i=1 ei.
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Figure 1 A comparison fitted distribution functions of M
β̂n–β0

and N(0, 1), and QQ-plot of M
β̂n–β0

, where
n = 64

Figure 2 A comparison fitted distribution functions of M
β̂n–β0

and N(0, 1), and QQ-plot of M
β̂n–β0

, where
n = 128

Set m = 3 and the difference sequence d0 =
√

3/4, d1 = d2 = d3 = –
√

1/12 (Wang et al.
[9]). We first evaluate the Mβ̂n–β0

= (n – m)– 1
2 τ–1

β �n(β̂n – β0) approximation. Figures 1 and
2 show the results for two sample size specifications (n = 64, n = 128). Panel 1 in Fig. 1 com-
pares the empirical distribution functions of Mβ̂n–β0

and N(0, 1). Panel 2 in Fig. 1 gives the
QQ-plot of Mβ̂n–β0

. Figure 1 shows that the distribution of Mβ̂n–β0
can approximate N(0, 1)

well even if the sample size are not large (n = 64). Comparison of Fig. 2 with Fig. 1 indicates
that the distribution approximation for the larger sample size is much more accurate than
that for the small one.

Choose the Daubechies scaling function 2φ(t) as in Hu et al. [29]. Figures 3 and 4 show
that the distribution of Mf̂n–f = τ–1

t (f̂n(t) – f (t)) is closer and closer to N(0, 1) with the
increasing sample size.

6 Conclusions
In this paper, we use a difference-based and ordinary least square (DOLS) method to ob-
tain the estimator of the unknown parametric component β of the partial linear model
with dependent errors. In addition, we investigate the asymptotic normality for the DOLS
estimator of β and wavelet estimator of f (·). Thus, we extend some results of Hu et al. [12]
to the partially linear model with NSD errors. Furthermore, NSD random variables con-
tain negatively associated random variables. Therefore, it is an interesting subject to in-
vestigate the limit properties of the difference-based estimator for a partially linear model
with NSD errors in future studies.
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Figure 3 A comparison fitted distribution functions of Mf̂n–f
and N(0, 1), and QQ-plot of Mf̂n–f

, where n = 64

Figure 4 A comparison fitted distribution functions of Mf̂n–f
and N(0, 1), and QQ-plot of Mf̂n–f

, where n = 128
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