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1 Introduction
Let B be a reflexive Banach spaces with norm ‖ · ‖, and let B∗ be its topological dual with
norm ‖ · ‖∗. By 〈x∗, x〉 we denote the duality coupling in B

∗ ×B defined by 〈f , x〉 = f (x) for
all x ∈ B and f ∈ B

∗. By xn → x and xn ⇀ x we denote the strong and weak convergence of a
sequence {xn} to x, respectively. We consider the following variational inequality problem,
denoted by VI(T , C): find a vector x∗ ∈ C such that

〈
T

(
x∗), y – x∗〉 ≥ 0 for all y ∈ C, (1)

where C is a nonempty closed convex subset of B, and T : B → B
∗ is an operator.

Let S be the solution set of VI(T , C), and let SD be the solution set of the dual variational
inequality, that is,

SD :=
{

x ∈ C|〈T(y), y – x
〉 ≥ 0 for all y ∈ C

}
.

If T is continuous and C is convex, then we have

SD ⊂ S.
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Indeed, for any x̃ ∈ SD, we have x̃ ∈ C. For any given y ∈ C and t ∈ [0, 1], applying the
convexity of C, we obtain

(1 – t)x̃ + ty ∈ C.

Therefore the definition of SD implies that

〈
T

(
(1 – t)x̃ + ty

)
, (1 – t)x̃ + ty – x̃

〉 ≥ 0

or, equivalently,

〈
T

(
(1 – t)x̃ + ty

)
, y – x̃

〉 ≥ 0.

Letting t → 0, by the continuity of T we obtain

〈
T(x̃), y – x̃

〉 ≥ 0,

that is, x̃ ∈ S, and thus, SD ⊂ S.
The variational inequality problem was first introduced by Hartman and Stampacchia

[1] in 1966. The projection-type algorithms for solving the variational inequality prob-
lem have been extensively studied in a finite-dimensional space, such as proximal point
methods [2], extragradient projection methods [3–6], double projection methods [7–10],
and self-adaptive projection methods [11, 12]. To prove the convergence of a generated
sequence, all the methods mentioned have the common assumption S ⊂ SD, that is,

〈
T(y), y – x∗〉 ≥ 0 for all x∗ ∈ S and y ∈ C, (2)

which is a direct consequence of the pseudomonotonicity of T on C in the sense of Kara-
mardian [13]; T is said to be pseudomonotone on C if for all x, y ∈ C,

〈
T(x), y – x

〉 ≥ 0 ⇒ 〈
T(y), y – x

〉 ≥ 0;

T is said to be quasimonotone on C if for all x, y ∈ C,

〈
T(x), y – x

〉
> 0 ⇒ 〈

T(y), y – x
〉 ≥ 0.

Note that pseudomonotone implies quasimonotone, but the converse is not true.
Recently, in the literature [14, 15],an interior proximal algorithm for solving quasimono-

tone variational inequalities is proposed, and the global convergence is obtained under
more assumptions than SD �= ∅ and quasimonotonicity. Clearly,

SD �= ∅ ⇐⇒ ∃x∗ ∈ S such that
〈
T(y), y – x∗〉 ≥ 0 for all y ∈ C, (3)

and SD �= ∅ is weaker than assumption (2). Thus S �= ∅ and pseudomonotonicity contain
quasimonotonicity and SD �= ∅, whereas the converse implications are not true. For suffi-
cient conditions for SD �= ∅, see Lemma 2.6.
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On the other hand, recently, in [14–16] an extragradient-type method proposed in [5]
is extended from Euclidean spaces to Banach spaces. Under the assumptions of the pseu-
domontonicity, uniform (or strong) continuity, and S �= ∅, the global strong convergence
is obtained. In [17] a double projection method in Banach space is studied, and the global
weak convergence is obtained under more assumptions than the pseudomontonicity and
uniform continuity.

Inspired by the works mentioned, in this paper, by Bregman projection we extend a
double projection algorithm proposed by Solodov and Svaiter [7] for solving variational
inequalities from Euclidean spaces to Banach spaces. Under the assumptions of SD �= ∅,
uniform continuity, and quasimonotonicity, we prove that the whole sequence generated
by the proposed method is strongly convergent to the solution of the variational inequal-
ities, and our proof techniques are different from those presented in [14–17].

2 Preliminaries
In this section, we recall some useful definitions and results. First, we state some properties
of the Bregman distance taken from [18].

Definition 2.1 Let g : B →R be a Gâteaux-differentiable function.
(i) The Bregman distance with respect to g is the function Dg : B×B →R defined as

Dg(x, y) = g(x) – g(y) –
〈
g ′(y), x – y

〉
, x, y ∈ B,

where

〈
g ′(y), x – y

〉
= lim

t→0

g(y + t(x – y)) – g(y)
t

.

(ii) The modulus of total convexity of g at the point x ∈ B is the function
νg : B× [0, +∞) → [0, +∞) defined as

νg(x, t) = inf
{

Dg(x, y) : y ∈ B,‖y – x‖ = t
}

.

(iii) A function g is said to be totally convex if νg(x, t) > 0 for all t > 0 and x ∈ B.
(iv) g is said to be a strongly convex function if there exists α > 0 such that

g(x) – g(y) –
〈
g ′(y), x – y

〉 ≥ α‖x – y‖2, ∀x, y ∈ B.

Remark 2.1
(1) It should be noted that Dg is not a distance in the usual sense of the term. In general,

Dg is not symmetric and does not satisfy the triangle inequality. Clearly, Dg(x, x) = 0,
but Dg(x, y) = 0 may not imply x = y, for instance, when g is a linear functional on B.
If g is strictly convex or strongly convex on B, then we have that Dg(x, y) > 0 for
x, y ∈ B, x �= y.

(2) Clearly, if g is a strongly convex function, then g is a totally convex function.
(3) If g(x) = 1

2‖x‖2 and B is a Hilbert space, then Dg(x, y) = 1
2‖x – y‖2.

We present some conditions on an auxiliary function, called g , which are important for
the feasibility and the convergence analysis of our algorithm.
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(H1) The level sets of Dg(x, ·) are bounded for all x ∈ B.
(H2) g is strongly convex on B.
(H3) g ′ is uniformly continuous on bounded subsets of B.
(H4) g ′ is onto, that is, for all y ∈ B

∗, there exists x ∈ B such that g ′(x) = y.
(H5) (g ′)–1 is uniformly continuous on bounded subsets of B∗.
On the feasibility of the assumptions (H1)–(H5), see [17, 19, 20] and the references

therein. If B = R, then g(x) = x2 satisfies assumptions (H1)–(H5).
We recall the definition of the Bregman projection and some useful results.

Lemma 2.1 Assume that B is a Banach space, C is a nonempty, closed, and convex subset
of B, g : B → R is a totally convex function on B satisfying (H1). Then there exists unique
x̂ ∈ C such that x̂ = minx∈C Dg(x, x̄); x̂ is called the Bregman projection of x̄ onto C and is
denoted by �

g
C(x̄), and x̂ = �

g
C(x̄) if and only if g ′(x̄) – g ′(x̂) ∈ NC(x̂) or, equivalently, if x̂ ∈ C

and

〈
g ′(x̄) – g ′(x̂), y – x̂

〉 ≤ 0, ∀y ∈ C.

Proof See p. 70 of [18]. �

Lemma 2.2 Assume that (H2) is satisfied. Let {xk} and {yk} be two sequences of B such
that at least one of them is bounded. If

lim
k→∞

Dg
(
yk , xk) = 0,

then

lim
k→∞

∥∥xk – yk∥∥ = 0.

Proof See Proposition 5 of [19]. �

Lemma 2.3 Let C ⊆ B be a nonempty, closed, and convex subset, let U be a bounded subset
of B, and let g : B→ R be a totally convex and Fréchet-differentiable function. If (H1) and
(H3) hold, then �

g
C : B → C maps U into a bounded subset of C.

Proof See Proposition 2.10 of [20]. �

Lemma 2.4 Let B1 and B2 be Banach spaces. Let U be a bounded subset of B1. If T : B1 →
B2 is uniformly continuous on bounded subsets of B1, then T is bounded on U .

Lemma 2.5 Let T be a continuous and quasimonotone operator, and let y ∈ C. If for some
x0 ∈ C, we have 〈T(y), x0 – y〉 ≥ 0, then at least one of the following must hold:

〈
T(x0), x0 – y

〉 ≥ 0 or
〈
T(y), x – y

〉 ≤ 0, ∀x ∈ C.

Proof See Lemma 3.1 of [21]. �

Lemma 2.6 If either
(i) T is pseudomonotone on C, and S �= ∅;
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(ii) T is the gradient of G, where G is a differentiable quasiconvex function on an open
set K ⊃ C and attains its global minimum on C;

(iii) T is quasimonotone on C, F �= 0, and C is bounded;
(iv) T is quasimonotone on C, F �= 0, and there exists a positive number r such that, for

every x ∈ C with ‖x‖ ≥ r, there exists y ∈ C such that ‖y‖ ≥ r and 〈T(x), y – x〉 ≤ 0;
(v) T is quasimonotone on C, intC is nonempty, and there exists x∗ ∈ S such that

T(x∗) �= ∅, then SD �= ∅.

Proof See Proposition 2.1 of [22]. �

Definition 2.2 T : B → B
∗ is said to be

(i) strongly continuous at a point x if for {xn} ⊂ D(T), from xn ⇀ x it follows that
T(xn) → T(x);

(ii) continuous at a point x if for {xn} ⊂ D(T), from xn → x it follows that
T(xn) → T(x);

(iii) uniformly continuous on a subset K of D(T) if for all ε > 0, there exists δ > 0 such
that, for x, y ∈ K , from ‖x – y‖ < δ it follows that ‖T(x) – T(y)‖∗ < ε;

(iv) (strongly) continuous on D(T) if T is (strongly) continuous at each point of D(T).

Remark 2.2 We can see that the strong continuity and the uniformly continuity are two
different concepts, and they both contain the continuity, whereas the converse implica-
tions are not true. Under the assumptions of the strong continuity and pseudomonotonic-
ity, in [16] the convergence of the sequence produced is proved.

3 Algorithm and feasibility analysis
Algorithm 3.1 Choose x0 ∈ C and two parameters: γ ,σ ∈ (0, 1). Take k = 0.

Step 1. Compute

zk =
(
g ′)–1[g ′(xk) – T

(
xk)].

If xk = �
g
C(zk), then stop; else go to Step 2.

Step 2. Compute

mk = min
{

m ∈N :
〈
T

(
xk) – T

(
ym)

, xk – �
g
C
(
zk)〉 ≤ σDg

(
�

g
C
(
zk), xk)}, (4)

where

ym = γ m�
g
C
(
zk) +

(
1 – γ m)

xk .

Let

αk = γ mk , yk = αk�
g
C
(
zk) + (1 – αk)xk .

Step 3. Compute

xk+1 = �
g
C∩Hk

(
xk),
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where

Hk =
{
ν : hk(ν) ≤ 0

}
,

hk(ν) =
〈
T

(
yk),ν – yk 〉.

(5)

Step 4. Let k := k + 1 and return to Step 1.

The feasibilities of Step 1 and Step 2 of the Algorithm 3.1 are explained in the following:

Lemma 3.1 If g : B → R satisfies (H1)–(H4), then Step 1 and Step 2 of Algorithm 3.1 are
well defined.

Proof For given xk ∈ C, the feasibility of zk follows from (H4). If xk = �
g
C(zk), then it fol-

lows from Lemma 2.1 that xk is a solution of VIP(T , C). If �
g
C(zk) �= xk , then Step 2 of the

algorithm is well defined; otherwise, for all nonnegative integers m, we have

〈
T

(
xk) – T

(
ym)

, xk – �
g
C
(
zk)〉 > σDg

(
�

g
C
(
zk), xk). (6)

Since γ ∈ (0, 1), we have

lim
m→∞ ym = lim

m→∞
[
γ m�

g
C
(
zk) +

(
1 – γ m)

xk] = xk .

Now letting m → ∞ in (6), by σ > 0 and the continuity of T we obtain that

Dg
(
�

g
C
(
zk), xk) ≤ 0.

Note that �
g
C(zk) �= xk and g is strongly convex, which implies that Dg(�g

C(zk), xk) > 0, a
contradiction. So mk , αk , and yk are well defined. �

The following lemma shows that Step 3 of Algorithm 3.1 is also feasible.

Lemma 3.2 For all x ∈ C, we have

〈
T(x), x – �

g
C
[(

g ′)–1(g ′(x) – T(x)
)]〉 ≥ Dg

(
�

g
C
[(

g ′)–1(g ′(x) – T(x)
)]

, x
)
. (7)

Proof See Lemma 2.5 of [16]. �

Remark 3.1 We apply Lemma 3.2 and (4) to obtain

〈
T

(
yk), xk – �

g
C
(
zk)〉 ≥ (1 – σ )Dg

(
�

g
C
(
zk), xk).

Then taking B = R
n, σ := 1 – σ , and g(x) = 1

2‖x‖2 in Algorithm 3.1, our Algorithm 3.1
degrades into Algorithm 2.2 of [7].

Lemma 3.3 Assume that SD is nonempty and {xk} is generated by Algorithm 3.1. Then
SD ⊂ C ∩ Hk , and

hk
(
xk) ≥ αk(1 – σ )Dg

(
�

g
C
(
zk), xk). (8)
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Proof Applying Remark 3.1, αk > 0, and σ ∈ (0, 1), we have

hk
(
xk) =

〈
T

(
yk), xk – yk 〉

= αk
〈
T

(
yk), xk – �

g
C
(
zk)〉

≥ αk(1 – σ )Dg
(
�

g
C
(
zk), xk) > 0.

For all x∗ ∈ SD, we have 〈T(yk), x∗ – yk〉 ≤ 0, from which it follows that x∗ ∈ C ∩ Hk , so
SD ⊂ C ∩ Hk �= ∅. �

Remark 3.2 Clearly, C ∩ Hk is closed and convex. It follows from Lemma 2.1 that the
generation of the iteration point xk+1 in Step 3 is feasible. So Step 3 is well defined. By
Lemma 3.3 we know that the hyperplane Hk strictly separates the current iterate from the
solutions of VI(T , C).

Lemma 3.4 If xk �= �
g
C(zk), then T(xk) �= 0.

Proof Since xk �= �
g
C(zk), by Lemma 2.1 there exists y0 ∈ C such that

〈
g ′(zk) – g ′(xk), y0 – xk 〉 > 0.

By the definition of zk we obtain

〈
g ′(xk) – T

(
xk) – g ′(xk), y0 – xk 〉 =

〈
–T

(
xk), y0 – xk 〉 > 0,

which implies T(xk) �= 0. �

Lemma 3.5 Let C be a closed convex subset of B, and let g be a continuously differentiable
function satisfying (H1) and (H2). Define h : B × B → R by h(x, v) = 〈T(v), x – v〉 for any
given v ∈ B and take K (v) = {x ∈ C : h(x, v) ≤ 0}. If K(v) �= ∅ and h(·, ·) is Lipschitz continu-
ous with respect to the first variable on C with modulus L > 0, then

Dg(x, y) ≥ α

L2 h2(x, v), ∀x ∈ C \ K(v), y ∈ K(v), v ∈ B. (9)

Proof First, we prove that, for all v ∈ B, K(v) is a convex set. In fact, for all x1, x2 ∈ K(v)
and θ ∈ (0, 1), we have

h(x1, v) ≤ 0, h(x2, v) ≤ 0,

h
(
θx1 + (1 – θ )x2, v

)
=

〈
T(v), θx1 + (1 – θ )x2 – v

〉

=
〈
T(v), θ (x1 – v)

〉
+

〈
T(v), (1 – θ )(x2 – v)

〉

= θ
〈
T(v), x1 – v

〉
+ (1 – θ )

〈
T(v), x2 – v

〉

= θh(x1, v) + (1 – θ )h(x2, v) ≤ 0.

So θx1 + (1 – θ )x2 ∈ K(v), and K(v) is convex. Since h is continuous, we conclude that K(v)
is also a closed set. For all x ∈ C \ K(v), it follows from (H1), (H2), and Lemma 2.1 that
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there exists unique y(x) ∈ K(v) such that

Dg
(
x, y(x)

)
= min

y∈K (v)
Dg(x, y).

By the definition of K(v) and the Lipschitz continuity of h(·, ·) with respect to the first
variable on C, we obtain

h(x, v) ≤ h(x, v) – h
(
y(x), v

)
=

∣∣h(x, v) – h
(
y(x), v

)∣∣ ≤ L
∥∥x – y(x)

∥∥. (10)

Since g is strongly convex, there exists α > 0 such that, for all x, y ∈ B,

g(x) – g(y) –
〈
g ′(y), x – y

〉 ≥ α‖x – y‖2,

that is,

Dg(x, y) ≥ α‖x – y‖2,

‖x – y‖ ≤
√

Dg(x, y)
α

,

which by (10) implies that

h(x, v) ≤ L
∥∥x – y(x)

∥∥ ≤ L
√

Dg(x, y(x))
α

≤ L
√

Dg(x, y)
α

, ∀y ∈ K(v).

Thus

Dg(x, y) ≥ α

L2 h2(x, v), ∀x ∈ C \ K(v), y ∈ K(v), v ∈ B. �

4 The convergence of algorithm
Theorem 4.1 Assume that SD is a nonempty set, T : B → B

∗ is uniformly continuous on
bounded subsets of B, and g : B → R satisfies (H1)–(H5). If C is a closed and convex subset
of B and {xk} is an infinite sequence generated by Algorithm 3.1, then

(i)

Dg
(
xk+1, xk) ≤ Dg

(
x∗, xk) – Dg

(
x∗, xk+1), ∀x∗ ∈ SD; (11)

(ii) {xk} is a bounded subset of C;
(iii)

lim
k→∞

Dg
(
xk+1, xk) = 0;

(iv)

Dg
(
xk , xk+1) ≥ αα2

k
L2 (1 – σ )2D2

g
(
�

g
C
(
zk), xk). (12)
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Proof (i) Applying the definition of Dg , for all x, y, z ∈ B, we have

Dg(y, z) + Dg(z, x) – Dg(y, x) =
〈
g ′(z) – g ′(x), z – y

〉
. (13)

Taking z = xk+1 and x = xk in (13), it follows from xk+1 = �
g
C∩Hk

(xk) and Lemma 2.1 that

Dg
(
y, xk+1) + Dg

(
xk+1, xk) – Dg

(
y, xk)

=
〈
g ′(xk+1) – g ′(xk), xk+1 – y

〉 ≤ 0, y ∈ C ∩ Hk . (14)

Taking y = x∗ ∈ SD in (14), we obtain

Dg
(
xk+1, xk) ≤ Dg

(
x∗, xk) – Dg

(
x∗, xk+1).

(ii) It follows from Dg(xk+1, xk) ≥ 0 and (11) that the sequence {Dg(x∗, xk)} is nonincreas-
ing with lower bounds and hence is a converging sequence. This implies that {Dg(x∗, xk)}
is a bounded sequence. Using (H2), we obtain

Dg
(
x∗, xk) ≥ α

∥∥x∗ – xk∥∥2 for all k.

Consequently, {xk} is a bounded sequence.
(iii) Using (11), we obtain

∞∑

i=0

Dg
(
xk+1, xk) ≤

∞∑

i=0

[
Dg

(
x∗, xk) – Dg

(
x∗, xk+1)] ≤ Dg

(
x∗, x0),

which implies that

lim
k→∞

Dg
(
xk+1, xk) = 0.

(iv) By (ii) the sequence {xk} is bounded and T is uniformly continuous on bounded
subsets of B, which by (H3), (H5), and Lemma 2.4 implies that {zk} is bounded, and thus,
by Lemma 2.3, {�g

C(zk)} is bounded. Consequently, {yk} is bounded. Taking into account
the uniform continuity of T , we obtain that {T(yk)} is also bounded, that is, there exists a
positive number L such that

∥∥T
(
yk)∥∥∗ ≤ L, ∀k.

Then from (5) it follows that

∣∣hk
(
xk) – hk

(
xk+1)∣∣ =

∣∣〈T
(
yk), xk – xk+1〉∣∣ ≤ ∥∥T

(
yk)∥∥∗

∥∥xk – xk+1∥∥ ≤ L
∥∥xk – xk+1∥∥,

that is, hk is Lipschitz continuous on C. Combining Lemma 3.3 and Lemma 3.5, we obtain

Dg
(
xk , xk+1) ≥ αα2

k
L2 (1 – σ )2D2

g
(
�

g
C
(
zk), xk). �
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Theorem 4.2 Assume that SD is a nonempty set, T : B → B
∗ is uniformly continuous on

bounded subset of B, and g : B → R satisfies (H1)–(H5). If C is a closed and convex subset of
B and {xk} is an infinite sequence generated by Algorithm 3.1, then each weak accumulation
point of {xk} is a solution of VI(T , C).

Proof Applying Theorem 4.1(iii) and (iv), we get

lim
k→∞

αkDg
(
�

g
C
(
zk), xk) = 0. (15)

Since B is a reflexive Banach space and {xk} is bounded by Theorem 4.1(ii), {xk} has at
least one weak accumulation point. Let x∗ be any weak accumulation point of {xk} such
that the subsequence {xki} of {xk} weakly converges to x∗, that is, xki ⇀ x∗, i → ∞, which
implies by (15) that

lim
i→∞αki Dg

(
�

g
C
(
zki

)
, xki

)
= 0. (16)

Then we prove that x∗ is a solution of VI(T , C) by discussing two cases.
Case 1: If lim supi→∞ αki > 0, then exists a subsequence, without loss of generality, still

recorded as {αki}, and a constant θ > 0 such that, for all i, we have αki > θ . Therefore, using
(16), we obtain

lim
i→∞ Dg

(
�

g
C
(
zki

)
, xki

)
= 0. (17)

It follows from Lemma 2.2 that

lim
i→∞

∥∥�
g
C
(
zki

)
– xki

∥∥ = 0. (18)

Lemma 2.1 implies that

〈
g ′(zki

)
– g ′(�g

C
(
zki

))
, y – �

g
C
(
zki

)〉 ≤ 0, ∀y ∈ C. (19)

It follows from the definition of zki in Algorithm 3.1 that

〈
g ′(xki

)
– g ′(�g

C
(
zki

))
, y – �

g
C
(
zki

)〉 ≤ 〈
T

(
xki

)
, y – �

g
C
(
zki

)〉
, ∀y ∈ C. (20)

This implies

〈
g ′(xki

)
– g ′(�g

C
(
zki

))
, y – �

g
C
(
zki

)〉
–

〈
T

(
xki

)
, xki – �

g
C
(
zki

)〉 ≤ 〈
T

(
xki

)
, y – xki

〉
. (21)

Using (H3), (18), and the boundedness of {xki} and {�g
C(zki )}, for all given y ∈ C, letting

i → ∞ in both sides of (21), we obtain that

lim inf
i→∞

〈
T

(
xki

)
, y – xki

〉 ≥ 0. (22)

Therefore, for any given ε > 0, there exists a large enough positive integer N , such that, for
i ≥ N , we have

〈
T

(
xki

)
, y – xki

〉
+ ε ≥ 0. (23)
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Note that T(xki ) �= 0 by Lemma 3.4. Take vki ∈ B such that 〈T(xki ), vki〉 = 1. Then inequality
(23) can be written as

〈
T

(
xki

)
, y + εvki – xki

〉 ≥ 0, i ≥ N , (24)

which implies, using Lemma 2.5, that at least one of the following must hold:

〈
T

(
y + εvki

)
, y + εvki – xki

〉 ≥ 0, i ≥ N , (25)

or

〈
T

(
xki

)
, z – xki

〉 ≥ 0, ∀z ∈ C, i ≥ N . (26)

Inequality (26) implies that xki is a solution of VI(T , C), which contradicts xki �= �
g
C(zki ).

Thus inequality (25) must hold. Inequality (25) can be equivalently written

〈
T(y), y – xki

〉 ≥ 〈
T(y) – T

(
y + εvki

)
, y + εvki – xki

〉
– ε

〈
T(y), vki

〉
, i ≥ N . (27)

From the continuity of T and the boundedness of {xki}, letting ε → 0, we obtain

〈
T(y), y – xki

〉 ≥ 0, ∀y ∈ C. (28)

Taking into account the fact that xki ⇀ x∗, i → ∞, we obtain

〈
T(y), y – x∗〉 ≥ 0, ∀y ∈ C, (29)

that is, x∗ ∈ SD. It follows from SD ⊂ S that x∗ is a solution of VI(T , C).
Case 2: If limi→∞ αki = 0, then

lim
i→∞ Dg

(
�

g
C
(
zki

)
, xki

)
= 0. (30)

In fact, take

ȳki =
αki

γ
�

g
C
(
zki

)
+

(
1 –

αki

γ

)
xki

or, equivalently,

ȳki – xki =
αki

γ

(
�

g
C
(
zki

)
– xki

)
. (31)

From the boundedness of {�g
C(zki ) – xki} and limi→∞ αki = 0 we obtain

lim
i→∞

∥∥ȳki – xki
∥∥ = 0. (32)

It follows from the definition of αki that

〈
T

(
xki

)
– T

(
ȳki

)
, xki – �

g
C
(
zki

)〉
> σDg

(
�

g
C
(
zki

)
, xki

)
. (33)
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Using the uniform continuity of T on bounded sets of B, σ ∈ (0, 1), and the boundedness
of {�g

C(zki )} and {xki}, we obtain

lim
i→∞ Dg

(
�

g
C
(
zki

)
, xki

)
= 0. (34)

Next, applying a similar argument as in Case 1, we get the desired result. �

Now we can state and prove our main convergence result.

Theorem 4.3 Assume that SD is a nonempty set, T : B → B
∗ is uniformly continuous on

bounded subset of B, and g : B → R satisfies (H1)–(H5). Let C is a closed and convex subset
of B. Then any infinite sequence {xk} generated by Algorithm 3.1 strongly converges to a
solution x̂ of VI(T , C).

Proof Let x̂ be any weak accumulation point of {xk}, and let {xki} be a subsequence of {xk}
such that xki ⇀ x̂, i → ∞. By Theorem 4.2, x̂ is a solution of VI(T , C). We next prove that
the whole sequence {xk} strongly converges to x̂. Indeed, since g is strongly convex, we
have

α
∥∥x∗ – xki

∥∥2 ≤ g
(
x∗) – g

(
xki

)
–

〈
g ′(xki

)
, x∗ – xki

〉
. (35)

The function g is lower semicontinuous and convex and, thus, weakly lower semicontin-
uous. Hence

g
(
x∗) ≤ lim inf

i→∞ g
(
xki

)
. (36)

Since g ′ is uniformly continuous on bounded subsets of B and {xki} is bounded, by
Lemma 2.4 we get that {g ′(xki )} is bounded. From (35) and (36) we have

lim sup
i→∞

α
∥∥x∗ – xki

∥∥2 ≤ lim sup
i→∞

(
g
(
x∗) – g

(
xki

)
–

〈
g ′(xki

)
, x∗ – xki

〉)

= g
(
x∗) – lim inf

i→∞ g
(
xki

)
– lim inf

i→∞
〈
g ′(xki

)
, x∗ – xki

〉
.

≤ g
(
x∗) – g

(
x∗) – lim inf

i→∞
〈
g ′(xki

)
, x∗ – xki

〉
= 0,

which implies that

lim
i→∞

∥∥x∗ – xki
∥∥ = 0. (37)

Since g and g ′ are uniformly continuous on bounded subsets of B, {xki} is bounded, and

Dg
(
x∗, xki

)
= g

(
x∗) – g

(
xki

)
–

〈
g ′(xki

)
, x∗ – xki

〉
.

Letting i → ∞ in this inequality and combining this with (37), we obtain

lim
i→∞ Dg

(
x∗, xki

)
= 0. (38)
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Applying the convergence of the whole sequence {Dg(x∗, xk)}, we get

lim
k→∞

Dg
(
x∗, xk) = 0. (39)

From Lemma 2.2 it follows that

lim
k→∞

∥∥x∗ – xk∥∥ = 0,

that is, the whole sequence {xk} strongly converges to x∗. �

5 Conclusion
In this paper, by the Bregman projection we extend a double projection algorithm pro-
posed by Solodov and Svaiter [7] for solving variational inequalities from Euclidean spaces
to Banach spaces. Under the assumptions of SD �= ∅, uniform continuity and quasimono-
tonicity, we prove that the whole sequence generated by the proposed method is strongly
convergent to the solution of the variational inequalities, and our proof techniques are
different from those presented in [14–17].
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