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1 Introduction
Let H be a real Hilbert space, and let f : H — R be a proper lower semicontinuous and
convex function. Define a sequence {x,},cn by taking x; € H arbitrarily and

1
2

Xnil =argryréi}r[1{f(y)+ IIy—xnllz}, neN. (1.1)
Then {x,},cn converges weakly to a minimizer of f under suitable conditions, and this is
called the proximal point algorithm (PPA). This algorithm is useful, however, only for con-
vex problems, because the idea for this algorithm is based on the monotonicity of subdif-
ferential operators of convex functions. So, it is important to consider the relation between
nonconvex functions and proximal point algorithm.

The DC program is the well-known nonconvex problem of the form

(DCP) Find X € arg Hel]g% {f(x) = g(x) - h(x)},

where g,/ : R” — R are proper lower semicontinuous convex functions. Here, the func-
tion f is called a DC function, and the functions g and / are called the DC components of
f. (In the DC program, the convention (+00) — (+00) = +0c is adopted to avoid the ambi-
guity (+00) — (+00) that does not present any interest.) It is well known that a necessary
condition for x € dom(f) := {x € R" : (x) < 0o} to be a local minimizer of f is dh(x) C 9g(x).
However, this condition is hard to be reached. So, many researchers focus their attentions
on finding points such that /4(x) N dg(x) # ¥, where x is called a critical point of f [1].
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It is worth mentioning the richness of the class of DC functions that is a subspace con-
taining the class of lower-C? functions. In particular, DC(R") contains the space C*! of
functions with locally Lipschitz continuous gradients. Further, DC(R") is closed under
the operations usually considered in optimization. For example, a linear combination, a
finite supremum, or the product of two DC functions remain DC. It is also known that the
set of DC functions defined on a compact convex set of R” is dense in the set of continuous
functions on this set.

The interest in the theory of DC functions has much increased in the last years. Some in-
teresting optimality conditions and duality theorems related to the DC program are given.
For more details, we refer to [2-9].

In 2003, Sun, Sampaio, and Candido [10] proposed a proximal point algorithm to study
problem (DCP).

Algorithm 1.1 (Proximal point algorithm for (DCP) [10]) Let {8,},en be a sequence in
(0,00), and let g, : R¥ — R be proper lower semicontinuous and convex functions. Let
{x,}nen be generated as follows:

x1 € H; is chosen arbitrarily,
Compute w, € dh(x,) and set y, = x, + B,W,,
%ne1:= ([ + B,99) 7 (o), meN.

Stop criteria: x,41 = x,,.

In 2016, Souza, Oliveira, and Soubeyran [11] proposed a proximal linearized algorithm
to study the DC program.

Algorithm 1.2 (Proximal linearized algorithm [11]) Let {8,}.cn be a sequence in (0, 00),
and let g, /1 : R¥ — R be proper lower semicontinuous and convex functions. Let {x,},cn
be generated as follows:

x1 € Hj is chosen arbitrarily,
Compute w, € dh(x,),
Xps1 i= Arg Minyepr, {g (1) + ﬁ et —2x,)> = (W, u—x,)}, meN.

Stop criteria: x,,,1 = x,.

Besides, some algorithms for the DC program are proposed to analyze and solve a variety
of highly structured and practical problems (see, for example, [12]).

On the other hand, Chuang [13] introduced the following split DC program (split min-
imization problems for DC functions):

(SDCP) Find x € H; such that x € arg min fi(x) and Ax € arg min f5(y),
x€H, yEH)

where H; and H; are real Hilbert spaces, A : H; — H, is alinear bounded mapping with ad-
joint A*, g1,y : H — Rand g, h, : H, — R are proper lower semicontinuous and convex
functions, and fi (x) = g1(x) — /11 (x) and fo(y) = ga(y) — h2(y) for all x € H; and y € H,. Fur-
ther, to study problem (SDCP), Chuang [13] gave the following split proximal linearized
algorithm and related convergence theorem in finite-dimensional real Hilbert spaces.
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Algorithm 1.3 (Split proximal linearized algorithm) Let {x,},cn be generated as follows:

x1 € H; is chosen arbitrarily,
Yu = arg minveHz {gZ(V) + ﬁ lv—Ax, ”2 —(Vhy(Ax,),v—Ax,)},
2y 1= Xy — 1A (Axy, — Yy),

X 1= AT Milyers (@1 () + 554 = 2ll> = (Vi (2,),u - z,)}, neN.

Besides, there are also some important algorithms for the related problems in the liter-
ature; see, for example, [14—17].

In this paper, motivated by the works mentioned, we first give an hybrid proxi-
mal linearized algorithm and then propose a related convergence theorem in finite-
dimensional real Hilbert spaces. Next, we propose related convergence theorems in
infinite-dimensional real Hilbert space.

2 Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. We denote the strong
and weak convergence of {x,},cn to x € H by x, — x and x, — «, respectively. For all
x,9,u,v € H and X € R, we have

ll + y11% = lx1® + 2(x, 9) + lIylI%, (2.1)
|2+ (L= 2y |* = 2lx1> + @ = )y = A1 = A)llx - y]1%, (2.2)
2x—y,u—v) = llx=v*+lly—ul® - lx—ul® - ly-vI> (2.3)

Definition 2.1 Let H be a real Hilbert space, let B: H — H, and let 8 > 0. Then,
(i) B is monotone if (x —y,Bx—By) >0 for allx,y € H.
(ii) Bis B-strongly monotone if (x —y, Bx — By) > B|lx —y||? forall x,y € H.

Definition 2.2 Let H be a real Hilbert space, and let B: H — H be a set-valued mapping
with domain D(B) := {x € H : B(x) # #}. Then,
(i) Bis monotone if (u —v,x —y) > 0 for any u € B(x) and v € B(y).
(ii) B is maximal monotone if its graph {(x,y) : x € D(B),y € B(x)} is not properly
contained in the graph of any other monotone mapping.
(iii) B is p-strongly monotone (p > 0) if (x —y,u —v) > p|lx — || forall x,y € H,
u € B(x), and v € B(y).

Definition 2.3 Let H be a real Hilbert space, and let f : H — R. Then,
(i) f is proper if dom(f) = {x € H: f(x) < 0o} #0.
(ii) f is lower semicontinuous if {x € H : f(x) < r} is closed for each r € R.
(ili) f is convexif f(tx + (1 —£)y) < tf(x) + (1 — £)f (y) for every x,y € H and t € [0, 1].
(iv) f is p-strongly convex (p > 0) if

flex+ (1 -2)y) + g (1= 8)|lx - ylI* < tf (%) + (1 - O)f ()

forallx,y € Hand ¢ € (0,1).
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(v) f is Gateaux differentiable at x € H if there is Vf(x) € H such that

hmw = (y, Vf(x))

t—0 t

foreachy € H.
(vi) f is Fréchet differentiable at x if there is Vf(x) such that

L L@ ) ) = (V@)
=0 b

Example 2.1 Let H be a real Hilbert space. Then g(x) := ||x|? is a 2-strongly convex func-

tion.

Example 2.2 Let g(x) := %(Qx,x) — (x,b), where Q € R"*" is a real symmetric positive
definite matrix, and b € R”. Then g is a strongly convex function.

Definition 2.4 Letf : H — (—00,00] be a proper lower semicontinuous and convex func-
tion. Then the subdifferential df of f is defined by

Af (x) := {x* €H:f(x) +(y—x,x*) <f(y) for eachyeH}
for each x € H.

Lemma 2.1 ([18, 19]) Let f : H — (—00,00] be a proper lower semicontinuous and convex
function. Then:
(i) of is a set-valued maximal monotone mapping;
(ii) f is Gateaux differentiable at x € int(dom(f)) if and only if 3f (x) consists of a single
element, that is, f (x) = {Vf(x)} [18, Prop. 1.1.10];
(iii) A Fréchet differentiable function f is convex if and only if Vf is a monotone mapping.

Lemma 2.2 ([19, Example 22.3(iv)]) Let p > 0, let H be a real Hilbert space, and let f :
H — R be a proper lower semicontinuous and convex function. If f is p-strongly convex,
then of is p-strongly monotone.

Lemma 2.3 ([19, Prop. 16.26]) Let H be a real Hilbert space, and let f : H — (00, 00] be
a proper lower semicontinuous and convex function. Let {u,},cn and {x,},en be sequences
in H such that u, € 9f (x,) for all n € N. Then if x, — x and u,, — u, then u € df (x).

Lemma 2.4 ([20]) Let H be a real Hilbert space, let B: H — H be a set-valued maximal
monotone mapping, and let > 0. The mapping J§ defined by Jj(x) := (I + BB) ™" (x) forx € H
is a single-valued mapping.

3 Main results in finite-dimensional real Hilbert space

Let p and L be real numbers with p > L > 0. Let H; and H, be finite-dimensional real
Hilbert spaces, and let A : H; — H; be a nonzero linear and bounded mapping with adjoint
A*. Let g1,h1 : Hi — R be proper lower semicontinuous and convex functions, let g3, /1, :
H; — Rbe proper lower semicontinuous and convex functions, and let f; (x) = g1(x) — 11 (x)
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for x € Hy and f>(y) = &2(y) — ha(y) for y € H,. Further, we assume that f; and f, are bounded
from below, /1; and %, are Fréchet differentiable, V/; and Vi, are L-Lipschitz continuous,
and g; and g, are p-strongly convex.

Choose § € (0,0.5), let B be a real number, and let {8, },cn be a sequence in R such that

0<B, .
<B ﬂn<2p_L

Since p > L >0 and B, >0, we have B8,L < 8,0, and then

1+8,L

<—— < 1.
L+2B,0 = Bul

Besides, we know that
1<1+2B,p - Bul <2,

which implies that

1 1 1+B,L
— < < <
2 1+2B,p-Bul  1+2B,0-BuL

1.

Let {r,},en be a sequence in R, and let 7 be a real number with

liminfr, >0
n— 00

and

V1-25-/Bu(p-L) NG }
VZE2B.L- A2 T2+ BLIANZ )

0<ry, r<min{

Thus we have

NG 3

ry, < <
T+ BLIAIR T 21412

and

41+ B,L) - |A|*- 2
0< 1+ B.L) - ||A] r”<2ﬁnp—2f5nL.

V1-28
So, we have
0<1+pB,L+ 40+ pul) AT rﬁ <1+2B,p - B,L,
V1-25
and then

1+8,L 4. ||A||4-r£
<— 1+ —" ) < 1.
1+ 28,0 — BuL V1-28
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Let Qgpcp be defined by
Qspcp := {x eH;: Vhl(x) € agl(x), th(Ax) S 8g2(Ax)}

We further assume that Qgpcp # . The following result of Chuang [13] plays an important
role in this paper.

Lemma 3.1 ([13]) Under the assumptions in this section, let

y = argminyep, {@2(v) + 35 [lv — Axl|> = (Vhy(Ax),v — Ax)},
z:=x—rA*(Ax - y), (3.1)

wi= arg minyers, (g1 () + 5514 - 21> = (Vhi(2), u - 2)}.
Then x € Qspcp if and only if x = w.
Proposition 3.1 ([13]) If p > L and Qspcp # 0, then the set Qspcp is a singleton.
In this section, we propose the following algorithm to study the split DC program.

Algorithm 3.1 Let x; € H; be arbitrary, and let {x,},cn be defined as follows:

Y 1= Ag Minyers, (@2(V) + g5 1V = Axa > = (Vha(Axy), v = Axy)),
Zy 1= Xn = 1p A% (A% — Yn),

Wy = arg Mingep (€1() + 35 14 = 2all> = (Vi (2,),u = 2,)),
V1= argminyers, (@ (V) + 55 [V = Aw, 1> = (Vhy(Aw,), v — Aw,,)),

/Z\Vl =Wy - rnA*(AWn _3’\71):

D, :=z,-7z,
&n=wn,Dn)
Oy = ——5
" [P

o~

Xy =%, — Dy,

X1 := AT Mingep, (g1 (1) + ﬁ =%, 0% = (VI (), u —%,)), neN,

stop criteria: x, = wy,.
Remark 3.1 The stop criteria in Algorithm 3.1 is given by Lemma 3.1.

Theorem 3.1 Let {x,},cn be generated by Algorithm 3.1. Then {x,},cn converges to X,
where QSDCP = {Q_C}

Proof Take any w € Qgspcp and # € N, and let w and # be fixed. First, we know that

0 € dgi (1) + ﬁiwl SR - Vi), (3.2)

n

By (3.2) and Lemma 2.4 we have

X1 = + ﬁn8g1)71 (’in + ,Bthl(?n)) (3.3)
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By (3.2) again, there exists 7, € 9g; (1) such that

Vi) = 7 + ﬁi(xm %), (3.4)

n

Since w € Qspcp, we have that Vi;(w) € 9g1(w). By Lemma 2.2, dg; is p-strongly mono-
tone, and this implies that

0 < (Xns1 — W, Tw — Vi (W)) = pllxne1 — wl*. (3.5)
By (3.4) and (3.5) we have

0 < 2Bu(¥ns1 — W, VI (&) — Vi (W) = 2Bupl|%nr — wi?
+ 2(Xne1 — Wy X — X))
< 2BuLlxni1 = Wl - 1B = Wl = 2850 61 — Wl
+ 1% = wiI* = a1 =%l = 12001 — Wl
< BuL(I%ne1 = Wl + 10 = W) = 2Bupll%n1 — wll

~ 2 =~ 12 2
+ 1% = wll* = %01 =% l1” = lne1 — wII”. (3.6)

Hence, by (3.6),

1+8,L
P — " % P ———— %1% 3.7
%41 = wII* < 1+ 2800 Bl %, — wil 1+ 28,0 Bl 641 =%l (3.7)
Similarly to (3.2), we have
1
0e 8g267n) + ﬁ_@n _Awn) - Vh2(AWn) (3-8)
and
1
0€dg1(w,) + ﬂ—(wn ~zu) = Vhi(z,). (3.9)
Similarly to (3.3), we have
yu =+ Budg) " (Axy + B, Vha(Ax,)) (3.10)
and
T =+ Brdg) " (Awy + Bu VI (Awy)). (3.11)
Similarly to (3.7), we have
1+8,L
Wy = wll* < —————— |z —wl* - ——————— W, — z4l%, (3.12)
1+2B,p - Bul 1+2B,p — Bul
L+ 1 — Awy ||
5 —Awl? < —PEL g Al (3.13)
L+ ZIBn:O - lgnL 1+ 2,3np - ,BnL
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and
L+1 — Ax,|?
= Awl? < — 2Ly, e - WA (3.14)
1+ 2:3np - ﬁnL 1+ 2:3n:0 - lgnL
Next, we set
Eni=Ty [A*(Aw,, ~ V) — A" (Ax, —y,,)]. (3.15)
By (3.10) and (3.11) we have
lenll < rull Al (AW, = Axull + 150 = yull)
< rull Al (1A%, — Ayl + | Ay = AW, || + BuLl| Ay, — Awl|)
< rullAIP2 + Bu) %0 — will
< V81 — will. (3.16)
By (3.15) we have
<xn - Wnan> = (xn — WXy — Wy + 871)
= ||, — Wn||2 + (X — Wp, &0)
> %, - Wn||2 - |<xn - Wn»5n>|
> (1-8) 12, — w? (3.17)
and
(%n = Wi, D) = (X0 — Wy, Xy — Wy + &)
= 1% = wall® + (X0 = Way 1)
1 2 1 2
= =%y = Wall” + (X = Wi, &) + = [0 — Wy ||
2 2
1 2 1 2
> 3 I = will™ + (xp — Wi, €) + 3 llexll
1 2
= E”xn Wy + 8n||
1 2
= §”Dn” . (3.18)

By (3.18) we know that o, > % for each n € N. Besides, we have

2 2 2

l€n = Wi + enll” = % = wall” + llenll™ + 2000 — Wy, &)
> 2 2
= (% = wull” + llenll _2‘<xn_wn:8n>‘
= e (12 2 _ollg — ,
> (1% = wull” + llenll 1% = wall - ll€nll

2 2 2
> o = wull” + llenll” = 28[1%n — wall

> (1-28) 1%, — wnll> > 0. (3.19)
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By (3.19) we have

2
o, <

(uxn—wnn~||xn—wn+an||>2< lgn —wal®> 1
”xn — Wy "’871”2 N (1 —25)”96,, _Wn”2 1-26

Next, we have

1% = wli* = |6 — 2tuDyy — wl|*
= llo6n = wi* + @2 Dy |* = 20 (% — W, D)
= llotn = Wi + @21 Dy |* = 20 (% = Wi, D)
-2, (w,, —w,D,,)
= tn = Wi = a2 | Dull® = 20t (wy — w, D,y)
= |60 = Wl — @2 D 1> = 200 (W — Wy 24 = Z0)
= ltn = wiI” = a2 | Dull® = ctullwn = Zall> — iz — wll?

2 2
+ oty Wn — zull* + oy lZ, — wll”.
On the other hand, we have

21z, - wll* = 2{2, — w, wy, — A" (Aw, = 7,) — w)
= 22y — W, Wy — W) = 21,(Z, — W, A*(Awy, = Jn))
=2z, — W, W, — W) = 21, (AZ, — Aw, Aw,, = 5,,)
= 120 = wI* + W = WI* = 120 = Wall* = rull AZ = Tl

— 1ullAwy, — AW + 1, | AZy — Awu |1 + 1[5 — A%,
which implies that

2 2 — 2 =~ o~ 2
|r2n_w|| =||W,,—W|| _”Zn_Wn” _rn”Azn_yn”

= ull AWy, — AW\ + 1| AZy — Awy |1* + 1[5 — Aw||*.
By (3.12), (3.13), (3.21), and (3.23) we have

=~ 2
(1%, — wll

2 2 2 =~ 12 2
e = Wil = o, 1 Dull” = 20, Wy = Zull” — anllzn — wl|
o2 T Az 2
+ o llw, =z, |I” + ayllw, — wl| AnTullAZy =l
2 o~ 2 o~ 2
—auryl|Aw, — Aw||” + a1, ||AZ, — Aw, || + oty [y, — Aw||
2 2 2 2\ 1> 2 2
<l = wlI* = g 1Dyl = n(2 = 7alAIP) 12 = wall* = tullzn — w
2 2 —~ -~ 2
+ oy ||wy = zull” + aullw, = wll” — aurullAZy = yull

2 2
—auryl|Aw, — Aw||” + an’"n”j/\n - Aw||

2_ 2 2 2 2 2
< s = wli? = a3 1Dl = 2 (2 = | AIP) 12 = Wil = sl = w|

Page 9 of 16

(3.20)

(3.21)

(3.22)

(3.23)
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Ay
L+2B,0 = Bul

= S 2 2 2
= UntullAZy = Yull” — anlull AWy — AW||" + ctur | AW, — Aw||

2 2 2
+ oWy =z |l” + aullzy —wil” - Wy =zl

2_ 2 2 2 2
< N2 = wll* = ag Dl = 0 (2 = ralAIP) 2 — wal

+ gl Wy — 2 W~ 2l
n n— 4n =T  Aaa -~ o7 n = “n
1+28,0 - BuL
~ o~ 12
— |l Az, =y, ll°. (3.24)
We also have
2 2 =~ 112 2 2 =~ 12
—20ln I1Dull* = ctullwn =Zull” + ctullXn — Zull” — ctullWn — 2ull” = ctullg, —Zull”. (3'25)

By (3.24) and (3.25) we have

=~ 2
(1%, — wll

3
< lxn = wl _an<§_rn”A” >|r2n_wn|| —anty|lAzy = yull

Y ezl sl =Bl + - = 2l
1+28,0—BuL 2 2
1

+ - ~Oln||W,,—Z,,||2. (3.26)

2

By (3.14) we have

ll%cn = znll = ” A" (Axy = yn) ”
< rull All (A%, — AWl + Nl — Aw]l)
< 2ru|lAll - [[Ax, — Aw]|

< 2r, | AN 1%, — wll. (3.27)

By (3.7), (3.26), and (3.27) we have

1+p8,L A
%1 — wl? < S 1% = wl* - ————
1+28,0 - BuL 1+28,0 - BuL

1+B.L 3 _
z (”xn_wnz_an(i_rn”A”z)”Zn_Wn”z

=~ 12
%61 =%l

T 1+2B,0 - Bul
~ o~ 1 1 9
—anrnllAzn—ynll —Qy - m—i W, =zl
n - n
—1~otn||xn—’z>||2+3-ozn||xn—zn||2
2 2
LI
- || %1 — X
1+2B,0— Bl "
1+8,L
< —— (14 20, AN 1 — Wl
1+2B.p - Bul

ll26, — wll>. (3.28)

A
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By (3.28), lim,, o ||, — w|| exists, {x,},cn is @ bounded sequence, and

: 1 L 3 >
1Mo TPl o3 = rllAIP) 2 — wal® = 0,

1+8,L

. _ 1Bl > o 2 _
lim,,_, o lﬂf";;ﬁ"L Uty || Az, —yull 0; (3.29)
. +Bn a, —

WMy o0 T8, 0 0L T2pup ot 1Wn = Znll” =0,

. 1 L 1 = 2
limy o0 Tt - 5 - ol =2l = 0.

By the assumptions we have
lim |r2n =Wyl = lim ”A’Z\n _3’\;'1” = lim [lw, —z,| = lim |lx, _/Z\n” =0. (330)
N—> 00 n— 00 n—00 n—00

Since {x,,}.en is bounded, there exists a subsequence {x,, }xen Of {X,1} e such that x,, —
% € Hy. Thus, w,, — X, z,, — %, Aw,, — A%, andY,, — AX.By(3.8),(3.9), and Lemma 2.3
we get that x € Qgpcp. By Proposition 3.1, Qspcp = {¥}. Further, lim,_ |[|%, — || =
limg_, oo %, — X|| = 0. Therefore the proof is completed. O

4 Main results in infinite-dimensional real Hilbert space
Let H; and H, be infinite-dimensional real Hilbert spaces. Let §, p, L, A, A*, g1, h1, g2, ha,
fis for {ru}nen, and {B,}nen be the same as in Sect. 3.

Definition 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H, and
let T:C — H.Let Fix(T) := {x € C: Tx = x}. Then:
(i) T isa nonexpansive mapping if | Tx — Ty|| < |lx — y|| for all x,y € C;
(i) T is a firmly nonexpansive mapping if || 7x — Ty||> < (x —y, Tx — Ty) for allx,y € C,
thatis, || Tx — Ty|> < lx = yl1> = |(I = T)x — (I = T)y||* for all %,y € C.

Lemma 4.1 ([21]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — H be a nonexpansive mapping, and let {x,},cn be a sequence in C. If x, — w and
lim,_ o0 |%, — Txy|| = O, then Tw = w.

Definition 4.2 Let 8 > 0, let H be a real Hilbert space, and let g: H — R be a proper
lower-semicontinuous and convex function. Then the proximal operator of g of order g
is defined by

1
rox 4 ,(x) := ar, min{ v) + —||v—x||2}
S Ry

for each x € H. In fact, we know that proxﬁ,g(x) =+ Bog) ) = ]Zg(x) and T(x) :=
proxg,(x) is a firmly nonexpansive mapping.

Lemma 4.2 ([22, Lemma 2.3]) Let H be a real Hilbert space, and let g : H — R be a proper

lower-semicontinuous and convex function. For By > B, > 0, we have

proxﬁZ_g(x) = proXg, o (%x +(1- %)prox@yg(x)).

The following result plays an important role when we study our convergence theorem
in an infinite-dimensional real Hilbert space.
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Lemma 4.3 Let H be a real Hilbert space, let g, h: H — R be proper lower-semicontinuous
and convex functions, and suppose that h is Fréchet differentiable. Then for all x € H and

0< B1 < By, we have
||x - proxﬂlyg(x + B1Vh(x)) || < 2||x - proxﬂzyg(x + By Vh(x)) H
Proof By Lemma 4.2 we have

proxﬁ2_g(x + ;32Vh(x)) = proXg, o (% (x + ;32Vh(x)) + (1 - %) proxg, , (x + ,32Vh(x))).

Thus,

”proxﬂlyg (x + B Vh(x)) — Proxg, , (x + ,BZVh(x)) ”

=

x+ B1Vh(x) - <% (x + B Vh(x)) + <1 ﬁ—) proxg, . (x + ﬂQVh(x))> H
2

1
2

= (1 - %) ||x - proxﬂ%g(x + /32Vh(x)) ||

< ||x — proxg, , (x+ B2 Vh(x))

)

and then

B proxg, , (x+ B VAW)|
< ||x — proxﬁz,g(x + ,BZVh(x)) || + ||pr0xﬁ2,g(x + /32Vh(x)) - proxﬂl'g(x + ,31Vh(x)) H

< 2Hx - proxﬂz‘g(x + ,32Vh(x)) ||
Therefore the proof is completed. O

Lemma 4.4 Let 8 >0, let H be a real Hilbert space, and let g : H — R be a proper lower

semicontinuous and p-strongly convex function. Then T (x) := proxg ,(x) is a contraction

mapping. In fact, || Tx = Ty|| < 15 llx =y

Lemma 4.5 Let B > 0, let H be a real Hilbert space, and let g,h : H — R be proper lower
semicontinuous and convex functions. Further, we assume that h is Fréchet differentiable,
Vh is L-Lipschitz continuous, and g is p-strongly convex. Let T : H — H be defined by
Tx := proxg (x + BVh(x)) for each x € H. Then the following are satisfied.

(i) If p>L>0,then T is a contraction mapping.

(i) If p =L >0, then T is a nonexpansive mapping.

Proof For x,y € H, we have

1

1T =Tyl < 1 5 | (x+ BVA@)) - (v + BYAD))||
1

=15 (Ilx = yll + B|| VA(x) - VE®) )
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IA

T+ Bp (lx =yl + BLIx = y1)

1+ 8L

"1 llx =yl

Thus the proof is completed. O

Theorem 4.1 In Theorem 3.1, let Hy and H, be an infinite-dimensional real Hilbert space
and assume that liminf,_, o, B, > 0. Then the sequence {x,},cn generated by Algorithm 3.1
converges weakly to the unique solution x of problem (SDCP).

Proof By Proposition 3.1 we know that Qspcp = {¥}. Since liminf,_, 8, > 0, we may as-
sume that there exists a real number 8* such that 8, > 8* > 0. By (3.11) we have

Pu=U+ /Sy,agz)'l(Aw,, + BuVhy(Aw,)) = proxg, ., (Awy, + BuVhy(Awy,)). (4.1)

Similarly, we have

wy =+ ,Bnagl)71 (Zn + ,Bthl(Zn)) =Proxg, o (Zn + IBthl(Zn))- (4.2)
By (3.30) we know that

lim [|Awy, =Yyl = lim [y, - z,]l = lim ||lx, — wy[| = 0. (4.3)

n—00 n—00 n—oo

By (4.2) and (4.3) we have

nlingo||zn = proxg, o, (2 + BuVii(2s)) | =0 (4.4)
and
lim ”Aw,, — ProXg ., (Aw,, + ﬁ,,th(Aw,,)) H =0. (4.5)

By (4.4), (4.5), and Lemma 4.3 we have

,}EEOHZ" — ProXge g, (2u + B*Vhi(z,)] =0 (4.6)
and
nlingo||Awn — ProX g« 5, (Awy, + B*Vhay(Aw,)) | = 0. (4.7)

Besides, we have to show that {x,},cy is a bounded sequence. Since H; is infinite dimen-
sional, there exist x € H; and a subsequence {x,, }xen Of {¥4}nen such that x,, — x* € H.
By (4.3) we know that z,, — x* and w,,, — x*. Hence, by (4.6), Lemma 4.1, and Lemma 4.5
we have that x™ = prox,. ., (x* + B*Vhy(x*)), which implies that Vi (x*) € dg; (x*). Since A
is linear, we have Aw,, — Ax*. Hence, by (4.7), Lemma 4.1 and Lemma 4.5, we have Ax* =
ProXg« o, (Ax* + B*Vhy(Ax*)), which implies that Vi, (Ax*) € 3g,(Ax*). So, x* € Qspcp, and
thus lim,,_, » [|x, —x* || exists. So, by Opial’s condition, we get x,, — x*. Therefore the proof
is completed. O
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Remark 4.1 To the best of our knowledge, the convergence theorems for the DC program
and split DC program are proposed in finite-dimensional Hilbert spaces. Here, Theo-
rem 4.1 is a convergence theorem for the split DC program in infinite-dimensional real
Hilbert spaces.

Following the same argument as in the proof of Theorem 4.1, we get the following con-

vergence theorem in infinite-dimensional real Hilbert spaces.

Theorem 4.2 Let Hy and H, be infinite-dimensional real Hilbert spaces. Let A, A*, g1, h1,
22, M, f1, and f, be the same as in Sect. 3. Let p > L > 0. Let { B,,}nen be a sequence in [a, b] C

(0,00). Let {r,}uen be a sequence in (0, m) such that 0 < liminfy,_, o r, < limsup,_, o, r» <
_1_
Al
Qspcp-

Then the sequence {x,},cn generated by Algorithm 1.3 converges weakly to some x €

5 Application to DC program
Let p, L, 8, {Bu}nen be the same as in Sect. 3. Let H be an infinite-dimensional Hilbert
space,andletg, s1: H — R be proper lower semicontinuous and convex functions. Besides,
we also assume that / is Fréchet differentiable, V/ is L-Lipschitz continuous, and g is p-
strongly convex. Let f(x) = g(x) — h(x) for all x € H and assume that f is bounded from
below.

Let {r,},en be a sequence in R with liminf,_, o, 7, > 0 and

V1-28-/Bulp-L) 5 }
V2+2B,L T (2+B.L) )

0<r,,<min{

Let Qpcp be defined by
QDCP = {x eH: Vh(x) S ag(x)},

and assume that Qpcp # 0.
The following algorithm and convergence theorem are given by Algorithm 3.1 and The-
orem 4.1, respectively.

Algorithm 5.1 Let x; € H be arbitrary, and let {x,},cn be generated as follows:

Y = Agminyepr{gV) + 55 lv = xall> = (Vh(x,), v — %)},
Zn = X = n(Xn = Yn)s

Wy = arg Minger {€(W) + 551 = 24|1* = (Vh(z,), u = 2,)),
V= argminer (g(V) + g5 [V = wull® = (VA(w,), v = w,)},

TZ\n =Wy — Wy _3’\;1),

Dn = Zn— Zps
&n=wn,Dn)
oy =
" 1Dul2 7

o~

Xy =Xy — 0Dy,

Xpe1 1= Ag Minuepr{g() + g U = Full> = (VA®,), u~Fa)}, neN,

stop criteria: x, = wy,.



Chuang and Yang Journal of Inequalities and Applications (2018) 2018:250 Page 15 0f 16

Theorem 5.1 Assume that liminf,_,» 8, > 0. Then the sequence {x,},cn generated by Al-
gorithm 5.1 converges weakly to the unique solution x of problem (SDCP).

The following algorithm is a particular case of Algorithm 1.3.

Algorithm 5.2 ([13]) Let x; € H be arbitrary, and let {x,},cn be generated as follows:

Yu = argmin,ep{g(v) + ﬁ v —xul1? = (Vh(x,), v — %)},
Zp = (1= 10)%0 + T'Yns

X1 = Arg Minyep () + g 1 = 2ul* = (Vh(z), = 2,)},  neN.
By Theorem 4.2 we get the following result, which it is a generalization of [13, Thm. 4.1].

Theorem 5.2 Let p > L > 0. Let {B,,},en be a sequence in [a,b] C (0,00). Let {r,},en be a
sequence in (0, 1) such that 0 < liminf,_. r, <limsup,_, ., < 1. Let {x,},en be generated
by Algorithm 5.2. Then {x,},en converges weakly to some X € Qpcp.

Next, we can get the following algorithm and convergence theorem by Algorithm 5.2
and Theorem 5.2, respectively. Further, Theorem 5.3 is a generalization of [13, Thm. 4.2].

Algorithm 5.3 ([13]) Let x; € H be arbitrary, and let {x,},cn be generated as follows:

2y = arg Minyepr{g(1) + g 11 = xall> = (VA(xn), 1 — %)},
g = argminer (@) + 551V = 2zull* = (Vh(2,),v = 2,)},

1= (1 =ry)zy + ryyy, neN.

Theorem 5.3 Let p > L > 0. Let {B,}nen be a sequence in [a, b] C (0,00). Let {r,},en be a
sequence in (0, 1) such that 0 < liminf,_, r, <limsup,_, . 7, < 1. Let {x,},en be generated
by Algorithm 5.3. Then {x,},en converges weakly to some X € Qpcp.

If r, = 0 for all n € N, then we have the following result.

Theorem 5.4 Let p > L > 0. Let {B,}nen be a sequence in [a,b] C (0,00). Let x; € H be
arbitrary, and let {x,},cn be generated by

llg lloe = 2> = (Vh(xn),u—xn)}, neN.

Xpel 1= argggg{g(u) * 28

Then {x,},en converges weakly to some x € Qpcp.

Proof Following similar argument as in the proof of Theorem 4.1, we get the statement of
Theorem 5.4. O
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