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Abstract
We consider the moving least-square (MLS) method by the coefficient-based
regression framework with lq-regularizer (1≤ q ≤ 2) and the sample dependent
hypothesis spaces. The data dependent characteristic of the new algorithm provides
flexibility and adaptivity for MLS. We carry out a rigorous error analysis by using the
stepping stone technique in the error decomposition. The concentration technique
with the l2-empirical covering number is also employed in our study to improve the
sample error. We derive the satisfactory learning rate that can be arbitrarily close to
the best rate O(m–1) under more natural and much simpler conditions.
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1 Introduction
The least-square (LS) method is an important global approximate method based on the
regular or concentrated data sample points. However, there are still some irregular or scat-
tered samples which are obtained in many practical applications such as engineering and
machine learning [1–4]. They also need to be analyzed to achieve their special usefulness.
For example, in geographical contour drawing, it is important to derive a set of contours
but the height is available only for some scattered data sample points. Therefore, it is vital
to seek a suitable local approximation method to deal with scattered data. The moving
least-square (MLS) method was introduced by McLain in [4] to draw a set of contours
based on a cluster of scattered data sample points. The central idea of the MLS method
consists of two steps: first, one takes an arbitrary fixed point and forms a local approxi-
mation formula; second, since the fixed point is arbitrary, therefore, one can let it move
over the whole domain. It turns out that MLS method is a useful local approximation tool
in various mathematics fields such as approximation theory, data smoothing [5], statis-
tics [6] and numerical analysis [7]. In computer graphics, the MLS method is useful for
reconstructing a surface from a set of points. Often it is used to create a 3D surface from
a point cloud. Recently, a research effort has been made to study the regression learning
algorithm by the MLS method; see [8–12]. It has advantages over classical learning algo-
rithms in the sense that its involved hypothesis space can be very simple such as the space
of linear functions or a polynomial space.
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We recall the regression learning problem by the MLS method briefly. Functions for
learning are defined on a compact subset X (input space) of Rn and take values in Y = R

(output space). The sampling process is controlled by a unknown Borel probability mea-
sure on Z = X × Y . The regression function is given by

fρ(x) =
∫

Y
y dρ(y|x),

where ρ(·|x) is the conditional probability measure induced by ρ on Y given x ∈ X. The
goal of regression learning is to find a good approximation of the regression function fρ
based on a set of random samples z = {zi}m

i=1 = {(xi, yi)}m
i=1 ∈ Zm drawn according to the

measure ρ independently and identically.
In [11], Tong and Wu considered the following regularized MLS regression algorithm.

The hypothesis space is a reproducing kernel Hilbert space (RKHS) HK induced by a
Mercer kernel K , which is a continuous, symmetric, and positive semi-definite func-
tion on X × X. The RKHS HK is the completion of the linear span of the set of func-
tions {Kx := K(x, ·) : x ∈ X} with respect to the inner product 〈∑n

i=1 αiKxi ,
∑m

j=1 βjKyj〉K :=∑n
i=1

∑m
j=1 αiβjK(xi, yj). The reproducing property in HK is

f (x) = 〈f , Kx〉K , for all f ∈HK , x ∈ X. (1.1)

Denote C(X) as the space of continuous functions on X with the norm ‖ · ‖∞. Since K is
continuous in X, HK ⊆ C(X). Let κ := supt,x∈X |K(x, t)| < ∞. Then, by (1.1), we have

‖f ‖∞ ≤ κ‖f ‖K , ∀f ∈HK , (1.2)

We define the approximation fz,λ of fρ pointwise:

fz,λ(x) = fz,σ ,λ,x(x) = fz,σ ,λ,x(u)|u=x, (1.3)

fz,σ ,λ,x := arg min
f ∈HK

{
1
m

m∑
i=1

�

(
x
σ

,
xi

σ

)(
yi – f (xi)

)2 + λ‖f ‖2
K

}
, (1.4)

where λ = λ(m) > 0 is a regularization parameter, σ = η(m) > 0 is a window width, and
� : Rn × R

n → R
+ is called a MLS weight function which satisfies the conditions as fol-

lows:

(1) 0 �= �(x, t) ≤ 1, ∀x, t ∈R
n, (1.5)

(2) �(x, t) ≥ cq, ∀|x – t| ≤ 1, (1.6)

(3)
∣∣�(x, t1) – �(x, t2)

∣∣ ≤ c�|t1 – t2|s, ∀x, t1, t2 ∈R
n, (1.7)

where the constants q > n + 1, cq, c� > 0.
The scheme (1.3)–(1.4) shows that regularization not only ensures the computational

stability but also preserves localization property for the algorithm. In this paper, we study
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the new regularized version of the MLS regression algorithm. We adopt the coefficient-
based lq-regularization and the data dependent hypothesis space.

fz,η(x) = fz,σ ,η,x(x) = fz,σ ,η,x(u)|u=x, (1.8)

fz,σ ,η,x = arg min
f ∈HK ,z

{
1
m

m∑
i=1

�

(
x
σ

,
xi

σ

)(
f (xi) – yi

)2 + η
z(f )

}
, η = η(m) > 0, (1.9)

where

HK ,z =

{
f (x) =

m∑
i=1

αiK(x, xi) : α = (α1, . . . ,αm) ∈R
m, m ∈N

}
,


z(f ) = inf

{ m∑
i=1

|αi|q
}

, 1 ≤ q ≤ 2.

The data dependence nature of the kernel-based hypothesis space provides flexibility for
the learning algorithm such as choosing the lq-norm regularizer of a function expansion
involving samples. Compared with the scheme (1.3)–(1.4) in a reproducing kernel Hilbert
space, the first advantage of the algorithm (1.9) is the effectivity of computations without
any optimization processes. Another advantage is that we can choose the suitable param-
eter q according to the research interest such as smoothness and sparsity. To study the
approximation quality of fz,η , we derive the upper bound of the error ‖fz,η – fρ‖ρX with
‖f (·)‖ρX := (

∫
X |f (·)|2dρX) 1

2 and its convergence rates as m → ∞; see [8–11, 13, 14]. The
remainder of this paper is organized as follows. In Sect. 2, we will provide the main result.
The error decomposition analysis and the upper bounds of the hypothesis error, the ap-
proximation error and the sample error will be given in Sects. 3. In Sect. 4, we will prove
the main result. Finally, Sect. 5 concludes the paper with future research lines.

2 Main result
We firstly formulate some basic notations and assumptions.

Let ρX be the marginal distribution of ρ on X and L2
ρX

(X) be the Hilbert space of func-
tions from X to Y square-integrable with respect to ρX with the norm denoted by ‖ · ‖ρX .
The integral operator LK : L2

ρX
(X) → L2

ρX
(X) is defined by

(LK f )(x) =
∫

X
K(x, t)f (t) dρX(t), x ∈ X.

Since X is compact and K is continuous, LK is a compact operator. Its fractional power
operator Lr

K : L2
ρX

(X) → L2
ρX

(X), r > 0 is defined by

Lr
K (f ) =

∞∑
i=1

μr
i 〈f , ei〉L2

ρX
ei, f ∈ L2

ρX
(X),

where {μi} are the eigenvalues of the operator LK and {ei} are the corresponding eigen-
functions which form an orthonormal basis of L2

ρX
(X); see [15]. For r > 0, the function fρ

is said to satisfy the regularity condition of order r provided that L–r
K fρ ∈ L2

ρX
.
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We show the following nice feature for the capacity of HK ,z when the l2-empirical cov-
ering number is used; see [16],

logN2(B1, ε) ≤ cpε
–p, ∀ε > 0, (2.1)

where B1 = {f ∈HK ,z : ‖f ‖K ≤ 1}, the exponent 0 < p < 2 and the constant cp > 0.

Definition 2.1 The probability measure ρX on X is said to satisfy the condition Lτ with
exponent τ > 0 if

ρX
(
B(x, r)

) ≥ cτ rτ , ∀0 < r ≤ r0, x ∈ X, (2.2)

where the constants r0 > 0, cτ > 0 and B(x, r) = {u ∈ X : |u – x| ≤ r} for r > 0.

We use the projection operator to obtain the faster learning rate under the condition
|y| ≤ M and M ≥ 1 almost surely; see [17–19].

Definition 2.2 Fix M > 0, the projection operator πM on the space of measurable func-
tions f : X →R is defined as

πM(f )(x) =

⎧⎪⎪⎨
⎪⎪⎩

M, if f (x) > M,

f (x), if |f (x)| ≤ M,

–M, if f (x) < –M.

(2.3)

We assume all the constants are positive and independent of δ, m, λ, η or σ . Now we are
in a position to give the learning rates of the algorithm (1.9).

Theorem 2.1 Suppose L–r
K fρ ∈ L2

ρX
with r > 0, (2.1) with 0 < p < 2 and (2.2) hold. If all the

functions f ∈HK ∪ {fρ} satisfy the Lipschitz condition on X, that is, for the constant c0 > 0,

∣∣f (u) – f (v)
∣∣ ≤ c0|u – v|, ∀u, v ∈ X, (2.4)

then, for any 0 < δ < 1, with confidence 1 – δ, we have

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ D̃

(
1
m

)θ (r)

log

(
2
δ

)
, (2.5)

where

θ (r) =

⎧⎨
⎩

min{ q
[r(2p+2q+pq)+pq] , 1}( 2r

1+τ
), 0 < r < 1

2 ;
2q

(2p+2q+3pq)(1+τ ) , r ≥ 1/2.

Remark 2.1 When p → 0 and r ≥ 1
2 , our convergence rate m– 2q

(2p+2q+3pq)(1+τ ) tends to m– 1
1+τ .

In [11], the authors have derived the rate m– 1
1+τ . In particular, assuming the unnatural

norm condition in [8] holds, we can obtain the faster rate mτε– 2q
2p+2q+3pq for r ≥ 1

2 , which
can be arbitrarily close to O(m–1) as ε → 0 and p → 0.
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3 Error analysis
We only present the results of the main propositions in this section. All the proofs will be
given in the appendix. To estimate ‖πM(fz,η) – fρ‖2

ρX
, we invoke the following proposition,

whose proof is completely similar to that of Theorem 3.3 in [11].

Proposition 3.1 If ρX satisfies (2.1), and all the functions f ∈HK ∪ {fρ} satisfy (2.4), then

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ σ –τ

cqcτ

∫
X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

}
dρX(x) + 8c0Mσ , (3.1)

where

Ex(f ) =
∫

Z
�

(
x
σ

,
u
σ

)(
f (u) – y

)2 dρ(u, y), ∀f : X →R (3.2)

is called the local moving expected risk.

Then we only need to provide the upper bound of the integral in (3.1). So to do this, we
give its decomposition by using fz,λ, which plays a stepping stone role between fz,η and the
regularization function fλ, while different regularization parameters λ and η are adopted.
Here fλ is given by

fλ := arg min
f ∈HK

{‖f – fρ‖2
ρX

+ λ‖f ‖2
K
}

. (3.3)

Proposition 3.2 Let fz,σ ,η,x be defined as in (1.9) and

Ez,x(f ) =
1
m

m∑
i=1

�

(
x
σ

,
xi

σ

)(
f (xi) – yi

)2 (3.4)

be the local moving empirical risk. Then

∫
X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

}
dρX(x) ≤ S(z,λ,η) + H(z,λ,η) + D(λ), (3.5)

where

S(z,λ,η) =
∫

X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ez,x

(
πM(fz,σ ,η,x)

)

+ Ez,x(fλ) – Ex(fλ)
}

dρX(x),

H(z,λ,η) =
∫

X

{(
Ez,x

(
πM(fz,σ ,η,x)

)
+ η
z(fz,σ ,η,x)

)

–
(
Ez,x(fλ) + λ‖fλ‖2

K
)}

dρX(x),

D(λ) = ‖fλ – fρ‖2
ρX

+ λ‖fλ‖2
K .

S(z,λ,η) is known as the sample error. H(z,λ,η) is called the hypothesis error. D(λ) is
called the approximation error.

The estimation of the hypothesis error can be conducted analogously to that in [18].
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Proposition 3.3 Under the assumptions of Theorem 2.1, we have

H(z,λ,η) ≤ mηM2

(mλ)q .

For the approximation error, we directly invoke the following result in [20].

Proposition 3.4 Under the assumption L–r
K fρ ∈ L2

ρX
with r > 0, we have

D(λ) ≤ C1λ
min{2r,1}. (3.6)

For the sample error, we decompose it into two parts:

S(z,λ,η) =
∫

X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

– Ez,x
(
πM(fz,σ ,η,x)

)
+ Ez,x(fρ)

}
dρX(x)

+
∫

X

{
Ez,x(fλ) – Ez,x(fρ)

– Ex(fλ) + Ex(fρ)
}

dρX(x)

:= S1(z,η) + S2(z,λ).

We firstly give the upper bound of S2(z,λ) by using the Bernstein probability inequality in
[14, 21].

Proposition 3.5 Under the assumptions of Theorem 2.1, for any 0 < δ < 1, with confidence
1 – δ/2,

S2(z,λ) ≤ D(λ)
2

+
7(3M + κ

√
D(λ)

λ
)2 log(2/δ)

3m
. (3.7)

Next the estimation for S1(z,η) is more difficult in the sense that it involves the com-
plexity of the function space HK ,z. Hence we need the uniform concentration inequality
from [22].

Proposition 3.6 Under the assumptions of Theorem 2.1, for any 0 < δ < 1, with confidence
1 – δ/2,

S1(z,η) ≤ 1
2

∫
X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

}
dρX(x)

+
176M2

m
log

(
2
δ

)
+ Cp,MR

2p
2+p
η m– 2

2+p , (3.8)

where Rη = κm1– 1
q ( M2

η
)

1
q .

4 Proof of the main result
Now we derive the learning rates.
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Proof of Theorem 2.1 Combining the four bounds of Proposition 3.3, 3.4, 3.5 and 3.6 with
(3.5), with confidence 1 – δ, we have

∫
X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

}
dρX(x)

≤ D1 log

(
2
δ

){
λmin{2r,1} + m–1λmin{2r–1,0}

+ m1–qηλ–q + m
–2q–2p+2pq

(2+p)q η
– 2p

q(2+p)
}

. (4.1)

By substituting (4.1) into (3.1), we have

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ D2 log

(
2
δ

){
σ –τ

{
λmin{2r,1} + m–1λmin{2r–1,0}

+ m1–qηλ–q + m
–2q–2p+2pq

(2+p)q η
– 2p

q(2+p)
}

+ σ
}

.

When 0 < r < 1/2,

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ D2 log

(
2
δ

){
σ –τ

{
λ2r + m–1λ2r–1 + m1–qηλ–q

+ m
–2q–2p+2pq

(2+p)q η
– 2p

q(2+p)
}

+ σ
}

.

Let λ = m–θ1 , η = m–θ2 and σ = m–θ3 .

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ D3 log

(
2
δ

)
m–θ , (4.2)

where

θ = min

{
–τθ3 + 2rθ1, –τθ3 + 1 + (2r – 1)θ1,

– τθ3 + q – 1 + θ2 – qθ1,

– τθ3 +
2q + 2p – 2pq

(2 + p)q
–

2p
q(2 + p)

θ2, θ3

}
.

To maximize the learning rate, we take

θmax = max
θ1,θ3

min

{
max

θ2
min

{
–τθ3 + q – 1 + θ2 – qθ1,

– τθ3 +
2q + 2p – 2pq

(2 + p)q
–

2p
q(2 + p)

θ2

}
,

– τθ3 + 2rθ1, –τθ3 + 1 + (2r – 1)θ1, θ3

}
.

Let

–τθ3 + q – 1 + θ2 – qθ1 = –τθ3 +
2q + 2p – 2pq

(2 + p)q
–

2p
q(2 + p)

θ2.
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Then

θmax = max
θ1,θ3

min

{
–τθ3 + q – 1 – qθ1 +

–pq + 4q + 2p – 2q2 – pq2

2p + 2q + pq

+
(2 + p)q2

2p + 2q + pq
θ1, –τθ3 + 2rθ1,

– τθ3 + 1 + (2r – 1)θ1, θ3

}

≥ max
θ3

min

{
max

θ1
min

{
–τθ3 + q – 1 – qθ1

+
–pq + 4q + 2p – 2q2 – pq2

2p + 2q + pq

+
(2 + p)q2

2p + 2q + pq
θ1, –τθ3 + 2rθ1

}
,

max
θ1

min
{

–τθ3 + 1 + (2r – 1)θ1, –τθ3 + 2rθ1
}

, θ3

}
.

Let

–τθ3 + q – 1 – qθ1 +
–pq + 4q + 2p – 2q2 – pq2

2p + 2q + pq

+
(2 + p)q2

2p + 2q + pq
θ1 = –τθ3 + 2rθ1,

–τθ3 + 1 + (2r – 1)θ1 = –τθ3 + 2rθ1.

Then

θmax ≥ max
θ3

min

{
–τθ3 +

4qr
2r(2p + 2q + pq) + 2pq

, –τθ3 + 2r, θ3

}

≥ min

{
max

θ3
min

{
–τθ3 +

4qr
2r(2p + 2q + pq) + 2pq

, θ3

}
,

max
θ3

min{–τθ3 + 2r, θ3}
}

= 2r min

{
–

qτ

(1 + τ )[r(2p + 2q + pq) + pq]

+
q

r(2p + 2q + pq) + pq
,

–τ

1 + τ
+ 1

}
.

When r ≥ 1/2,

∥∥πM(fz,η) – fρ
∥∥2

ρX
≤ D2 log

(
2
δ

){
σ –τ

{
λ + m–1 + m1–qηλ–q

+ m
–2q–2p+2pq

(2+p)q η
– 2p

q(2+p)
}

+ σ
}

.
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Similarly, we obtain

θmax ≥ 2q
(1 + τ )(2p + 2q + 3pq)

.

So we choose

θ (r) =

⎧⎨
⎩

min{ q
[r(2p+2q+pq)+pq] , 1}( 2r

1+τ
), 0 < r < 1

2 ;
2q

(2p+2q+3pq)(1+τ ) , r ≥ 1/2.

We complete the proof of Theorem 2.1. �

5 Conclusion and further discussion
We obtain the upper error bound of the algorithm (1.9) for the independent and identi-
cal samples with 1 ≤ q ≤ 2. We decomposed the error quantity into the approximation
error, the hypothesis error and the sample error and obtained their upper bounds using
error analysis techniques developed in learning theory. In some practical applications, we
may often encounter the non-i.i.d. sampling processes such as weakly dependent or non-
identical processes; see [13, 15, 20]. It may be interesting to continue our error analysis for
the non-i.i.d. samples.

Appendix 1: Error decomposition

Proof of Proposition 3.2 We have

∫
X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ)

}
dρX(x)

≤
∫

X

{
Ex

(
πM(fz,σ ,η,x)

)
– Ex(fρ) + η
z(fz,σ ,η,x)

}
dρX(x)

= S(z,λ,η) + H(z,λ,η) +
∫

X

{
Ex(fλ) – Ex(fρ) + λ‖fλ‖2

K
}

dρX(x). (A.1)

Moreover, by (1.5),

Ex(fλ) – Ex(fρ) =
∫

X
�

(
x
σ

,
u
σ

)(
fλ(u) – fρ(u)

)2 dρX(u)

≤ ‖fλ – fρ‖2
ρX

. (A.2)

This completes the proof of Proposition 3.2. �

Appendix 2: Estimates for the hypothesis error

Proof of Proposition 3.3 It is known from Theorem 2.1 in [11] that the coefficient az =
(az

1, . . . , az
m)T of fz,σ ,λ,x satisfies

(
mλI + QxK[x]

)
az = Qxy,



Guo and Ye Journal of Inequalities and Applications  (2018) 2018:262 Page 10 of 15

where I is the identity matrix, y = (y1, y2, y3, . . . , ym)T , K[x] = (K(xi, xj))m
i,j=1 and Qx =

diag(�( x
σ

, xi
σ

) : i = 1, 2, . . . , m).
This implies

λmaz = Qx
(
y – K[x]az).

Therefore, for i = 1, 2, . . . , m, we get

az
i =

1
λm

�

(
x
σ

,
xi

σ

)(
yi –

m∑
j=1

az
j K(xi, xj)

)

=
1

λm
�

(
x
σ

,
xi

σ

)(
yi – fz,σ ,λ,x(xi)

)
.

By the Hölder inequality, we have

m∑
i=1

∣∣az
i
∣∣q =

1
(λm)q

m∑
i=1

∣∣∣∣�
(

x
σ

,
xi

σ

)(
yi – fz,σ ,λ,x(xi)

)∣∣∣∣
q

≤ 1
(λm)q

( m∑
i=1

�

(
x
σ

,
xi

σ

) q
2–q

)1– q
2

×
( m∑

i=1

(
x
σ

,
xi

σ

)(
yi – fz,σ ,λ,x(xi)

)2
) q

2

.

By (1.5), we have

m∑
i=1

∣∣az
i
∣∣q ≤ m

(λm)q

(
Ez,x(fz,σ ,λ,x)

) q
2 .

Thus,

Ez,x
(
πM(fz,σ ,η,x)

)
+ η
z(fz,σ ,η,x)

≤ Ez,x(fz,σ ,η,x) + η
z(fz,σ ,η,x)

≤ Ez,x(fz,σ ,λ,x) + η
z(fz,σ ,λ,x)

≤ Ez,x(fz,σ ,λ,x) +
mη

(λm)q

(
Ez,x(fz,σ ,λ,x)

) q
2

≤ Ez,x(fz,σ ,λ,x) + λ‖fz,σ ,λ,x‖2
K

+
mη

(λm)q

(
Ez,x(fz,σ ,λ,x) + λ‖fz,σ ,λ,x‖2

K
) q

2 .

Since

Ez,x(fz,σ ,λ,x) + λ‖fz,σ ,λ,x‖2
K ≤ Ez,x(0) + λ‖0‖2

K ,
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we get

Ez,x
(
πM(fz,σ ,η,x)

)
+ η
z(fz,σ ,η,x)

≤ Ez,x(fz,σ ,λ,x) + λ‖fz,σ ,λ,x‖2
K +

mηM2

(λm)q . (B.1)

It follows from (1.3)–(1.4) that

Ez,x(fz,σ ,λ,x) + λ‖fz,σ ,λ,x‖2
K ≤ Ez,x(fλ) + λ‖fλ‖2

K . (B.2)

Combining (B.1) and (B.2), we obtain our desired estimation. �

Appendix 3: Estimates for the sample error
We estimate S2(z,λ) by using the lemma in [14, 21] below.

Lemma C.1 Let {ξ (zi)}m
i=1 be independent random variables on a probability space Z with

mean E(ξ ) and variance σ 2(ξ ). Assume |ξ (z) – Eξ | ≤ M almost surely. Then, for any 0 <
δ < 1, with confidence 1 – δ, we have

1
m

m∑
i=1

ξ (zi) – Eξ ≤ 2M log(1/δ)
3m

+
√

2σ 2(ξ ) log(1/δ)
m

.

Proof of Proposition 3.5 Let g(u, y) =
∫

X �( x
σ

, u
σ

)[(y – fλ(u))2 – (y – fρ(u))2] dρX(x), for any
z = (u, y) ∈ Z. Then

∫
Z

g dρ =
∫

X

{
Ex(fλ) – Ex(fρ)

}
dρX(x);

1
m

m∑
i=1

g(zi) =
∫

X

{
Ez,x(fλ) – Ez,x(fρ)

}
dρX(x).

By (1.2) and (3.3), we have

‖fλ‖∞ ≤ κ‖fλ‖K ≤ κ

√
D(λ)

λ
.

Combining with (1.5), we have

∣∣g(u, y)
∣∣ ≤

∫
X

�

(
x
σ

,
u
σ

)∣∣(fλ(u) – fρ(u)
)

× (
fλ(u) + fρ(u) – 2y

)∣∣dρX(x)

≤ (‖fλ‖∞ + M
)(

3M + ‖fλ‖∞
)

≤
(

3M + κ

√
D(λ)

λ

)2

:= Bλ.

Therefore,
∥∥∥∥g(u, y) –

∫
Z

g dρ

∥∥∥∥∞
≤ 2Bλ
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and

σ 2(g) ≤
∫

Z
g2 dρ

=
∫

Z

(∫
X

�

(
x
σ

,
u
σ

)
dρX(x)

)2(
fλ(u) – fρ(u)

)2

× (
fλ(u) + fρ(u) – 2y

)2 dρ(u, y)

≤ (
3M + ‖fλ‖∞

)2‖fλ – fρ‖2
ρX

≤ BλD(λ).

By Lemma C.1, with confidence 1 – δ/2, we have

1
m

m∑
i=1

g(zi) –
∫

Z
g dρ ≤ 4Bλ log(2/δ)

3m
+

√
D(λ) × 2Bλ log(2/δ)

m

≤ D(λ)
2

+
7Bλ log(2/δ)

3m
.

This completes the proof of Proposition 3.5. �

We estimate S1(z,η) by using the proposition from [22] below.

Proposition C.1 Let F be a class of bounded measurable functions. Assume that there are
constants Q, τ > 0 and α ∈ [0, 1] such that ‖f ‖∞ ≤ Q and Ef 2 ≤ τEf α for every f ∈F . If for
some a > 0 and 0 < p < 2,

logN2(F , ε) ≤ aε–p, ∀ε > 0, (C.1)

then there exists a constant c′
p depending only on p such that, for any t > 0, with probability

at least 1 – e–t , we have

Ef –
1
m

m∑
i=1

f (zi) ≤1
2
η1–α(Ef )α + c′

pη + 2
(

τ t
m

) 1
2–α

+
18Qt

m
,

where

η := max

{
τ

2–p
4–2α+pα

(
a
m

) 2
4–2α+pα

, Q
2–p
2+p

(
a
m

) 2
2+p

}
.

Proof of Proposition 3.6 Consider the set of functions

GR =
{

g(u, y) =
∫

X
�

(
x
σ

,
u
σ

)((
y – πM(f )(u)

)2

–
(
y – fρ(u)

)2)dρX(x) : f ∈ BR

}
.
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By (1.5),

∣∣g(u, y)
∣∣ ≤

∫
X

�

(
x
σ

,
u
σ

)∣∣(πM(f )(u) – fρ(u)
)

× (
πM(f )(u) + fρ(u) – 2y

)∣∣dρX(x)

≤ 8M2.

It follows from the Schwarz inequality that

∣∣g(u, y)
∣∣2 =

∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)(
πM(f )(u) – fρ(u)

)

× (
πM(f )(u) + fρ(u) – 2y

)
dρX(x)

∣∣∣∣
2

≤ 16M2
∫

X
�

(
x
σ

,
u
σ

)(
πM(f )(u)

– fρ(u)
)2 dρX(x)

∫
X

�

(
x
σ

,
u
σ

)
dρX(x).

Hence,

E
(
g2) ≤ 16M2

∫
X

(∫
X

�

(
x
σ

,
u
σ

)(
πM(f )(u) – fρ(u)

)2 dρX(u)
)

dρX(x).

It has been proved in [8] that

∫
X

�

(
x
σ

,
u
σ

)(
f (u) – fρ(u)

)2 dρX(u)

=
∫

Z
�

(
x
σ

,
u
σ

)[(
f (u) – y

)2 –
(
fρ(u) – y

)2]dρ(u, y),

which implies

E
(
g2) ≤ 16M2

∫
X

(∫
Z
�

(
x
σ

,
u
σ

)[(
πM(f )(u) – y

)2

–
(
fρ(u) – y

)2]dρ(u, y)
)

dρX(x)

= 16M2
∫

Z

(∫
X

�

(
x
σ

,
u
σ

)[(
πM(f )(u) – y

)2

–
(
fρ(u) – y

)2]dρX(x)
)

dρ(u, y)

= 16M2
E(g).

Then, for any g1, g2 ∈ GR, we get

∣∣g1(u, y) – g2(u, y)
∣∣

=
∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)((
πM(f1)(u) – y

)2 –
(
πM(f2)(u) – y

)2)dρX(x)
∣∣∣∣
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≤
∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)(
πM(f1)(u)

)
– πM(f2)(u))

× (
πM(f1)(u) + πM(f2)(u) – 2y

)
dρX(x)

∣∣∣∣
≤ 4M

∣∣f1(u) – f2(u)
∣∣,

which implies

N2(GR, ε) ≤N2

(
BR,

ε

4M

)
= N2

(
B1,

ε

4MR

)
.

Thus from the capacity condition (2.1), we have

logN2(GR, ε) ≤ cp(4M)pRpε–p.

Now we can apply Proposition C.1 to G with Q = 8M2, α = 1, τ = 16M2 and a = cp(4M)pRp.
Thus for any 0 < δ < 1, with confidence 1 – δ/2, we have

Eg –
1
m

m∑
i=1

g(zi) ≤ Eg
2

+
176M2

m
log

(
2
δ

)
+ Cp,MR

2p
2+p m– 2

2+p ,

where Cp,M = c′
p(4M)

4
2+p c

2
2+p
p .

Moreover, we take f = fz,σ ,η,x and derive the following bound of fz,σ ,η,x by using the same
method as in Lemma 3 of [18] and (1.5):

‖fz,η‖K ≤ κm1– 1
q

(
M2

η

) 1
q

.

Finally, we complete the proof of Proposition 3.6 by taking R = Rη = κm1– 1
q ( M2

η
)

1
q . �
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