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Abstract
In this paper, a filter QP-free infeasible method with nonmonotone line search is
proposed for minimizing a smooth optimization problem with smooth inequality
constraints. This proposed method is based on the solution of nonsmooth equations,
which are obtained by the Lagrangian multiplier method and the function of the
nonlinear complementarity problem for the Karush–Kuhn–Tucker optimality
conditions. Especially, each iteration of this method can be viewed as a perturbation
of a Newton or quasi-Newton iteration on both the primal and dual variables for the
solution of the Karush–Kuhn–Tucker optimality conditions. What is more, it is
considered to use the function of the nonlinear complementarity problem in the
filter, which makes the proposed algorithm avoid the incompatibility. Then the global
convergence of the proposed method is given. And under some mild conditions, the
superlinear convergence rate can be obtained. Finally, some preliminary numerical
results are shown to illustrate that the proposed filter QP-free infeasible method is
quite promising.
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1 Introduction
In this paper, we mainly consider solving the nonlinear optimization problem (NLP) with
the inequality constraints, where the objective function and the constrained functions are
Lipschitz continuously differentiable functions. We give the Lagrangian function associ-
ated with this problem, then the Karush–Kuhn–Tucker (KKT) optimality conditions for
our solved problem can be obtained.

It is well known that the KKT optimality conditions is a mixed nonlinear complemen-
tarity problem (NCP). And this NCP has attracted much attention due to its various ap-
plications [1–3] such as the economic equilibrium problem, the restructuring problems of
electricity and gas markets, and so on. Of course, there are many efficient methods for solv-
ing the NCP, which can be seen in [4–7]. One popular way to solve the NCP is to construct
a Newton method for solving the related nonlinear equations, which is a reformulation of
the KKT optimality condition. Another way is to use the filter method to directly solve the
NLP with the inequality constraints. Recently Pu, Li, and Xue [8] proposed a new quadratic
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programming (QP)-free infeasible method for minimizing a smooth function subject to
some inequality constraints. This method is based on the solution of nonsmooth equa-
tions which are obtained by the multiplier and the Fischer–Burmeister NCP function for
the KKT conditions. They proved that the method had a superlinear convergence rate
under some mild conditions.

Fletcher and Leyffer [9] proposed a filter method for solving the NLP problem, which
was an alternative to the traditional merit functions approach. Provided that there is a
sufficient decrease in the objective function or the constraints violation function, it was
shown that the trial points generated from solving a sequence of trust region QP subprob-
lems are accepted. In addition, the computational results reported in [9, 10] are also very
encouraging. For more related methods, one can refer to [11–16].

Stimulated by the progress in these two aspects, in this paper, we propose a nonmono-
tone filter QP-free infeasible method for minimizing a smooth function subject to smooth
inequality constraints. This proposed iterative method is based on the solution of nons-
mooth equations, which are obtained by the multiplier and some NCP functions for the
KKT first order optimality conditions. And each iteration of this method can be viewed as
a perturbation of a Newton or quasi-Newton iteration on both the primal and dual vari-
ables for the solution of the KKT optimality conditions. Specifically, we use the filter on
the linear search with a nonmonotone acceptance mechanism [17, 18]. Moreover, we also
consider to use the NCP function in the filter. Thus our algorithm can avoid the incompat-
ibility, which may appear in the filter SQP algorithm. We also give the global convergence
and the superlinear convergence rate of the proposed method under some mild condi-
tions. Finally, we take some numerical tests to illustrate the effectiveness of the proposed
filter QP-free infeasible method.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries
and the formulation of the solved problem. Then we propose an infeasible filter QP-free
method. In Sect. 3, we show that the proposed method is well defined and establish its
global convergence and superlinear convergence rate under some mild conditions. Some
numerical tests are given in Sect. 4. Finally, we give some brief conclusions in Sect. 5.

2 Preliminaries and algorithm
In this section, we firstly introduce the formulation of the solved problem. Then we give
some preliminaries for structuring a new filter QP-free method. Finally, we present the
structure of our proposed method in detail.

In this paper, we mainly consider solving the nonlinear optimization problem (NLP)
with the inequality constraints, which can be formulated as

min f (x), s.t. x ∈ D =
{

x ∈ Rn|G(x) ≤ 0
}

, (1)

where f : Rn → R and G = (g1, g2, . . . , gm)T : Rn → Rm are Lipschitz continuously differen-
tiable functions.

The Lagrangian function associated with problem (1) is

L(x,μ) = f (x) + μT G(x),

where μ = (μ1,μ2, . . . ,μm)T ∈ Rm is the multiplier vector. For simplicity, we use (x,μ) to
denote the column vector (xT ,μT )T .
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Then we can obtain the KKT point (x̄, μ̄) ∈ Rn × Rm for problem (1), which satisfies the
necessary optimality conditions :

∇xL(x̄, μ̄) = 0, G(x̄) ≤ 0, μ̄ ≥ 0, μ̄igi(x̄) = 0, (2)

where 1 ≤ i ≤ m. We also say that x̄ ∈ D is a KKT point of problem (1) if there exists μ̄ ∈ Rm

such that (x̄, μ̄) satisfies (2). It is well known that the KKT optimality condition is a mixed
NCP. And the reformulation of (2) can be viewed as the following nonlinear equation:

�(x,μ) = 0.

2.1 Preliminaries
In this subsection, we give the definition of Fischer–Burmeister NCP function and some
related Jacobian functions in different cases. Both theoretical results and computational
experience have indicated that the nonsmooth methods based on the Fischer–Burmeister
NCP function are efficient. The Fischer–Burmeister function has a very simple structure,
which is defined as

ψ(a, b) =
√

a2 + b2 – a – b.

It is clear that this function ψ is continuously differentiable everywhere except at the ori-
gin, but it is strongly semismooth at the origin, i.e., if a �= 0 or b �= 0, then ψ is continuously
differentiable at (a, b) ∈ R2, and

∇ψ(a, b) =
(

a√
a2 + b2

– 1,
b√

a2 + b2
– 1

)
;

if a = 0 and b = 0, then the generalized Jacobian of ψ at (0, 0) is (see [14])

∂ψ(0, 0) =
{

(ξ – 1,η – 1)|ξ 2 + η2 = 1
}

.

Let φi(x,μ) = ψ(–gi(x),μi), 1 ≤ i ≤ m. Given the above formulation of problem (1), we
can denote �(x,μ) = ((∇xL(x,μ))T , (�1(x,μ))T )T , where �1(x,μ) = (φ1(x,μ), . . . ,
φm(x,μ))T .

Clearly, the KKT optimality conditions (2) can be equivalently reformulated as the non-
smooth equations �(x,μ) = 0.

If (gi(x),μi) �= (0, 0), then φi is continuously differentiable at (x,μ) ∈ Rn+m. In this case,
we have

∇xφi =
(

–gi(x)
√

(gi(x))2 + μ2
i

+ 1
)

∇gi(x); ∇μφi =
(

μi√
(gi(x))2 + μ2

i

– 1
)

ei,

where ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rm is the ith column of the unit matrix, its ith element is
1, and other elements are 0.

If gi(x) = 0 and μi = 0, 1 ≤ i ≤ m, then φi(x,μ) is strongly semismooth and directionally
differentiable at (x,μ). We have

∂xφi(x,μ) =
{

(ξ + 1)∇gi(x)| – 1 ≤ ξ ≤ 1
}
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and

∂μiφi(x,μ) =
{

(ξ – 1)| – 1 ≤ ξ ≤ 1
}

.

We may reformulate the KKT at point (x̄, μ̄) conditions as a system of equations:

�(x̄, μ̄) =
(∇xL(x̄, μ̄),�1(x̄, μ̄)

)
= 0,

where μ = (μ1,μ2, . . . ,μm)T ∈ Rm is the multiplier vector, φj(x,μj) = ψ(–gj(x),μj),
�1(x̄, μ̄) = (φ1(x̄, μ̄1),φ2(x̄, μ̄2), . . . ,φm(x̄, μ̄m))T . To replace the violation constrained func-
tion p(G(x)) in the filter F of Fletcher and Leyffer method [9], we use the violation con-
strained function p(G(x),μ) = ‖�1(x,μ)‖.

2.2 Algorithm
In this subsection, we give the process and the framework of the filter QP-free method for
solving problem (1). We firstly give some closed forms for preparing the method.

If (g(xk),μk) �= (0, 0), let ξ k
j = ξj(xk ,μk) =

–gk
j√

(gk
j )2+(μk

j )2
+ 1; ηk

j = ηj(xk ,μk) =
μk

j√
(gk

j )2+(μk
j )2

– 1;

otherwise we denote ξ k
j = ξj(xk ,μk) = 1 +

√
2/2; ηk

j = ηj(xk ,μk) = –1 +
√

2/2. Then let

V k =

(
V k

11 V k
12

V k
21 V k

22

)

=

(
Hk ∇Gk

diag(ξ k)(∇Gk)T diag(ηk – ck)

)

, (3)

where Hk is a positive matrix, which may be modified by BFGS update. The diag(ξ k) or
diag(ηk – ck) denotes the diagonal matrix whose jth diagonal element is ξ k

j or ηk
j – ck

j re-
spectively, and

ck
j = c min

{
1,

∥∥�k∥∥ν},

where c > 0 and ν > 1 are given parameters.
Secondly, we give the nonmonotone sequence for structuring our method. We may as-

sume that the elements �k and Fk are sorted in the decreasing order, that is, F̂k1 ≥ F̂k2 ≥
F̂k3 ≥ · · · ≥ F̂kl , �̂k1 ≥ �̂k2 ≥ �̂k3 ≥ · · · ≥ �̂kl . Let

�̄k ==

⎧
⎨

⎩
{�k , �̂k2, �̂k3, . . . , �̂kl}, if ‖�k‖ < �̂k1 and ‖�k‖ > 0,

{�̂k1, �̂k2, �̂k3, . . . , �̂kl}, if �k ≥ �̂k1 or �k = 0;
(4)

and

F̄k ==

⎧
⎨

⎩
{Fk , F̂k2, F̂k3, . . . , F̂kl}, if Fk < F̂k1,

{F̂k1, F̂k2, F̂k3, . . . , F̂kl}, if Fk ≥ F̂k1.
(5)

We denote the maximal elements in �̄k , F̄k by pk
max, F̄k

max, respectively.
Based on the above given information, we now give the framework of the nonmonotone

filter QP-free infeasible method (NFQPIM) for minimizing a smooth function subject to
smooth inequality constraints as follows in Algorithm 1.
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Algorithm 1 NFQPIM
Step 0. Initialization. Given an initial guess x0 ∈ Rn, τ ∈ (0, 1), μ̄ > 0, 0 < θ1 < θ1 < 1, and
a positive definite matrix H0. Given initial (f (x0), μ̄) ∈ F0. Let p0

max = {Kp, Kp · Kp}, F̄0
max =

{Kf , Kf · Kf } and k = 0, where Kp > 0 and Kf > 0 are sufficiently large constant numbers.
Step 1. Computation of the search direction.
If �k �= 0, then compute dk0 and λ̄k0 by solving the following linear system in (d,λ):

V k

(
d
λ

)

=

(
–∇f k

0

)

. (6)

If ηk
j �= 0, then let λk0

j = ηk
j λ̄

k0
j /(–ηk

j + ck
j ), otherwise let λk0

j = λ̄k0
j . Compute dk1 and λ̄k1 by

solving the following linear system in (d,λ):

V k

(
d
λ

)

=

(
–∇Lk

–�k
1

)

. (7)

If ηk
j �= 0, then let λk1

j = ηk
j λ̄

k1
j /(–ηk

j + ck
j ), otherwise let λk1

j = λ̄k1
j .

Step 2. Line search with filter.
1) If

∥∥�
(
xk + dk1,μk + λk1)∥∥2 ≤ θ1

∥∥�k∥∥2, (8)

and (9) or (10), at least one holds, then let xk+1 = xk + dk1 and = μk+1 + λk1, go to Step 3.
2) Line research:
Find xk+1 and μk+1 to be acceptable for the filter test: let x̄k+1 = xk +αkdk0, μ̄k+1 = μk +αkλ

k0,
x̂k+1 = xk + αkdk1, and μ̂k+1 = μk + αkλ

k1, where αk = τ j and j is the smallest nonnegative
integer satisfying either

∥∥�1
(
x̂k+1, μ̂k+1)∥∥ ≤ θ1 max

{∥∥�1
(
xk ,μk)∥∥pj

max

}
(9)

or

f
(
x̄k+1) – max

{
f k , F̄ j

max

} ≤ –αkθ1
∥∥�k+1

1
∥∥ (10)

for all (f (xj),‖�j
1‖2) ∈ Fk . If (9) holds, then xk+1 = x̂k+1, μk+1 = μ̂k+1 and call it �-step; if

(10) holds, then xk+1 = x̄k+1, μk+1 = μ̄k+1 and call it f -step.
If there are no such xk+1 and μk+1 or αk too small, we use the backtracking technology or
use the feasibility restoration phase to find xk+1 and μk+1 so that it is an acceptable filter
and the QP(xk+1) subproblem is compatible. Go to Step 1.
Step 3. Update.
If xk+1 is a KKT point, then stop, otherwise if μk+1

i ≤ μ̄, then μk+1
i = μk+1

i ; otherwise let
μk+1

i = μ̄, give Hk+1 by BFGS update, f̄ k+1 = 1/2(f̄ k + f k+1), Fk+1 = Fk∪(f̄ (xk+1),‖�k
1‖) and

delete all pairs (f̄ (xl),‖�l
1‖) which are dominated by (F(xk+1),μk+1) in Fk+1, obtain Fk+1.

Let k = k + 1 and go to Step 1.
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Remark 1 Let �(x,μ) = ((∇xL, H(x)), (�1(x,μ))T )T , the above proposed NFQPIM can also
be used to solve the following constrained NLP:

min f (x)

s.t. G(x) ≤ 0, H(x) = 0, x ∈ Rn,

where f : Rn → R and G(x) = (g1(x), g2(x), . . . , gm(x))T : Rn → Rm and H(x) = (h1(x), h2(x),
. . . , hp(x))T : Rp → Rm are Lipschitz continuously differentiable functions.

2.3 Implementation
In this subsection, we give the implementation of the proposed NFQPIM. Firstly, we sup-
pose that the following assumptions A1–A3 hold.

A1. The level set {x|f (x) ≤ f (x0)} is bounded, and for sufficiently large k,
‖μk + λk0 + λk1‖ < μ̄.

A2. f and gi are Lipschitz continuously differentiable, and for all y, z ∈ Rn+m,

∥∥∇L(y) – ∇L(z)
∥∥ ≤ m0‖y – z‖,

∥∥�(y) – �(z)
∥∥ ≤ m0‖y – z‖,

where m0 > 0 is the Lipschitz constant.
A3. Hk is positive definite and there exist positive numbers m1 and m2 such that

m1‖d‖2 ≤ dT Hkd ≤ m2‖d‖2 for all d ∈ Rn and all k.

Lemma 1 If �k �= 0, then V k is nonsingular.

Proof Assume �k �= 0. If V k(u, v) = 0 for some (u, v) ∈ Rn+m, where u = (u1, . . . , un)T , v =
(v1, . . . , vm)T , then

Hku + ∇Gkv = 0 (11)

and

diag
(
ξ k)(∇Gk)T u + diag

(
ηk – ck)v = 0. (12)

From the definitions of ξ k
j and ηk

j , we know that ξ k
j ≥ 0 and ηk

j – ck �= 0 for all j. So diag(ηk –
ck

j ) is nonsingular. We have

v = –
(
diag

(
ηk – ck))–1

diag
(
ξ k)(∇Gk)T u. (13)

Taking (13) into (11), we have

uT(
Hku + ∇Gkv

)
= uT Hku – uT∇Gk diag

(
ξ k)(diag

(
ηk – ck))–1(∇Gk)T u = 0.

The fact that –∇Gk diag(ξ k)(diag(ηk – ck))–1(∇Gk)T is positive semidefinite implies u = 0,
and then v = 0 by (13). V k is nonsingular. This lemma holds. �
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Lemma 2 dk0 = 0 if and only if ∇f k = 0, and dk0 = 0 implies λ̄k0 = 0 and λk0 = 0.
If (x∗,μ∗) is an accumulation point of {(xk ,μk)}, then d∗0 = 0, and (d∗0,λ∗0)T is the solu-

tion of the following equations:

V ∗
(

d
λ

)

=

(
–∇f ∗

0

)

(14)

and ∇L(x∗,μ∗) = 0.

It is clear that the following lemma holds, with reference to [8].

Lemma 3 If dk0 �= 0, then

(
dk0)T Hkdk0 ≤ –

(
dk0)T∇f k .

Proof (14) implies

Hkdk0 + ∇Gkλk0 = –∇f k , (15)

and

diag
(
ξ k)(∇Gk)T dk0 + diag

(
ηk – ck)λ̂k0 = 0. (16)

We have

λ̂k0 = –
(
diag

(
ηk – ck))–1

diag
(
ξ k)(∇Gk)T dk0. (17)

Taking (17) into (15), we have

(
dk0)T(

Hkdk0 + ∇Gkλk0)

=
(
dk0)T Hkdk0 –

(
dk0)T∇Gk diag

(
ξ k)(diag

(
ηk – ck))–1(∇Gk)T dk0

= –
(
dk0)T∇f k . (18)

(dk0)T∇G(xk) diag(ξ k)(diag(ηk – ck))–1(∇Gk)T dk0 ≤ 0 implies

(
dk0)T Hkdk0 ≤ –

(
dk0)T∇f k . (19)

The lemma holds. �

Lemma 4 There exists m3 > 0 such that, for any 0 < t ≤ 1,

∥∥�1
(
xk + tdk0,μk + tλk0)∥∥2 – ‖�1‖2 ≤ m3t2.

Proof If �k
1 = 0, then there exists m4 > 0 such that, for any 0 < t ≤ 1,

∥∥�1
(
xk + tdk0,μk + tλk0)∥∥2 =

∥∥�1
(
xk + tdk0,μk + tλk0) – �k

1
∥∥2 ≤ t2m2

2
∥∥(

dk0,λk0)∥∥2.

The lemma holds for �k
1 = 0. �
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We define that if (gk
i ,μk

i ) �= (0, 0), then (ξ̄ k0
i , η̄k0

i ) = (ξ k
i ,ηk

i ), otherwise ξ̄ k0
i (∇gk

i )T dk0 +
η̄k0

i λk0
i = φ′

i((xk ,μk), (dk0,λk0)), where φ′
i((xk ,μk), (dk0,λk0)) is the direction derivative of

φi(x,μ) at (xk ,μk) in the direction (dk0,λk0).
Let diag(ξ̄ k0) or diag(η̄k0) denote the diagonal matrix whose jth diagonal element is ξ̄ k0

j

or η̄k0
j , respectively. Then φi(0, 0) = 0 implies

(
�k

1
)T(

diag
(
ξ̄ k0)(∇Gk)T , diag

(
η̄k0)) =

(
�k

1
)T(

diag
(
ξ k)(∇Gk)T , diag

(
ηk)).

Then

∥∥�k
1 + t

(
diag

(
ξ̄ k0)(∇Gk)T dk0 + diag

(
η̄k0)λk0)∥∥2

=
∥∥�k

1
∥∥2 + t2‖diag

(
ξ̄ k0)(∇Gk)T dk0 + diag

(
η̄k0)λk0)‖2. (20)

It is clear that

∥∥�1
(
xk + tdk0,μk + tλk0)∥∥2 =

∥∥�k
1
∥∥2 + O

(
t2).

This lemma holds.

Lemma 5 If �k
1 �= 0, then given any ε > 0 there is t̄ > 0 such that, for any 0 < t ≤ t̄,

∥∥�k
1
∥∥2 –

∥∥�1
(
xk + tdk1,μk + tλk1)∥∥2 ≥ (2 – ε)t

∥∥�k
1
∥∥2.

Proof If �k
1 �= 0, (7) implies

diag
(
ξ k)(∇Gk)T dk1 + diag

(
ηk – ck)λk1 = –�k

1. (21)

We define that if (gk
i ,μk

i ) �= (0, 0) then (ξ̄ k1
i , η̄k1

i ) = (ξ k
i ,ηk

i ), otherwise (ξ̄ k1
i ∇gk

i , η̄k1
i )(dk1,

λk1) = φ′
i((xk ,μk), (dk1,λk1)), where φ′

i((xk ,μk), (dk1,λk1)) is the direction derivative of
φi(x,μ) at (xk ,μk) in the direction (dk1,λk1). Let diag(ξ̄ k1) or diag(η̄k1) denote the diag-
onal matrix whose ith diagonal element is ξ̄ k1

i or η̄k1
i , respectively. Clearly, for all i,

φi
(
xk + tdk1,μk + tλk1) – φk

i ≤ t
(
ξ̄ k1

i
(∇gk

i
)T dk1 +

(
η̄k1

i
))

. (22)

Since ck
i �= 0, it follows by the definitions of ck

i and ηk
i that ηk

i = 0, gk
i = 0, μk

i ≥ 0, and
φk

i = 0. We have

∥∥�k
1 + t

(
diag

(
ξ̄ k1)(∇Gk)T dk1 + diag

(
η̄k1)λk1)∥∥2

= (1 – 2t)
∥∥�k

1
∥∥2 + t

∥∥diag
(
ξ̄ k1)(∇Gk)T dk1 + diag

(
η̄k1)λk1∥∥2. (23)

It follows from (22) and (23) that, given any ε > 0, there is t̄ > 0 such that, for any 0 < t ≤ t̄,

∥∥�k
1
∥∥2 –

∥∥�1
(
xk + t2dk1,μk + tλk1)∥∥2 ≥ (2 – ε)t

∥∥�k
1
∥∥2.

Hence this lemma holds. �
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Lemma 6 dk0 = 0 if and only if ∇f k = 0, and dk0 = 0 implies λ̄k0 = 0 and λk0 = 0.

Proof If ∇f k = 0, then (xk , λ̄k0) = V̂ k(0, 0) = (0, 0). If dk0 = 0, then (14) implies

diag
(
ξ k)(∇Gk)T dk0 + diag

(
ηk – ck)λ̄k0 = diag

(
ηk – ck)λ̄k0 = 0. (24)

Clearly, λ̄k0 = 0, λk0 = 0, and (∇f k , 0) = (V k)–1(0, 0) = (0, 0). �

From Lemmas 3–6, we know that, if �k
1 �= 0, then (dk ,λk) is the decreasing direction of

‖�k‖; if dk0 �= 0, then dk is the decreasing direction of f k . If �k
1 = 0 and dk0 = 0, then (xk ,μk)

is a KKT point. We consider four cases for linear searches.
Case 1. k –1 iteration has a �-step and �k

1 = 0. In this case, pk
max = pk–1

max and min{pkjmax|j ∈
Fk > 0}. Clearly, we can find αk such that x̂k+1 satisfies (9).

Case 2. k – 1 iteration has a �-step and �k
1 �= 0. In this case, it follows from Lemma 5

that, given any ε > 0, there is t̄ > 0 such that, for any 0 < t ≤ t̄,

∥∥�k
1
∥∥2 –

∥∥�1
(
xk + tdk1,μk + tλk1)∥∥2 ≥ (2 – ε)t

∥∥�k
1
∥∥2.

pk
max > 0 is monotonically nonincreasing. So, we can find αk such that x̂k+1 satisfies (9).
Case 3. k – 1 iteration has an f -step and dk0 �= 0. In this case, it follows from Lemma 5

that, if dk0 �= 0, then

(
dk0)T Hkdk0 ≤ –

(
dk0)T∇f k ,

where f k
max is monotonically nonincreasing. We can find αk such that x̄k+1 satisfies

(10).
Case 4. The (k – 1) iteration has an f -step and dk0 = 0. In this case, if �k

1 = 0, then (xk ,μk)
is a KKT point, otherwise xk may be an infeasible stationary point.

If there are no such xk+1 and μk+1 or αk too small, we use the backtracking technology
or use the feasibility restoration phase to find xk+1 and μk+1 so that it is acceptable that the
filter and the QP(xk+1) subproblem are compatible.

3 Convergence
In this section, we discuss the global and superlinear convergence rate of the proposed
method. We give the following A4 and suppose that the assumptions A1–A4 hold in this
section.

A4. For all k and some αmin > 0, αk > αmin > 0.
It implies from (3) and (4) that pk

max > 0 is monotonically nonincreasing and, if
‖�1(xk)‖ → 0, then pk

max → 0.

Lemma 7 Consider the sequence {‖�1(xk)‖2} and {f k} such that {‖�1(xk)‖2 ≥ 0} and {f k}
is monotonically decreasing and bounded below. Let a constant θ satisfy, for all k and l ∈ Fk ,
that

∥∥�1
(
x̂k+1, μ̂k+1)∥∥ ≤ θ1 max

{∥∥�1
(
xk ,μk)∥∥pj

max

}
(25)
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or

f
(
x̄k+1) – max

{
f k , F̄ j

max

} ≤ –αkθ1
∥∥�k+1

1
∥∥, (26)

where αk ≥ αmin > 0 is the step length, θ is a given positive number. Then pk
max → 0.

Proof Suppose that the theorem is not true, then �1(xk) �→ 0, and there exist ε > 0 and
infinitely many members of index set K such that ‖�1(xk+1,μk+1)‖ ≥ ε > 0, pk

max ≥ ε > 0,
and ‖�1(xk+1,μk+1)‖ ≥ θ‖�1(xk ,μk)‖ for any k ∈ K . We have

f
(
xk) – f

(
xk+1) ≥ αkθ

∥∥�1
(
xk+1,μk+1)∥∥ > αminθε. (27)

Because {f k} is monotonically decreasing, (27) implies f (xk) → –∞ as k → +∞, which is
contravention of {f k} being bounded below. This lemma holds. �

Lemma 8 Consider an infinite sequence iterations on which {f k ,‖�1(xk)‖2} entered into
the filter, where ‖�1(xk)‖ > 0 and {f k} is bounded below. It follows that �1(xk) → 0.

Theorem 1 If (x∗,μ∗) is an accumulation point of {(xk ,μk)}, then x∗ is a KKT point of
problem (1).

Proof It is obvious that Lemmas 8 and 2 imply that Theorem 1 holds. �

Next we consider the superlinear convergence of the method and firstly give the follow-
ing assumptions we need.

A5. The Mangasarian–Fromovitz (M-F) qualification condition is satisfied at x∗, i.e.,
{∇gi(x∗)} are linear independent for all i ∈ I = {i|gi(x∗) = 0}, and there exists a direc-
tion such that dT∇gi(x∗) < 0, i ∈ I = {i|gi(x∗) = 0}, where i ∈ I = {i|gi(x∗) = 0}, where
x∗ is an accumulation point of {xk} and a KKT point of problem (1).

A6. The sequence of {Hk} satisfies

‖(Hk – ∇2
x L(xk ,μk))dk1‖
‖dk1‖ → 0.

A7. The strict complementarity condition holds at each KKT point (x∗,μ∗).
It follows that φk is differentiable at each KKT point (x∗,μ∗).
Assumption A7 implies that � is continuously differentiable at each KKT point (x∗,μ∗).

As Lemma 1, we have that the following lemmas hold.

Lemma 9 Assume A1–A7 hold, then {‖(V k)–1‖} and {‖(V̂ k)–1‖} are bounded. Further-
more, if V ∗ is an accumulation matrix of {V k}, then V ∗ is nonsingular.

Proof By Theorem 1, �∗ = 0 and ck → 0. Without loss of generality, we may assume that
(xk ,μk) → (x∗,μ∗), Hk → H∗, diag(ξ k) → diag(ξ ∗), and diag(ηk) → diag(η∗). By the defi-
nitions of ξ k

i and ηk
i , we know that (ξ ∗

i )2 + (η∗
i )2 �= 0. Hk → H∗ implies that H∗ is positive

definite.
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If V ∗(u, v) = 0, where (u, v) ∈ Rn+m and u = {(u1, . . . , un)T }, v = {(v1, . . . , vm)T }, then we
have

H∗u + ∇G∗v = 0 (28)

and

diag
(
ξ ∗)(∇G∗)T u + diag

(
η∗)v = 0. (29)

From (29) and the definitions of ξ ∗
j and η∗

j , we know that if ξ ∗
j = 0 then η∗

j �= 0. If ξ ∗
j �= 0

then

uT∇g∗
j = –

η∗
j

ξ ∗
j

vj. (30)

Putting (29) and (30) into (28), we have

uT(
H∗u + ∇G∗v

)

= uT H∗u +
∑

j:ξ∗
j �=0

–
η∗

j

ξ ∗
j

v2
j = 0. (31)

η∗
j /ξ ∗

j ≤ 0 implies u = 0, and if η∗
j �= 0 then vj = 0. Let I = {j|g∗

j = 0}, because g∗
j �= 0 implies

η∗
j �= 0 and vj = 0, we have

∑

j∈I

∇g∗
j vj = 0, (32)

and vj = 0 (j ∈ I) by A4, i.e., (u, v) = 0 and V ∗ is nonsingular.
On the other hand, suppose to the contrary that there exists a subsequence {(xk(i),λk(i))}

such that ‖(V k(i))–1‖ → ∞ as k(i) → ∞ and (xk(i),λk(i)) → (x∗,λ∗). We can choose k(i)
properly such that V k(i) → V ∗ including ξ k(i) → ξ ∗ and ηk(i) → η∗. Clearly, (ξ ∗

j )2 + (η∗
j )2 ≥

3 – 2
√

2 > 0 and V ∗ ∈ ∂�∗. But V ∗ is nonsingular by the above proof, which contra-
dicts the assumption ‖(V k(i))–1‖ → ∞. Hence, {‖(V k(i))–1‖} is bounded. �k → 0 implies
limk→∞ V k = limk→∞ V̂ k , we can also obtain that {‖(V̂ k)–1‖} is bounded. This lemma
holds. �

Assumption A5 shows that (xk ,μk) is a Newton direction with a high order perturbation.
We obtain the following lemma.

Lemma 10 For sufficiently large k, xk+1 = xk + dk1 and μk+1 = μk + λk1.

Furthermore, Lemma 10 implies that the following theorem holds.

Theorem 2 Assume A1–A7 hold. Let Algorithm 1 (NFQPIM) be implemented to generate
a sequence {(xk ,μk)}, (x∗,μ∗) be an accumulation point of {(xk ,λk)}. Then (x∗,μ∗) is a KKT
point of problem (1), and (xk ,μk) converges to (x∗,μ∗) superlinearly.
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4 Numerical tests
We use Algorithm 1 (NFQPIM) for the constrained optimization problems (see [19]): Hk

is updated by the BFGS method. The termination criterion is ‖φ‖ ≤ 10–5. The parameters
are chosen as follows: c = 0.1, ν = 2, τ = 0.7, θ1 = 0.8, θ = 0.6, μ̄ = 10,000. In the “NIT/NG”
entry of the table below, NIT is the number of iterations, NF represents the number of
function evaluations, NG denotes the number of gradient evaluations. The numerical re-
sults can be seen in the Table 1. We test the proposed NFQPIM for solving almost 100
optimization problems. And the numerical results illustrate that the proposed method is
efficient and promising.

Table 1 Numerical results on the NFQPIM for some constrained optimization problems

Problem n m NIT NG NF

hs001 2 1 65 43 40
hs002 2 1 15 19 18
hs003 2 1 3 5 4
hs004 2 2 4 6 5
hs005 2 4 9 11 9
hs006 2 1 5 9 8
hs007 2 1 16 25 21
hs008 2 2 3 6 5
hs009 2 1 10 13 12
hs010 2 1 27 43 33
hs011 2 1 13 23 15
hs012 2 1 13 19 16
hs013 2 1 3 6 4
hs014 2 2 4 7 4
hs015 2 2 7 11 7
hs016 2 5 5 8 7
hs017 2 5 14 19 16
hs018 2 6 20 24 23
hs019 2 6 4 7 6
hs020 2 5 5 8 6
hs021 2 5 4 7 5
hs022 2 2 5 8 5
hs023 2 9 3 4 4
hs024 2 5 7 13 10
hs025 3 6 4 6 6
hs026 3 1 24 33 27
hs027 3 1 28 34 31
hs028 3 1 6 12 9
hs029 3 1 21 37 31
hs030 3 7 9 11 10
hs031 3 7 12 17 14
hs032 3 5 8 14 12
hs033 3 6 11 16 24
hs034 3 8 8 12 10
hs035 3 4 7 11 10
hs036 3 7 10 13 11
hs037 3 8 13 18 15
hs038 4 8 83 111 98
hs039 4 2 21 35 32
hs040 4 3 11 16 14
hs041 4 9 13 17 15
hs042 4 2 11 14 12
hs043 4 3 15 23 20
hs044 4 10 16 23 21
hs045 5 10 5 7 7
hs046 5 10 29 37 33
hs047 5 3 26 33 30
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Table 1 (Continued)

Problem n m NIT NG NF

hs048 5 2 10 15 13
hs049 5 2 36 46 40
hs050 5 3 35 43 39
hs051 5 3 9 13 11
hs052 5 3 7 14 12
hs053 5 3 5 7 7
hs054 6 13 9 13 10
hs055 6 14 8 14 11
hs056 7 4 12 14 12
hs057 2 3 6 9 8
hs059 2 7 28 33 30
hs060 3 7 13 23 21
hs061 3 2 59 68 58
hs062 3 7 24 33 28
hs063 3 5 15 23 20
hs064 3 4 36 43 37
hs065 3 7 21 29 27
hs066 3 8 13 23 19
hs067 3 41 65 53 47
hs099 7 16 65 43 40
hs100 7 4 65 43 40
hs101 7 20 65 43 40
hs102 7 20 65 43 40
hs103 7 20 65 43 40
hs104 8 22 65 43 40
hs105 8 17 65 43 40
hs106 8 22 65 43 40
hs107 9 14 65 43 40
hs108 9 14 33 30
hs110 10 20 25 43 40
hs111 10 23 61 73 68
hs112 10 13 51 73 67
hs113 10 8 55 65 61
hs114 10 31 56 73 68
hs116 13 41 123 143 140
hs117 15 20 511 63 60
hs118 15 59 67 81 77
hs119 16 40 68 83 78

5 Conclusions
In this paper, we developed a nonmonotone filter QP-free infeasible method for minimiz-
ing a smooth optimization problem with inequality constraints. This proposed method is
based on the solution of nonsmooth equations which are obtained by the multiplier and
some NCP functions for the KKT first-order optimality conditions. At each iteration of the
proposed method, it was a perturbation of a Newton or quasi-Newton iteration on both
the primal and dual variables for the solution of the KKT optimality conditions. More-
over, we used the filter on linear searches with a nonmonotone acceptance mechanism.
We also showed that the proposed method had a global convergence and a superlinear
convergence rate. Finally, the numerical results illustrated that the proposed method was
efficient. However, how to apply this method to the real optimal problem will be studied
in the near future.
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