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Abstract
An inequality is being proved which is connected to cost-effective numerical density
estimation of the hyper-gamma probability distribution. The left-hand side of the
inequality is a combination of two in the third parameter distinct versions of the
hypergeometric function at the point one. All three parameters are functions of the
distribution’s terminal shape. The first and second are equal. The distinct third
parameters of the two hypergeometric functions depend on terminal and initial
shape. The other side of the inequality is determined by the quotient of two infinite
series, which are related to the first derivatives with respect to terminal shape of the
hypergeometric functions which appear in its left-hand side.
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1 Introduction
Certain inequalities shall be considered, which involve combinations of gamma and psi
functions of one positive variable β and one parameter x greater than unity. The ba-
sic functions involved are particular values of the hypergeometric function F(a, b, c; s) [1,
9.122.1], namely:

A(β ; x) = F
(

1
β

, –
1
β

,
x
β

; 1
)

=
�2(x/β)

�((x – 1)/β)�((x + 1)/β)

=
∞∏
ν=0

(yν – 1)(yν + 1)
y2
ν

=
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ν=0

(
1 –

1
y2
ν

)
, (1.1)

B(β ; x) = F
(

1
β

, –
1
β

,
x + 1
β

; 1
)

=
�2((x + 1)/β)

�(x/β)�((x + 2)/β)

=
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ν=0

yν(yν + 2)
(yν + 1)2 =

∞∏
ν=0

(
1 –

1
(yν + 1)2

)
, (1.2)

where �(s) is the gamma function, yν = νβ + x, ν = 0, 1, 2, . . . , with β ∈ (0,∞), x ∈ (1,∞)
throughout. The product representations of A(β ; x) and B(β ; x) are given is [1, 8.325.1].
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Associated with these functions is their product

C(β ; x) = A(β ; x)B(β ; x) = F
(

1
β

, –
2
β

;
x
β

; 1
)

=
�(x/β)�((x + 1)/β)

�((x – 1)/β)�((x + 2)/β)

=
∞∏
ν=0

(yν – 1)(yν + 2)
yν(yν + 1)

=
∞∏
ν=0

(
1 –

2
yν(yν + 1)

)
. (1.3)

Since a + b – c < 0 for each of the hypergeometric functions in (1.1), (1.2), and (1.3), each of
their series expansions converges throughout the entire closed unit circle of the complex
plane [1, 9.102.2], and the gamma function expressions are justified [1, 9.122.1].

For the sake of simplicity we shall from now on omit the arguments β and x whenever
there is no chance for confusion, keeping in mind, however, that β in the actual indepen-
dent variable, and that x is a parameter. If we attach an argument to a symbol of a depen-
dent variable, it will be a particular value of β . For example, A(1) = A(1; x). Furthermore,
derivatives will always be with respect to β and will be denoted by a prime.

The functions A, B, and C satisfy the inequalities

0 < C < A < B < 1. (1.4)

The infinite product representations of A, B, and C show that

A ↓ 0, B ↓ 0, C ↓ 0 as β ↓ 0, (1.5a)

and

A ↑ x2 – 1
x2 = A∞, B ↑ x(x + 2)

(x + 1)2 = B∞, C ↑ (x – 1((x + 2)
x(x + 1)

= C∞, (1.5b)

as β ↑ ∞. (The down-arrow means that the function at its left decreases toward the value
at its right as its argument decreases. The up-arrow indicates the opposite.) We note the
particular values

A(1) =
x – 1

x
, B(1) =

x
x + 1

, C(1) =
x – 1
x + 1

. (1.6)

The β-derivatives of A, B, and C are

A′ = 2AS, B′ = 2BT , C′ = 2C(S + T), (1.7)

with

S(β ; x) =
1

2β2

[
(x – 1)ψ1 – 2xψ2 + (x + 1)ψ3

]
, (1.8)

T(β ; x) =
1

2β2

[
xψ2 – 2(x + 1)ψ3 + (x + 2)ψ4

]
, (1.9)

ψν = ψ((x +ν – 2)/β), ν = 1, . . . , 4,ψ(s) being the ψ function, ψ(s) = d log�(s)/ds [1, 8.360].
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If we consider instead of (1.1), (1.2), and (1.3) the more general function

F(ϕ1,ϕ2,ϕ3; 1) =
�(ϕ3)�(ϕ3 – ϕ1 – ϕ2)
�(ϕ3 – ϕ1)�(ϕ3 – ϕ2)

with differentiable functions ϕν = ϕν(β), ν = 1, 2, 3, then

F ′ =
[
ϕ′

3ψ(ϕ3) + (ϕ3 – ϕ1 – ϕ2)′ψ(ϕ3 – ϕ1 – ϕ2)

– (ϕ3 – ϕ1)′ψ(ϕ3 – ϕ1) – (ϕ3 – ϕ2)′ψ(ϕ3 – ϕ2)
]
F ,

provided that Re(ϕ1 + ϕ2 – ϕ3) < 0 in some region R of the complex β-plane. For ϕ1 = 1/β ,
ϕ2 = –1/β , ϕ3 = x/β this formula reduces to A′ = 2AS with S given in (1.8).

Related to S and T is the function

Q(β ; x) =
1
3

(S + 2T) (1.10a)

=
1

6β2

[
(x – 1)ψ1 – 3(x + 1)ψ3 + 2(x + 2)ψ4

]
. (1.10b)

The series expansion of the psi function [1, 8.362, 1],

ψ(s) = –γ –
1
s

+ s
∞∑
ν=1

1
ν(s + ν)

,

where γ is Euler’s constant, leads to the series representations of T , Q, and S,

T =
∞∑
ν=1

ν(yν – 1)
ρν

, Q =
∞∑
ν=1

νyν

ρν

, S =
∞∑
ν=1

ν(yν + 2)
ρν

, (1.11)

ρν(β ; x) = (yν – 1)yν(yν + 1)(yν + 2), yν = νβ + x > 1,

= (νβ)4 + α1(νβ)3 + α2(νβ)2 + α3(νβ) + α4, ν = 1, 2, . . . ,

α1(x) = 2(2x + 1), α2(x) = 6x(x + 1) – 1, α3(x) = 2
(
2x3 + 3x2 – x – 1

)
,

α4(x) = (x – 1)x(x + 1)(x + 2) = x
(
x3 + 2x2 – x – 2

)
, x > 1.

(1.12)

(Cancellation of the respective factors yν + α (α = –1, 0, 1, 2) in (1.11) would not bring any
advantage. In fact, it would hamper comparison of equally numbered terms of these series
and related expressions.)

Under the restrictions on β and x, each of the series in (1.11) is positive, and

0 < T < Q < S. (1.13)

Therefore, the derivatives A′, B′, and C′ in (1.7) are positive, i.e., the functions A, B, and
C are strictly monotonically increasing for β > 0 and, by (1.5a), (1.5b), bounded. (This
belatedly justifies the direction of the arrows in the limit relations (1.5a), (1.5b).)

We now introduce the gamma function combination

σ (β ; x) =
A(1 – B)

1 – A
, β ∈ (0,∞), fixed x ∈ (1,∞), (1.14)
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with A and B defined in (1.1) and (1.2), respectively. The main objective of this paper is to
establish the inequality

σ < Q/S, β ∈ (0,∞), fixed x ∈ (1,∞). (1.15)

It is a crucial prerequisite to an efficient numerical solution routine of the four-parameter
hyper-gamma density estimation problem for a given statistical data set (observations) [2,
Chap. 9.3]. The hyper-gamma distribution has important applications in chemical, biolog-
ical, and physical processes. The four parameters of the distribution are shift, scale, initial
shape x > 1 (in the statistical four-parameter case x > 2), and terminal shape β > 0. The sta-
tistical parameters β and x are to be determined from a set of two simultaneous equations
[2, (9.33), (9.34)]. These are derived from the first four moments of the four-parameter
hyper-gamma probability density function [2, (9.3.1)], which are defined by combinations
of gamma functions as they appear in (1.1) and (1.2). A considerable computational cost
advantage is achieved if it is known that for every fixed value of x, say, one of these equa-
tions has exactly one solution β . This will be the case if (1.15) holds. (See [2, Chaps. 9.2,
9.3], equation (9.3.34) and the discussion preceding (9.3.36).)

2 Approximating sequences for Q/S and T/S
The series (1.11) and their β-derivatives converge (absolutely and) uniformly as functions
of β on every closed subinterval [a, b] ⊂ (0,∞) for any fixed x > 1. To show this, we look
at Q, for example,

Q =
∞∑
ν=1

qν(β ; x), qν = ν
[
(yν – 1)(yν + 1)(yν + 2)

]–1, yν = νβ + x.

(Here the common factor yν in numerator and denominator has been canceled.) We have
0 < qν < 1/ν2β3 < 1/ν2a3. Thus, by the Weierstraßcriterion,

0 < Q <
1
β3

∞∑
ν=1

1
ν2 =

1
a3 ζ (2),

where ζ (s) is Riemann’s zeta function [1, 9.522.1]. The terms of the β-derivative Q′ of Q
are

q′
ν = –ν2(γ1ν + γ2ν + γ3ν), (2.1)

with

γ1ν =
[
(yν – 1)2(yν + 1)(yν + 2)

]–1,

γ2ν =
[
(yν – 1)(yν + 1)2(yν + 2)

]–1,

γ3ν =
[
(yν – 1)(yν + 1)(yν + 2)2]–1.

Now, 0 < γμν < 1/ν4β4, μ = 1, 2, 3, ν = 1, 2, . . . , and, hence, |q′
ν | < 3/a4ν2. Therefore, |Q′| <

3ζ (2)/a4, i.e., the series Q′ =
∑

q′
ν is absolutely and uniformly convergent on [a, b]. Since
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Q′ < 0, Q is strictly monotonically decreasing as β increases. The second derivative of Q is
positive. This follows immediately from (2.1). Thus, with Q′′ > 0, the function Q is concave
from above, and |Q′| is strictly monotonically decreasing. Corresponding facts are true for
T and S. Note that T , Q, and S ↑ ∞ (monotonically) as β ↓ 0, and that T , Q, and S ↓ 0
(monotonically) as β ↑ ∞.

The following particular values of these functions for β = 1 are of interest:

T(1) =
1

2(x + 1)
, Q(1) =

3x + 1
6x(x + 1)

, S(1) =
1

2x
. (2.2)

They are obtained from (1.9), (1.10a), (1.10b), and (1.8), respectively, and from the func-
tional relation [1, 8.365.3] of the psi function.

We now define the sequence {Fn(β ; x)} with elements

Fn =
Qn(β ; x)
Sn(β ; x)

, n = 1, 2, . . . , (2.3)

where Qn and Sn are the partial sums of Q and S,

Qn =
n∑

ν=1

νyν

ρν

=
1

λn(β ; x)
[
xrn(β ; x) + βpn(β ; x)

]
, (2.4a)

Sn =
n∑

ν=1

ν(yν + 2)
ρν

=
1

λn(β ; x)
[
(x + 2)rn(β ; x) + βpn(β ; x)

]
, (2.4b)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn = ρ2 · · ·ρn + 2ρ1ρ3 · · ·ρn + · · · + nρ1 · · ·ρn–1, r1 ≡ 1,

pn = ρ2 · · ·ρn + 22ρ1ρ3 · · ·ρn + · · · + n2ρ1 · · ·ρn–1, p1 ≡ 1,

λn = ρ1 · · ·ρn,

rn < pn, nrn > pn,

rn+1 = rnρn + (n + 1)λn, pn+1 = pnρn + (n + 1)2λn, n = 1, 2, . . . .

(2.5)

We observe that rn and pn (both polynomials in β of degree 4(n – 1)) can be expressed as

rn = λn

n∑
ν=1

uν(β ; x), pn = λn

n∑
ν=1

vν(β ; x), uν =
ν

ρν

, vν =
ν2

ρν

, (2.6)

and that the positive series

n∑
ν=1

uν and
n∑

ν=1

vν (2.7)

converge uniformly (for any x ∈ (1,∞)) on every interval [a, b] ⊂ (0,∞). This follows im-
mediately by the Weierstraßcriterion since

uν =
ν

ρν

<
1

a4ν3 , vν =
ν2

ρν

<
1

a4ν2 , β ∈ [a, b], (2.8)
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so that

∞∑
ν=1

uν <
1
a4 ζ (3),

∞∑
ν=1

vν <
1
a4 ζ (2), β ∈ [a, b].

Furthermore,

u′
ν = –

νρ ′
ν

ρ2
ν

, v′
ν = –

ν2ρ ′
ν

ρ2
ν

, (2.9)

so that

∣∣u′
ν

∣∣ <
4

a5ν3 ,
∣∣v′

ν

∣∣ <
4

a5ν2 , β ∈ [a, b],

and, consequently,

∞∑
ν=1

∣∣u′
ν

∣∣ <
4
a5 ζ (3),

∞∑
ν=1

∣∣v′
ν

∣∣ <
4
a5 ζ (2), β ∈ [a, b].

The series

∞∑
ν=1

u′
ν < 0,

∞∑
ν=1

v′
ν < 0, (2.10)

converge absolutely and uniformly on every interval [a, b] ⊂ (0,∞). Note that the series
(2.7) are strictly monotonically decreasing functions of β ∈ (0,∞).

We return to the functions Fn defined by (2.3) and show that

Fn <
Q
S

, n = 1, 2, . . . , Q =
∞∑
ν=1

qν(β ; x), S =
∞∑
ν=1

sν(β ; x), (2.11)

i.e., that

QSn – SQn > 0. (2.12)

By (1.11)

S = Q + 2
∞∑
ν=1

uν ,

uν given in (2.8), so that (2.12) may be replaced by

QSn –

(
Q + 2

n∑
ν=1

uν

)
Qn = Q(Sn – Qn) – 2Qn

n∑
ν=1

uν > 0.



Lehnigk Journal of Inequalities and Applications  (2018) 2018:253 Page 7 of 17

Here we replace Sn – Qn by 2
∑n

ν=1 uν and obtain, after dropping the common factor 2,

Q
n∑

ν=1

uν – Qn

∞∑
ν=1

uν =

(
Qn +

∞∑
ν=n+1

qν

) n∑
ν=1

uν – Qn

( n∑
ν=1

uν +
∞∑

ν=n+1

uν

)

=

( ∞∑
ν=n+1

qν

)( n∑
ν=1

uν

)
–

( n∑
ν=1

qν

)( ∞∑
ν=n+1

uν

)
.

Comparing equally numbered terms of the two infinite series, we get

qn+k

( n∑
ν=1

uν

)
–

( n∑
ν=1

qν

)
un+k , k = 1, 2, . . . , (2.13)

or, with qn+k = (n + k)yn+k/ρn+k and un+k = (n + k)/ρn+k ,

yn+k

n∑
ν=1

ν

ρν

–
n∑

ν=1

νyν

ρν

.

This difference is positive since yn+k > yν for ν = 1, . . . , n. Therefore, (2.13) is correct, and,
consequently, (2.11) holds. With this result, and

F1 =
Q1

S1
=

x + β

x + 2 + β
<

Q
S

< 1,

we see that

Q
S

↑ 1, as β ↑ ∞ (2.14)

(the upward arrow will be justified in Sect. 3), and that

Q
S

≥ Fn(0) =
x

x + 2
as β ↓ 0. (2.15)

Next, we show that

Fn+1 > Fn, n = 1, 2, . . . . (2.16)

By means of (2.4a), (2.4b), the rational functions Fn defined in (2.3) can be written as

Fn =
xrn + βpn

(x + 2)rn + βpn
, n = 1, 2, . . . . (2.17)

With this expression for Fn, inequality (2.16) changes into rnpn+1 > rn+1pn. The recurrence
relations for rn and pn in (2.5) lead to (n + 1)rn > pn, which is correct. Thus (2.16) holds.

The facts established so far show that {Fn} is a positive, increasing, bounded above se-
quence that converges for every β ∈ (0,∞) and any fixed x ∈ (1,∞) as n ↑ ∞. We want to
show now that it converges to Q/S uniformly on every subinterval [a, b] of (0,∞).

Observing (2.12), we have to show that for every ε > 0 there exists n0 = n0(ε) such that

0 < QSn – SQn < ε for every n ≥ n0 on [a, b] ⊂ (0,∞). (2.18)
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Now,

QSn – SQn =

(
Qn +

∞∑
ν=n+1

qν

)
Sn –

(
Sn +

∞∑
ν=n+1

sν

)
Qn

= Sn

∞∑
ν=n+1

qν – Qn

∞∑
ν=n+1

sν .

Since qν < sν = ν(yν + 2)/ρν , we have

QSn – SQn < (Sn – Qn)
∞∑

ν=n+1

sν . (2.19)

Here

Sn – Qn = 2
n∑

ν=1

ν

ρν

< 2
∞∑
ν=1

ν

ρν

= 2
∞∑
ν=1

uν .

The right-hand side of this inequality is strictly monotonically decreasing as stated earlier
in connection with (2.8) and (2.10). Thus

∞∑
ν=1

ν

ρν

<
∞∑
ν=1

ν

ρν(a)
=

1
2

K , β ∈ [a, b].

Therefore, we may continue inequality (2.19) as follows:

QSn – SQn < K
∞∑
ν=1

sν .

Uniform convergence of S on [a, b] implies that, given ε/K , there exists n0 = n0(ε) such
that

QSn – SQn < K
ε

K
= ε on [a, b] if n ≥ n0.

This proves (2.18). So {Fn} is a uniformly convergent approximating sequence for Q/S from
below, and

Q
S

= F1 +
∞∑
ν=1

(Fν – Fν–1).

This shows that (Q/S)(0) = F1(0) = x/(x + 2), so that (2.15) may be sharpened to

Q
S

↓ Fn(0) =
x

x + 2
as β ↓ 0. (2.20)

(The downward arrow will be justified in Sect. 3.)
Along the same lines analogous results can be established for the function T/S and its

approximating from below sequence

Gn =
Tn

Sn
=

(x – 1)rn + βpn

(x + 2)rn + βpn
, n = 1, 2, . . . .
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Note that

T
S

↓ Gn(0) =
x – 1
x + 2

as β ↓ 0, n = 1, 2, . . . , (2.21)

and

T
S

↑ 1 as β ↑ ∞. (2.22)

3 Monotonicity of Q/S and T/S
The functions Q/S and T/S are strictly monotonically increasing for β ∈ (0,∞). It is suffi-
cient to show this for Q/S since, by (1.10a), T/S = (3Q/S – 1)/2.

We introduce the rational functions

fn(β ; x) =
rn

pn
, n = 1, 2, . . . , f1 ≡ 1, (3.1)

rn and pn defined by (2.6). Note that fn+1 < fn because {uν/vν} = {1/ν} is a decreasing se-
quence [3, p. 10, Problem 28]. The approximating functions Fn in (2.17) can now be written
as

Fn =
xfn + β

(x + 2)fn + β
, n = 1, 2, . . . , Fn(0) =

x
x + 2

. (3.2)

The β-derivative of Fn is

F ′
n =

2
[(x + 2)fn + β]2

(
fn – βf ′

n
)
, n = 1, 2, . . . , (3.3)

and

F ′
n(0) =

2(2n + 1)
3(x + 2)2 > 0, n = 1, 2, . . . .

This immediately shows that F ′
n > 0 for small positive values of β . We want to show that

F ′
n > 0 for β ∈ (0,∞). But first we must establish certain facts about the rational functions

fn = rn/pn. By (2.5) and with ρν = (νβ + x – 1)(νβ + x)(νβ + x + 1)(νβ + x + 2) the constituent
terms of rn and pn are products of n – 1 Hurwitz polynomials, each of degree 4, so that
each of those terms is a Huwitz polynomial of degree 4(n – 1). The β-derivative of fn is

f ′
n =

1
p2

n

(
r′

npn – rnp′
n
)

(3.4a)

=

[( n∑
ν=1

u′
ν

)( n∑
ν=1

vν

)
–

( n∑
ν=1

uν

)( n∑
ν=1

v′
ν

)]( n∑
ν=1

vν

)–2

. (3.4b)

Using (2.8) and (2.9) in (3.4b), we arrive at

( n∑
ν=1

vν

)2

f ′
n =

n∑
1≤μ<ν≤n

μν(ν – μ)
ρ2

μρ2
ν

(
ρμρ ′

ν – ρ ′
μρν

)
. (3.5)
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Here

ρμρ ′
ν – ρ ′

μρν = (ν – μ)
{
μ3ν3α1β

6 + 2μ2ν2(μ + ν)α2β
5

+
[
3μν

(
μ2 + μν + ν2)α3 + μ2ν2α1α2

]
β4

+
[
4
(
μ2 + ν2)(μ + ν)α4 + 2μν(μ + ν)α1α3

]
β3

+
[
3
(
μ2 + μν + ν2)α1α4 + μνα2α3

]
β2

+ 2(μ + ν)α2α4β + α3α4
}

> 0, β ∈ (0,∞), x ∈ (1,∞), 1 ≤ μ < ν ≤ n,

the positive functions αν (ν = 1, . . . , 4) being defined in connection with (1.12). Thus, by
(3.5), f ′

n > 0, β > 0, x > 1. This establishes strict monotonicity of the functions fn defined in
(3.1). Note that 0 < fn < 1, n ≥ 2, β > 0 and

fn ↓ 3
2n + 1

as β ↓ 0, fn ↑ 1 + 1/23 + · · · + 1/n3

1 + 1/22 + · · · + 1/n2 =
dn

en
as β ↑ ∞,

fn(∞) = lim
β↑∞ fn ↓ ζ (3)/ζ (2) = 0.730763 . . . as n ↑ ∞.

(3.6)

We also note the following facts about f ′
n, which follow from (3.4a),

f ′
n ↑ 9α3(n2 + n – 2)

α4(2n + 1)2 > 0 as β ↓ 0, f ′
n ↓ 0 as β ↑ ∞. (3.7)

Furthermore, (2.5) together with (1.12) and with the notation used in (3.6) shows that

rn = (n!)4dnβ
4(n–1) + lower order terms,

pn = (n!)4enβ
4(n–1) + lower order terms,

so that

r′
n = 4(n – 1)(n!)4dnβ

(4(n–1)–1 + · · · ,

p′
n = 4(n – 1)(n!)4enβ

(4(n–1)–1 + · · · .

Consequently,

r′
npn – rnp′

n = cnβ
8(n–1)–2 + lower order terms,

where cn is a positive constant. Since

p2
n = (n!)8e2

nβ
8(n–1) + lower order terms,

we see that f ′
n as given in (3.4a) behaves like β–2 as β ↑ ∞. In other words, f ′

n and β–2 are
asymptotically proportional. Consequently,

βf ′
n ↓ 0 as β ↑ ∞. (3.8)
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We now remember the fact that the polynomials ρν are Hurwitzian and that, conse-
quently, the constituent terms of the polynomials rn and pn in (2.5) are Hurwitzian. By
Theorem IV of [4] (in conjunction with the specification of terminology concerning circu-
lar regions and circles on p. 164 of [4]) the sum of any two of these constituent polynomials
of degree 4(n – 1) is Hurwitzian. Thus, rn and pn are Hurwitz polynomials. Their zeros are
located in the open left-hand half of the complex β-plane, which we denote by L. By an-
other theorem [5, p. 115], all zeros of f ′

n (and all its poles) are located in L. In other words,
f ′
n > 0 for real β > 0, a fact which has been established earlier already by direct means.

Applying the theorem of [5] again, this time to the rational function f ′
n, we arrive at the

result that f ′′
n has all its zeros (and poles) in L, i.e., f ′′

n �= 0 for real β > 0. Limit relation (3.7)
shows that f ′

n decreases somewhere in the interval (0,∞). Thus, the β-derivative f ′′
n of f ′

n
must be negative somewhere. Since f ′′

n �= 0 for β > 0, if follows that f ′′
n < 0 for all β > 0. In

other words, fn, defined by (3.1) is concave from below on 0 < β < ∞, i.e., the tangent at
any point (β0, fn(β0)), β0 > 0, lies above the graph of fn for every β > 0, β �= β0.

Since, by (3.2), F ′
n(0) > 0, if follows that F ′ > 0 at least for small positive values of β . This

means that fn – βf ′
n > 0 for small positive values of β as can be seen from (3.3). This can

also be verified by means of (3.6), (3.7), and (3.8), respectively. By (3.6) and (3.8) we see
that fn – βf ′

n > 0 also for large values of β , so that F ′
n > 0 for large β . Suppose now that

fn – βf ′
n < 0 at some point β > 0. Then there exist points β1 and β2, 0 < β1 < β2, such that

fn(βν) = βν f ′
n(βν), ν = 1, 2, (3.9)

fn – βf ′
n > 0 for 0 < β < β1 and β2 < β < ∞, and fn – βf ′

n < 0 for β1 < β < β2. Consequently,
there would exist a continuous function α(β) such that α(βν) = 0, ν = 1, 2, α(β) > 0, β1 <
β < β2, and

f ′
n –

1
β

fn – α = 0, β1 < β < β2.

This inhomogeneous linear differential equation has the unique solution

fn =
(

fn(β1)
β1

)
β + β

∫ β

β1

α(τ )
τ

dτ , β1 ≤ β ≤ β2, (3.10)

with initial condition (β1, fn(β1)). Its derivative is

f ′
n =

fn(β1)
β1

+
∫ β

β1

α(τ )
τ

dτ + α(β), β1 ≤ β ≤ β2.

Observing (3.9) for ν = 2 and noting that α(β2) = 0, we have at β2

f ′
n(β2) =

fn(β1)
β1

+
∫ β2

β1

α(τ )
τ

dτ =
fn(β2)

β2
>

fn(β1)
β1

, (3.11)

since the integral is positive. Now, the tangent to the integral curve defined by (3.10) at the
point (β1, fn(β1)) is given by y(β) = fn(β1) + (β – β1)f ′

n(β1) with f ′
n(β1) = fn(β1)/β1 by (3.9).

Thus,

y(β2) = fn(β1) + (β2 – β1)
fn(β1)

β1
=

fn(β1)
β1

β2.
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Since fν is concave from below it follows that

y(β2) =
fn(β1)

β1
β2 > fn(β2),

or

fn(β2)
β2

<
fn(β1)

β1

in contradiction to (3.11). Consequently, fn – βf ′
n > 0 for all β ∈ (0,∞), and, hence, as (2.3)

shows, F ′
n > 0 for 0 < β < ∞, which means that Fn = Qn/Sn, or Fn = (xfn +β)/[(x+2)fn +β]–1,

is a strictly monotonically increasing function of β ∈ (0,∞). A corresponding result holds
for Gn = Tn/Sn.

We now show that the sequence {F ′
n} converges uniformly on every closed interval

[a, b] ⊂ (0,∞). Differentiating Fn = Qn/Sn, we form

∣∣F ′
n+k – F ′

n
∣∣ =

(
S2

nS2
n+k

)–1∣∣S2
n
(
Q′

n+kSn+k – Qn+kS′
n+k

)
– S2

n+k
(
Q′

nSn – QnS′
n
)∣∣. (3.12)

With Q =
∑

qν , S =
∑

sν , equation (3.12), after some manipulations, can be brought into
the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|F ′
n+k – F ′

n|
= (S2

nS2
n+k)–1|(∑n+k

ν=n+1 sν)(–S2
nQ′

n + 2QnSnS′
n + S2

n(
∑n+k

ν=n+1 q′
ν))

+ (
∑n+k

ν=n+1 sν)2(Q′
nSn – QnS′

n)

– (
∑n+k

ν=n+1 s′
ν)(S2

nQn + S2
n(

∑n+k
ν=n+1 qν))

– (
∑n+k

ν=n+1 qν)S2
nS′

n + (
∑n+k

ν=n+1 q′
ν)S3

n|.

(3.13)

Here, we replace all negative terms between the absolute value bars by their absolute val-
ues. Since Q, |Q′|, S, |S′| are series with positive terms, we increase the right-hand side
of (3.13) by replacing their partial sums by the entire series. Then we remember the fact
that these series are monotonically decreasing functions of β . Therefore, we increase the
right-hand side of (3.13) further by setting Qn < Q < Q(a), |Q′

n| < |Q′| < |Q′(a)|, Sn < S(a),
|S′

n| < |S′(a)| for β ∈ [a, b]. We may also replace
∑

qν by
∑

sν since 0 < qν < sν . Thus, there
exist positive constants Kν (ν = 1, . . . , 5) such that equality (3.13) may be replaced by the
inequality

⎧⎨
⎩

|F ′
n+k – F ′

n| < (S2
nS2

n+k)–1{K1
∑n+k

ν=n+1 sν + K2(
∑n+k

ν=n+1 sν)2 + K3
∑n+k

ν=n+1 |s′
ν |

+ K4
∑n+k

ν=n+1 sν + K5
∑n+k

ν=n+1 |q′
ν |}.

(3.14)

Furthermore, by (1.11),

Sn+k > Sn > S1 =
[
(β + x – 1)(β + x)(β + x + 1)

]–1

>
[
(b + x – 1)(b + x)(b + x + 1)

]–1 = B–1 > 0, β ∈ [a, b],

so that

(
S2

nS2
n+k

)–1 <
(
S4

n
)–1 <

(
S4

1
)–1 < B4, β ∈ [a, b]. (3.15)
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Now, since S, S′, and Q′ converge uniformly on [a, b] ∈ (0,∞), given ε > 0 there exists a
number n0(ε) such that each of the five finite sums in (3.14) is less than B–4(

∑5
ν=1 Kν)–1ε

for every n ≥ n0 and for all k ≥ 1. Thus (3.14) together with (3.15) leads to |F ′
n+k – F ′

n| < ε

for every n ≥ n0 and for all k ≥ 1 on every [a, b] ⊂ (0,∞). The final result is that {F ′
n}

converges uniformly for β ∈ [a, b] to the function (Q/S)′ > 0, and this means that Q/S is
strictly monotonically increasing. (This result justified the direction of the arrows in (2.14)
and (2.20), and in (2.21) and (2.22) for T/S.)

4 Properties of σ

The function

σ =
A(1 – B)

1 – A
, β ∈ (0,∞), fixed x ∈ (1,∞), (4.1)

together with (1.1) and (1.2), evidently satisfies the inequality 0 < σ < A, β > 0 and by (1.5a),
(1.5b), the limit relations

σ ↓ 0 as β ↓ 0, σ ↓ x – 1
x + 1

= σ∞ as β ↑ ∞. (4.2)

(The downward arrows in (4.2) will be justified momentarily.) Furthermore, observing
(1.6), we see that at β = 1

σ (1) = σ∞ = C(1) =
x – 1
x + 1

. (4.3)

The β-derivative of σ is given by

σ ′ =
2S

1 – A

(
σ – C

T
S

)
. (4.4)

This shows that σ < Q/S whenever σ ′ is nonpositive. For, if σ ′ ≤ 0, then σ ≤ CT/S < T/S <
Q/S, if we observe (1.3) and (1.4). The function σ ′ is negative somewhere. To see this, we
note that for β = 1, (4.4) becomes

σ ′(1) =
x – 1

4(x + 1)2 > 0. (4.5)

Here (1.6) and (2.2) have been used. Continuity of σ implies that σ (1 + ε) > σ (1) = σ∞ at
least for sufficiently small values of ε > 0. Inequality (4.5) and the second limit relation
(4.2) show that σ has a local maximum at some point β� > 1. Suppose σ had more than
one maximum in (0,∞). Let 0 < β1 < β2 be points at which maxima are attained. Then σ

must have a minimum at some point β0, β1 < β0 < β2. We have

σ (β1) > σ (β0), (4.6)

and σ ′(β1) = σ ′(β0) = 0, so that, according to (4.4)

σ (β1) = C(β1)
T(β1)
S(β1)

, σ (β0) = C(β0)
T(β0)
S(β0)

.
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Since C and T/S are both monotonically increasing, it would follow that σ (β1) < σ (β0), in
contradiction to (4.6). Consequently, there exists one and only one point β� at which σ ′ = 0
and at which σ takes its maximum. We have σ ′ ≥ 0 if β ∈ (0,β�], σ ′ < 0 if β ∈ (β�,∞).
In other words, σ is strictly monotonically decreasing on (β�,∞). (This result belatedly
justifies the direction of the arrows in the limit relations (4.2).)

We now turn to the relation between σ given by (4.1) and C = AB defined by (1.3). By
(4.3), σ (1) = C(1). Furthermore, by (4.2) and (1.5b) σ∞ < C∞. Thus, σ and C are not iden-
tical, and σ < C for large values of β since σ is strictly monotonically decreasing after it
reaches its single maximum at β� > 1, and C is strictly monotonically increasing. More can
be obtained by comparing the derivatives of σ and C at β = 1. Using the particular value
of C at β = 1 given in (1.6) and those of S and T for β = 1 given in (2.2) and the definition
of C′ given in (1.7), we find that

C′(1) =
(x – 1)(2x + 1)

x(x + 1)2 .

Comparing this with σ ′(1) in (4.5), we see that

C′(1) = 4
2x + 1

x
σ ′(1) > σ ′(1).

This and σ (1) = C(1) imply that for sufficiently small ε > 0,

σ < C, β ∈ (1, 1 + ε), (4.7)

and

σ > C, β ∈ (1 – ε, 1). (4.8)

We show first that (4.7) holds for β ∈ (1,∞). Observing (4.1) and setting C = AB, we trans-
form the desired inequality (4.7) into

AB – 2B + 1 < 0. (4.9)

Here, we set A = κB, 0 < κ = κ(β ; x) < 1, β ∈ [1,∞), x ∈ (1,∞), noting that κ has a positive
β-derivative (by (1.7) and (1.13)),

κ ′ = 2κ(S – T) > 0,

so that κ is strictly monotonically increasing, and by (1.6) and (1.5b),

κ(1) =
x2 – 1

x2 , κ∞ = lim
β↑∞κ =

A∞
B∞

=
(x2 – 1)(x + 1)2

x3(x + 2)
.

Furthermore, since by (1.1) and (1.2), the factors of the infinite product for κ = A/B go to
(x + 1)3(x – 1)/x3(x + 2) < 1 as β ↓ 0, κ diverges toward 0 as β ↓ 0.

With A = κB, inequality (4.9) takes the form

g(B) = B2 –
2
κ

B +
1
κ

< 0. (4.10)
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The equation g(B) = 0 has the two roots,

B1 =
1
κ

(1 –
√

1 – κ), 0 < κ = AB–1 < 1, B1
(
κ(1)

)
= B(1),

B2 =
1
κ

(1 +
√

1 – κ),

0 < B1 < 1 < B2. Since B < B∞ = x(x + 2)/(x + 1)2 < B2 by (1.5b), the root B2 is outside the
range of B. At B∞, g takes the negative value g(B∞) = –2[x(x + 1)]–1. Consequently, as
stipulated by (4.10), g(B) < 0 for B1 < B < B∞, i.e., for 1 < β < ∞, and g(B) = 0 if and only if
β = 1, i.e., for B(1) = B1(κ(1)). Thus (4.7) holds for β ∈ (1,∞).

For β ∈ (0, 1) we have 0 < B < B(1) = B1(κ(1)), and the function g(B) in (4.10) is posi-
tive, i.e., the inequality sign in (4.10) is reversed. This proves (4.8) for the entire interval
0 < β < 1.

Our results are these:

C < σ , β ∈ (0, 1), fixed x ∈ (1,∞),

σ < C, β ∈ (1,∞), fixed x ∈ (1,∞),

and

σ = C if and only if β = 1, fixed x ∈ (1,∞).

Finally, for β = 1, g(B(1)) = 0, i.e.,

C – 2B + 1 = 0, if and only if β = 1. (4.11)

5 The inequality σ < Q/S
We turn now to our main objective and prove the inequality σ < Q/S, β ∈ (0,∞), fixed
x ∈ (1,∞). We know that σ < Q/S holds for small positive values of β since, by (4.2), σ ↓ 0
as β ↓ 0, and Q/S > x/(x + 2) as β ↓ 0 by (2.15). Furthermore, σ < Q/S as β ↑ ∞ since
σ decreases monotonically toward σ∞ = (x – 1)/(x + 1) < 1 as β ↑ ∞ by (4.2), whereas
Q/S ↑ 1 by (2.14). (The fact that σ∞ < 1 also follows directly from σ < A < A∞ < 1 for
β ∈ (0,∞).) Therefore, if the desired inequality σ < Q/S should not hold throughout, it
must be violated somewhere in the interval (0,∞).

Observing definition (4.1) of σ and setting Q/S = z for simplicity, the proposed inequality
σ < z can be transformed into

AB – (1 + z)A + z > 0. (5.1)

Here we set B = λA, λ = λ(β ; x) > 1, β ∈ (0,∞), x ∈ (1,∞). λ has a negative β-derivative,

λ′ = –2λ(S – T),

so that λ is strictly monotonically decreasing. By (1.6) and (1.5b),

λ(1) =
x2

x2 – 1
, λ∞ = lim

β↑∞λ =
B∞
A∞

=
x3(x + 2)

(x2 – 1)(x + 1)2 > λ(1),
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and, by (1.1) and (1.2), the factors of the infinite product λ = B/A = κ–1 go to x3(x + 2)/
(x + 1)3(x – 1) > 1 as β ↓ 0, i.e., λ diverges ↑ ∞, as β ↓ 0.

With B = λA, inequality (5.1) takes the form

h(A) = A2 –
1 + z

λ
A +

z
λ

> 0. (5.2)

Suppose h(A) as function of β were negative somewhere in (0,∞). Then h would have
to be zero somewhere in that interval. The roots of the equation h = 0 are

A1,2 =
1 + z
2λ

± 1
λ

[
z2 – 2(2λ – 1)z + 1

]1/2. (5.3)

Here (1 + z)/2λ < 1 because 1 + z < 2 and λ > 1, and the radicant in (5.3)

j(β) = z2 – 2(2λ – 1)z + 1 = (z + 1)2 – 4λz (5.4)

is negative as β ↓ 0 since λ ↑ ∞, and, as β ↑ ∞, by (1.5b) and with z ↑ 1,

j∞ = –4
2x + 1

(x – 1)(x + 1)3 < 0.

Thus, for small and large values of β , A1,2 would be nonreal.
Suppose j, given in (5.4), were positive somewhere in (0,∞). Then it must be zero some-

where in that interval. The equation j = 0 has the two roots

z1 = (2λ – 1) – 2
√

λ(λ – 1), 0 < z < 1,

z2 = (2λ – 1) + 2
√

λ(λ – 1).

The second one is greater than unity since λ > 1. It is outside the range of z = Q/S < 1.
Then, using the root z1 for z in (5.3) and squaring the equality to get rid of the square root,
we arrive at the equality λA2 – 2λA + 1 = 0, or, if we replace λA by B and AB by C, at the
equality

C – 2B + 1 = 0,

which we have encountered before in (4.11). We know that it holds if and only if β = 1. But
for β = 1,

σ (1) =
x – 1
x + 1

,
Q(1)
S(1)

=
3x + 1

3(x + 1)
> σ (1).

This contradiction shows that h(A) cannot be negative or zero on the interval 0 < β < ∞.
Thus, (5.2) holds, and σ < Q/S for β ∈ (0,∞), fixed x ∈ (1,∞).

6 Declarations
6.1 Results and discussions
Inequalities have been proved which involve various combinations of psi- and hyperge-
ometric functions. They add to the wealth of knowledge in the theory of these special
function classes of higher analysis.
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6.2 Conclusions
The main inequality of this paper guarantees uniqueness of the hyper-gamma parameter
estimation and its application. Usefulness of this approach has been demonstrated in [6].

6.3 Methods/experimental
The aim of the study is to prove an inequality made up of functions of higher mathematical
analysis. This inequality guarantees monotonicity of the first moment equation function of
the four-parameter hyper-gamma probability density estimation problem. Monotonicity
guarantees uniqueness of the numerical solution process. Standard analytical methods of
higher analysis have been employed to accomplish the proof.
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