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1 Introduction and preliminaries
The subject of fractional differential equations has evolved as an interesting and impor-
tant field of research in view of numerous applications in physics, mechanics, chemistry,
engineering (like traffic, transportation, logistic, etc.), and so forth [1–3]. The tools of frac-
tional calculus play a key role in improving the mathematical modeling of many real-world
processes based on classical calculus. For some recent development on the topic, see [4–
12] and the references therein.

Various types of fractional derivatives were introduced: Riemann–Liouville, Caputo,
Hadamard, Erdélyi–Kober, Grünwald–Letnikov, Marchaud, and Riesz, to just name a few.
Commonly, all they are defined as integrals with different singular kernels, that is, they
have a nonlocal structure. Due to this fact, there are many inconsistencies of the existing
fractional derivatives with classical derivative. Thus they do not obey the familiar product
rule, the quotient rule for two functions, and the chain rule. Also, the fractional derivatives
do not have a corresponding Rolle’s theorem or a corresponding mean value theorem.

On the other hand, a recently introduced definition of the so-called conformable frac-
tional derivative involves a limit instead of an integral; see [13, 14]. This local definition
enables us to prove many properties analogous to those of integer-order derivatives. The
authors in [14] showed that the conformable fractional derivative obeys the product and
quotient rules and has results similar to the Rolle theorem and the mean value theorem
in classical calculus.

For recent works on conformable derivatives, we refer to [15–19] and the references
therein.

Let us recall the definition of the conformable fractional derivative and integral.
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Definition 1.1 Let 0 < α ≤ 1. The conformable fractional derivative starting from a point
φ of a function f : [φ,∞) →R is defined by

φDα(t) = lim
ε→0

f (t + ε(t – φ)1–α) – f (t)
ε

, t > φ, (1.1)

and φDαf (φ) = limt→φ+ φDαf (t).

Note that if f is differentiable, then

φDαf (t) = (t – φ)1–α df (t)
dt

. (1.2)

Definition 1.2 Let 0 < α ≤ 1. The conformable fractional integral of a function f :
[φ,∞) →R from a point φ is defined by

φIα(t) =
∫ t

φ

(s – φ)α–1f (s) ds. (1.3)

The impulsive differential equations have been used to describe processes that have sud-
den changes in their states at certain moments. Many mathematical models in physical
phenomena that have short-term perturbations at fixed impulse points tk , k = 1, 2, 3, . . . ,
caused by external interventions during their evolution appeared in population dynam-
ics, biotechnology processes, chemistry, physics, engineering, and medicine; see [20–22].
In [23, 24], the authors introduced a new class of noninstantaneous impulsive differen-
tial equations with initial conditions to describe some certain dynamic changes of evo-
lution processes in the pharmacotherapy. This kind of impulsive differential equations
can be distinguished from the usual one as the changing processes containing no ordi-
nary or fractional derivatives of their states work over intervals (tk , sk], whereas the usual
does at points tk , k = 1, 2, 3, . . . . There are some papers on existence and stability theory
of this kind of impulsive ordinary or fractional differential equations [25–36]. To the best
of our knowledge, there is no literature on noninstantaneous impulsive inequalities. The
main goal of the paper is to establish some new noninstantaneous impulsive inequalities
using the conformable fractional calculus. The main results are presented in Sect. 2. In
Sect. 3, the maximum principle and boundedness of solutions for noninstantaneous im-
pulse problems are illustrated.

2 Main results
Assume that the independent variable t is the time defined on the half-line R+ = [0,∞).
Let {ti}∞i=1 and {si}∞i=0 be two increasing sequences such that

0 = s0 < t1 ≤ s1 < t2 ≤ s2 < t3 ≤ · · · < ti ≤ si < ti+1 ≤ · · ·

for i = 1, 2, . . . and limk→∞ tk = limk→∞ sk = ∞. In addition, we define subsets of R+ by
Usk =

⋃∞
k=0(sk , tk+1], Utk =

⋃∞
k=1(tk , sk] and U = Usk ∪ Utk . Note that U ∪ {0} = R+. Set

PC(Usk ,R) = {x : Usk → R; x(t) is continuous on Usk , and x(s+
k ) exists for k = 0, 1, 2, . . .},

PC(Utk ,R) = {x : Utk →R; x(t) is continuous for t ∈ Utk , and x(t+
k ) exists for k = 1, 2, 3, . . .},

PCα
sk

(Usk ,R) = {x ∈ PC(Usk ,R) : sk Dαx(t) is continuous everywhere for t ∈ Usk , and
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sk Dαx(s+
k ) exists for k = 0, 1, 2, . . .}, PCα

tk
(Utk ,R) = {x ∈ PC(Utk ,R) : tk Iαx(t) is continu-

ous everywhere for all t ∈ Utk , and tk Iαx(t+
k ) exists for k = 1, 2, 3, . . .}, and PCα(U ,R) =

PCα
sk

(Usk ,R) ∪ PCα
tk

(Utk ,R).
Let the maximums of impulsive points less than or equal to t be defined by

sm = max{sk : sk ≤ t, k = 0, 1, 2, . . .} and tm = max{tk : tk ≤ t, k = 1, 2, 3, . . .}. (2.1)

In addition, we define

Hk = edk
(sk –tk )α

α ; Qk = e
∫ tk

sk–1 p(ξ )(ξ–sk–1)α–1 dξ ;

Gk = QkHk ; Pk = QkHk–1.

Note that

HmGm+1Gm+2Gm+3 · · ·Gn–1Qn = Pm+1Pm+2 · · ·Pn–1Pn (2.2)

and

PmPm+1Pm+2 · · ·Pn–1PnHn = Hm–1GmGm+1 · · ·Gn–1Gn, (2.3)

where m < n are positive integers.
Throughout this paper, we assume that the unknown function u ∈ PCα(U ,R) is left-

continuous at sk and tk (k = 1, 2, 3, . . .). Now, we are in the position to establish noninstan-
taneous impulsive differential inequalities.

Theorem 2.1 Let bk , ck , dk be given constants such that bk , ck ≥ 0 and dk > 0, k = 1, 2, 3, . . . .
Suppose that p, q ∈ PC(Usk ,R) and

⎧⎨
⎩

sk Dαu(t) ≤ p(t)u(t) + q(t), t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,

u(t) ≤ cku(t–
k ) + dk

∫ t
tk

(ξ – tk)α–1u(ξ ) dξ + bk , t ∈ (tk , sk], k = 1, 2, . . . .
(2.4)

Then

u(t) ≤ e
∫ t

sm p(ξ )(ξ–sm)α–1 dξ

{
u(s0)

∏
0<k≤m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjGj

)
Hkbk

+
∑

0<k≤m

( ∏
k<j≤m

cjGj

)
ckHk

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}

+
∫ t

sm

q(η)(η – sm)α–1e
∫ t
η p(ξ )(ξ–sm)α–1 dξ dη, t ∈ (sk , tk+1], k = 0, 1, 2, . . . , (2.5)

and

u(t) ≤ edm
(t–tm)α

α

{
u(s0)cmQm

∏
0<k<m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjPj

)
bk

+
∑

0<k≤m

( ∏
k<j≤m

cjPj

)
ck

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}
,

t ∈ (tk , sk], k = 1, 2, 3, . . . . (2.6)
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Proof For t ∈ (s0, t1], the conformable fractional differential inequality can be written as

s0 Dα
[
u(t)e–

∫ t
s0

p(ξ )(ξ–s0)α–1 dξ ] ≤ q(t)e–
∫ t

s0
p(ξ )(ξ–s0)α–1 dξ .

By taking the conformable fractional integral of order α from s0 to t ∈ (s0, t1],

s0 Iα
s0 Dα

[
u(t)e–

∫ t
s0

p(ξ )(ξ–s0)α–1 dξ ] ≤ s0 Iα
[
q(t)e–

∫ t
s0

p(ξ )(ξ–s0)α–1 dξ ],

we obtain

u(t) ≤ u(s0)e
∫ t

s0
p(ξ )(ξ–s0)α–1 dξ

+
∫ t

s0

q(η)(η – s0)α–1e
∫ t
η p(ξ )(ξ–s0)α–1 dξ dη, t ∈ (s0, t1], (2.7)

which implies that (2.5) holds for k = 0.
For t ∈ (t1, s1], we define the function

z(t) =
∫ t

t1

(ξ – t1)α–1u(ξ ) dξ . (2.8)

Note that z(t1) = 0 and

u(t) ≤ c1u
(
t–
1
)

+ d1z(t) + b1, t ∈ (t1, s1].

Then, taking the derivative with respect to t, we have

z′(t) = (t – t1)α–1u(t)

≤ (t – t1)α–1[c1u
(
t–
1
)

+ b1
]

+ d1(t – t1)α–1z(t).

Multiplying this inequality by the integrating factor e–d1
(t–t1)α

α , we get

d
dt

[
z(t)e–d1

(t–t1)α
α

] ≤ [
c1u

(
t–
1
)

+ b1
]
(t – t1)α–1e–d1

(t–t1)α
α ,

which implies that

z(t) ≤ [
c1u

(
t–
1
)

+ b1
]
ed1

(t–t1)α
α

∫ t

t1

(η – t1)α–1e–d1
(η–t1)α

α dη

=
1
d1

[
c1u

(
t–
1
)

+ b1
][

ed1
(t–t1)α

α – 1
]
.

By (2.7) with t = t1 we have

u(t) ≤ c1ed1
(t–t1)α

α

[
u(s0)e

∫ t1
s0

p(ξ )(ξ–s0)α–1 dξ

+
∫ t1

s0

q(η)(η – s0)α–1e
∫ t1
η p(ξ )(ξ–s0)α–1 dξ dη

]
+ b1ed1

(t–t1)α
α , t ∈ (t1, s1].

This shows that the bound in (2.6) is true for k = 1.
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Now, we assume that inequality (2.5) holds for t ∈ (sn, tn+1], n > 0. By mathematical in-
duction we will show that (2.6) is true for t ∈ (tn+1, sn+1]. Let

w(t) =
∫ t

tn+1

(ξ – tn+1)α–1u(ξ ) dξ , t ∈ (tn+1, sn+1].

Then w(tn+1) = 0 and u(t) ≤ cn+1u(t–
n+1) + dn+1w(t) + bn+1. Using the above method, we

have

w′(t) ≤ (t – tn+1)α–1[cn+1u
(
t–
n+1

)
+ bn+1

]
+ dn+1(t – tn+1)α–1w(t),

which leads to

w(t) ≤ 1
dn+1

[
cn+1u

(
t–
n+1

)
+ bn+1

][
edn+1

(t–tn+1)α
α – 1

]
.

Substituting the bound of w(t) and inequality (2.5) with t = tn+1, it follows that

u(t) ≤ cn+1u
(
t–
n+1

)
+ dn+1w(t) + bn+1

≤ cn+1u
(
t–
n+1

)
edn+1

(t–tn+1)α
α + bn+1edn+1

(t–tn+1)α
α

≤ cn+1

[
e
∫ tn+1

sn p(ξ )(ξ–sn)α–1 dξ

{
u(s0)

∏
0<k≤n

ckGk +
∑

0<k≤n

( ∏
k<j≤n

cjGj

)
Hkbk

+
∑

0<k≤n

( ∏
k<j≤n

cjGj

)
ckHk

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}

+
∫ tn+1

sn

q(η)(η – sn)α–1e
∫ tn+1
η p(ξ )(ξ–sn)α–1 dξ dη

]
edn+1

(t–tn+1)α
α

+ bn+1edn+1
(t–tn+1)α

α

= edn+1
(t–tn+1)α

α

{
u(s0)cn+1Qn+1

∏
0<k<n+1

ckGk +
∑

0<k≤n+1

( ∏
k<j≤n+1

cjPj

)
bk

+
∑

0<k≤n+1

( ∏
k<j≤n+1

cjPj

)
ck

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}

by using formula (2.2). Therefore (2.6) is satisfied for t ∈ (tn+1, sn+1].
Finally, we suppose that estimate (2.6) is fulfilled for t ∈ (tn, sn], where n > 1. Next, we

will prove that inequality (2.5) holds for (sn, tn+1]. By using the above method, we get the
inequality

u(t) ≤ u(sn)e
∫ t

sn p(ξ )(ξ–sn)α–1 dξ

+
∫ t

sn

q(η)(η – sn)α–1e
∫ t
η p(ξ )(ξ–sn)α–1 dξ dη, t ∈ (sn, tn+1].
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Using (2.6) with t = sn and applying (2.3), we obtain

u(t) ≤ e
∫ t

sn p(ξ )(ξ–sn)α–1 dξ

[
edn

(sn–tn)α
α

{
u(s0)cnQn

∏
0<k<n

ckGk +
∑

0<k≤n

( ∏
k<j≤n

cjPj

)
bk

+
∑

0<k≤n

( ∏
k<j≤n

cjPj

)
ck

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}]

+
∫ t

sn

q(η)(η – sn)α–1e
∫ t
η p(ξ )(ξ–sn)α–1 dξ dη

= e
∫ t

sn p(ξ )(ξ–sn)α–1 dξ

[
u(s0)

∏
0<k≤n

ckGk +
∑

0<k≤n

( ∏
k<j≤n

cjGj

)
Hkbk

+
∑

0<k≤n

( ∏
k<j≤n

cjGj

)
ckHk

∫ tk

sk–1

q(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

]

+
∫ t

sn

q(η)(η – sn)α–1e
∫ t
η p(ξ )(ξ–sn)α–1 dξ dη.

Therefore inequality (2.5) is valid on (sn, tn+1]. This completes the proof. �

The following corollary can be obtained by replacing the given functions p(t) and q(t)
by constants M and N , respectively.

Corollary 2.1 Let bk , ck ≥ 0 and dk > 0, k = 1, 2, 3, . . . , be constants. If M > 0, N ∈R, and

⎧⎨
⎩

sk Dαu(t) ≤ Mu(t) + N , t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,

u(t) ≤ cku(t–
k ) + dk

∫ t
tk

(ξ – tk)α–1u(ξ ) dξ + bk , t ∈ (tk , sk], k = 1, 2, . . . ,
(2.9)

then

u(t) ≤ eM (t–sm)α
α

{
u(s0)

∏
0<k≤m

ckG∗
k +

∑
0<k≤m

( ∏
k<j≤m

cjG∗
j

)
Hkbk

+
N
M

∑
0<k≤m

( ∏
k<j≤m

cjG∗
j

)
ckHk

(
eM (tk –sk–1)α

α – 1
)}

+
N
M

(
eM (t–sm)α

α – 1
)
, t ∈ (sk , tk+1], k = 0, 1, 2, . . . , (2.10)

and

u(t) ≤ edm
(t–tm)α

α

{
u(s0)cmQ∗

m

∏
0<k<m

ckG∗
k +

∑
0<k≤m

( ∏
k<j≤m

cjP∗
j

)
bk

+
N
M

∑
0<k≤m

( ∏
k<j≤m

cjP∗
j

)
ck

(
eM (tk –sk–1)α

α – 1
)}

,

t ∈ (tk , sk], k = 1, 2, 3, . . . , (2.11)

where Q∗
k = eM (tk –sk–1)α

α , G∗
k = Q∗

kHk , and P∗
k = Q∗

kHk–1.
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Let H(t) be the Heaviside function. We define two functions

ϕ(t) =
∞∑
i=0

H(t – si) – H
(
t – t+

i+1
)

=

⎧⎨
⎩

0, t ∈ (tk , sk], k = 1, 2, 3, . . . ,

1, t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,

and

ψ(t) =
∞∑
i=1

H(t – ti) – H
(
t – s+

i
)

=

⎧⎨
⎩

0, t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,

1, t ∈ (tk , sk], k = 1, 2, 3, . . . .

Next, we establish some new noninstantaneous impulsive integral inequalities.

Theorem 2.2 Let p ∈ PC(Usk ,R+), constants ck , bk ≥ 0, dk > 0, k = 1, 2, 3, . . . , and A ∈ R. If

u(t) ≤
(

A +
∫ t

sm

(ξ – sm)α–1p(ξ )u(ξ ) dξ

)
ϕ(t)

+
(

cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

)
ψ(t), t ∈R+, (2.12)

where sm and tm are defined by (2.1), then we have

u(t) ≤ e
∫ t

sm p(ξ )(ξ–sm)α–1 dξ

(
A

∏
0<k≤m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjGj

)
Hkbk

)
(2.13)

for t ∈ (sk , tk+1], k = 0, 1, 2, . . . , and

u(t) ≤ edm
(t–tm)α

α

(
AcmQm

∏
0<k<m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjPj

)
bk

)
(2.14)

for t ∈ (tk , sk], k = 1, 2, 3, . . . .

Proof To prove inequalities (2.13) and (2.14), for t ∈R+, we define the function

v(t) =
(

A +
∫ t

sm

(ξ – sm)α–1p(ξ )u(ξ ) dξ

)
ϕ(t)

+
(

cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

)
ψ(t),

which yields u(t) ≤ v(t) for all t ∈ R+ and v(s0) = A. For any t ∈ (sk , tk+1], k = 0, 1, 2, . . . , we
get

v(t) = A +
∫ t

sm

(ξ – sm)α–1p(ξ )u(ξ ) dξ .
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Also, taking the conformable fractional derivative of order α, we have

sm Dαv(t) = p(t)u(t) ≤ p(t)v(t). (2.15)

For t ∈ (tk , sk], k = 1, 2, 3, . . . , we obtain

v(t) = cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

≤ cmv
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1v(ξ ) dξ + bm. (2.16)

An application of Theorem 2.1 to (2.15) and (2.16) yields

v(t) ≤ e
∫ t

sm p(ξ )(ξ–sm)α–1 dξ

(
A

∏
0<k≤m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjGj

)
Hkbk

)

for t ∈ (sk , tk+1], k = 0, 1, 2, . . . , and

v(t) ≤ edm
(t–tm)α

α

(
AcmQm

∏
0<k<m

ckGk +
∑

0<k≤m

( ∏
k<j≤m

cjPj

)
bk

)

for t ∈ (tk , sk], k = 1, 2, 3, . . . . From u(t) ≤ v(t), t ∈ R+, we get the desired results in (2.13)
and (2.14). The proof is completed. �

Theorem 2.3 Let p ∈ PC(Usk ,R+), let h be a positive fractional integrable function of order
α, and let ck , bk ≥ 0 and dk > 0, k = 1, 2, 3, . . . , be constants. If

u(t) ≤ h(t) +
(∫ t

sm

(ξ – sm)α–1p(ξ )u(ξ ) dξ

)
ϕ(t)

+
(

cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

)
ψ(t), t ∈R+, (2.17)

where sm and tm are defined by (2.1), then we have

u(t) ≤ h(t) + e
∫ t

sm p(ξ )(ξ–sm)α–1 dξ

{ ∑
0<k≤m

( ∏
k<j≤m

cjGj

)
Hk

(
bk + ckh

(
t–
k
)

+ dkKk
)

+
∑

0<k≤m

( ∏
k<j≤m

cjGj

)
ckHk

∫ tk

sk–1

p(η)h(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}

+
∫ t

sm

p(η)h(η)(η – sm)α–1e
∫ t
η p(ξ )(ξ–sm)α–1 dξ dη,

t ∈ (sk , tk+1], k = 0, 1, 2, . . . , (2.18)



Sitho et al. Journal of Inequalities and Applications  (2018) 2018:261 Page 9 of 14

and

u(t) ≤ h(t) + edm
(t–tm)α

α

{ ∑
0<k≤m

( ∏
k<j≤m

cjPj

)(
bk + ckh

(
t–
k
)

+ dkKk
)

+
∑

0<k≤m

( ∏
k<j≤m

cjPj

)
ck

∫ tk

sk–1

p(η)h(η)(η – sk–1)α–1e
∫ tk
η p(ξ )(ξ–sk–1)α–1 dξ dη

}
,

t ∈ (tk , sk], k = 1, 2, 3, . . . , (2.19)

where the constants Kk , k = 1, 2, 3, . . . , are defined by Kk =
∫ sk

tk
(ξ – tk)α–1h(ξ ) dξ .

Proof For t ∈ R+, setting

y(t) =
(∫ t

sm

(ξ – sm)α–1p(ξ )u(ξ ) dξ

)
ϕ(t)

+
(

cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

)
ψ(t),

we have

sm Dαy(t) = p(t)u(t), y(s0) = 0,

for t ∈ (sk , tk+1], k = 0, 1, 2, . . . , and

y(t) = cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

for t ∈ (tk , sk], k = 1, 2, 3, . . . . Since u(t) ≤ h(t) + y(t), t ∈R+, this reduces to

sm Dαy(t) ≤ p(t)y(t) + p(t)h(t), y(s0) = 0, (2.20)

and

y(t) ≤ cmy
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1y(ξ ) dξ

+
(
bm + cmh

(
t–
m
)

+ dmKm
)
. (2.21)

Now Theorem 2.1, together with the inequality u(t) ≤ h(t) + y(t), yields estimates (2.18)
and (2.19), completing the proof. �

Next, we obtain the following corollary by putting constant values h(t) ≡ B > 0 and
p(t) ≡ M > 0.

Corollary 2.2 Let constants ck , bk ≥ 0 and dk > 0, k = 1, 2, 3, . . . . If

u(t) ≤ B +
(

M
∫ t

sm

(ξ – sm)α–1u(ξ ) dξ

)
ϕ(t)

+
(

cmu
(
t–
m
)

+ dm

∫ t

tm

(ξ – tm)α–1u(ξ ) dξ + bm

)
ψ(t), t ∈R+, (2.22)
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where sm and tm are defined by (2.1), then we have

u(t) ≤ BeM (t–sm)α
α + eM (t–sm)α

α

{ ∑
0<k≤m

( ∏
k<j≤m

cjG∗
j

)
HkZk

+ B
∑

0<k≤m

( ∏
k<j≤m

cjG∗
j

)
ckHk

(
eM (tk –sk–1)α

α – 1
)}

t ∈ (sk , tk+1], k = 0, 1, 2, . . . , (2.23)

and

u(t) ≤ B + edm
(t–tm)α

α

{ ∑
0<k≤m

( ∏
k<j≤m

cjP∗
j

)
Zk

+ B
∑

0<k≤m

( ∏
k<j≤m

cjP∗
j

)
ck

(
eM (tk –sk–1)α

α – 1
)}

,

t ∈ (tk , sk], k = 1, 2, 3, . . . , (2.24)

where G∗
j and P∗

j are defined as in Corollary 2.1, and Zk = bk + Bck + Bdk(sk – tk)α/α.

3 Applications
In this section, we establish two applications of noninstantaneous impulsive differential
and integral inequalities. Let J = [0, T] with tn+1 = T and J = [0, T] with sn+1 = T for some
n ≥ 1. The first purpose is accomplished by considering two problems that have the end
points at tn+1 and sn+1, respectively. Now, we consider

⎧⎪⎪⎨
⎪⎪⎩

sk Dαu(t) – Mu(t) + a(t) ≤ 0, t ∈ (sk , tk+1], k = 0, 1, 2, . . . , n,

u(t) ≤ cku(t–
k ) + dk

∫ t
tk

(ξ – tk)α–1u(ξ ) dξ , t ∈ (tk , sk], k = 1, 2, 3, . . . , n,

u(0) = u(T) + λ,

(3.1)

and

⎧⎪⎪⎨
⎪⎪⎩

sk Dαv(t) – Mv(t) + a(t) ≤ 0, t ∈ (sk , tk+1], k = 0, 1, 2, . . . , n,

v(t) ≤ ckv(t–
k ) + dk

∫ t
tk

(ξ – tk)α–1v(ξ ) dξ , t ∈ (tk , sk], k = 1, 2, 3, . . . , n + 1,

v(0) = v(T) + λ,

(3.2)

where M > 0, a(t) ∈ C[R+,R+], ck ≥ 0, and dk > 0. Let us state the following conditions:

(H1) eM (T–sn)α
α

∏n
k=1 ckG∗ < 1,

(H2) λ ≤ eM (T–sn)α
α

∫ T
sn

a(η)(η – sn)α–1e–M (η–sn)α
α dη,

(H3)
∏n+1

k=1 ckG∗
k < 1,

(H4) λ ≤ edn+1
(T–tn+1)α

α
∑n+1

k=1(
∏

k<j≤n+1 cjP∗
j )ckDk , where Dk is defined by

Dk = eM (tk –sk–1)α
α

∫ tk

sk–1

a(η)(η – sk–1)α–1e–M (η–sk–1)α
α dη, k = 1, 2, . . . , n + 1.
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Corollary 3.1 Let u and v be unknown functions satisfying (3.1) and (3.2), respectively. If
(H1)–(H2) hold, then u(t) ≤ 0 for t ∈ J . If (H3)–(H4) hold, then v(t) ≤ 0 for t ∈ J .

Proof Applying Theorem 2.1 to the first two inequalities in problem (3.1), we have

u(t) ≤ u(0)eM (t–sm)α
α

∏
0<k≤m

ckG∗
k – eM (t–sm)α

α

∑
0<k≤m

( ∏
k<j≤m

cjG∗
j

)
ckHkDk

– eM (t–sm)α
α

∫ t

sm

a(η)(η – sm)α–1e–M (η–sm)α
α dη,

t ∈ (sk , tk+1], k = 0, 1, 2, . . . , n.

Since a(t) ≥ 0 for all t ∈ R+ and all constants are positive, it is sufficient to show that
u(0) ≤ 0. At the end point t = T , we obtain

u(T) ≤ u(0)eM (T–sn)α
α

n∏
k=1

ckG∗
k – eM (T–sn)α

α

n∑
k=1

( ∏
k<j≤n

cjG∗
j

)
ckHkDk

– eM (T–sn)α
α

∫ T

sn

a(η)(η – sn)α–1e–M (η–sn)α
α dη.

By conditions (H1)–(H2) we have

u(0)

(
1 – eM (T–sn)α

α

n∏
k=1

ckG∗
k

)
≤ λ – eM (T–sn)α

α

n∑
k=1

( ∏
k<j≤n

cjG∗
j

)
ckHkDk

– eM (T–sn)α
α

∫ T

sn

a(η)(η – sn)α–1e–M (η–sn)α
α dη

≤ 0,

which yields u(0) ≤ 0. Therefore u(t) ≤ 0 for t ∈ [0, T].
Next, we will show that v(t) ≤ 0 for t ∈ J . The application of Theorem 2.1 for the first

two inequalities in problem (3.2) leads to

v(t) ≤ edm
(t–tm)α

α

{
v(0)cmQ∗

m

∏
0<k<m

ckG∗
k –

∑
0<k≤m

( ∏
k<j≤m

cjP∗
j

)
ckDk

}
,

t ∈ (tk , sk], k = 1, 2, 3, . . . , n + 1.

Substituting the end point at t = T , we have

v(T) ≤ v(0)
n+1∏
k=1

ckG∗
k – edn+1

(T–tn+1)α
α

n+1∑
k=1

( ∏
k<j≤n+1

cjP∗
j

)
ckDk ,

which implies

v(0)

(
1 –

n+1∏
k=1

ckG∗
k

)
≤ λ – edn+1

(T–tn+1)α
α

n+1∑
k=1

( ∏
k<j≤n+1

cjP∗
j

)
ckDk

≤ 0,
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by conditions (H3)–(H4). This means that v(0) ≤ 0. In the same way, we can conclude that
v(t) ≤ 0 for t ∈ J . The proof is completed. �

Finally, we apply the noninstantaneous impulsive inequality to the initial value problem
of the form

⎧⎪⎪⎨
⎪⎪⎩

sk Dαu(t) = f (t, u(t)), t ∈ (sk , tk+1], k = 0, 1, 2, . . . ,

u(t) = cku(t–
k ) + dk

∫ t
tk

(ξ – tk)α–1u(ξ ) dξ , t ∈ (tk , sk], k = 1, 2, . . . ,

u(0) = u0,

(3.3)

where 0 < α ≤ 1, ck ≥ 0, dk > 0, u0 ∈R, and the given function f ∈ PC(Usk ×R,R) satisfies
(H5) |f (t, u)| ≤ M|u|, M > 0, for all t ∈ Usk .

Corollary 3.2 If (H5) holds, then the solution u(t) of problem (3.3) is estimated as

∣∣u(t)
∣∣ ≤ eM (t–sm)α

α |u0|
∏

0<k≤m

ckG∗
k , t ∈ (sk , tk+1], k = 0, 1, 2, . . . , (3.4)

and

∣∣u(t)
∣∣ ≤ edm

(t–tm)α
α |u0|cmQ∗

m

∏
0<k<m

ckG∗
k , t ∈ (tk , sk], k = 1, 2, 3, . . . . (3.5)

Proof Taking the conformable fractional integral of order α to the first equation of prob-
lem (3.3), we obtain

u(t) = u(sk) +
∫ t

sk

(ξ – sk)α–1f
(
ξ , u(ξ )

)
dξ , t ∈ (sk , tk+1], k = 0, 1, 2, . . . .

From condition (H5) it follows that

∣∣u(t)
∣∣ ≤ ∣∣u(sk)

∣∣ +
∫ t

sk

(ξ – sk)α–1∣∣f (ξ , u(ξ )
)∣∣dξ ,

≤ ∣∣u(sk)
∣∣ + M

∫ t

sk

(ξ – sk)α–1∣∣u(ξ )
∣∣dξ .

Since u(s0) = u0, by Theorem 2.2 inequalities (3.4)–(3.5) hold, and the proof is com-
pleted. �
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