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Abstract
Let {X ,Xn}n∈N be a strictly stationary ρ–-mixing sequence of positive random
variables, under the suitable conditions, we get the almost sure central limit theorem

for the products of the some partial sums (
∏k

i=1 Sk,i
(k–1)nμn )

μ
βVk , where β > 0 is a constant, and

E(X) =μ, Sk,i =
∑k

j=1 Xj – Xi , 1 ≤ i ≤ k, V2
k =

∑k
i=1(Xi –μ)2.
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1 Introduction and main result
In 1988, Brosamler [1] and Schatte [2] proposed the almost sure central limit theorem
(ASCLT) for the sequence of i.i.d. random variables. On the basis of i.i.d., Khurelbaatar
and Grzegorz [3] got the ASCLT for the products of the some partial sums of random
variables. In 2008, Miao [4] gave a new form of ASCLT for products of some partial sums.

Theorem A ([4]) Let {X, Xn}n∈N be a sequence of i.i.d. positive square integrable random
variables with E(X1) = μ, Var(X1) = σ 2 > 0 and the coefficient of variation γ = σ

μ
. Denote

the Sk,i =
∑k

j=1 Xj – Xi, 1 ≤ i ≤ k. Then, for ∀x ∈ R,

lim
N→∞

1
log N

N∑

n=1

1
n

I
[( ∏n

k=1 Sn,k

(n – 1)nμn

) 1
γ
√

n ≤ x
]

= F(x) a.s.,

where F(·) is the distribution function of the random variables eN , N is a standard normal
random variable.

For random variables X, Y , define

ρ–(X, Y ) = 0 ∨ sup
Cov(f (X), g(Y ))

(Var f (X)) 1
2 (Var g(Y )) 1

2
,

where the sup is taken over all f , g ∈ C such that E(f (X))2 < ∞ and E(g(Y ))2 < ∞, and C is
a class of functions which are coordinatewise increasing.
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Definition ([5]) A sequence {X, Xn}n∈N is called ρ–-mixing, if

ρ–(s) = sup
{
ρ–(S, T); S, T ⊂ N , dist(S, T) ≥ s

} → 0, s → ∞,

where

ρ–(S, T) = 0 ∨ sup

{
Cov{f (Xi, i ∈ S), g(Xj, j ∈ T)}

√
Var{f (Xi, i ∈ S)}Var{g(Xj, j ∈ T)} , f , g ∈ C

}

,

C is a class of functions which are coordinatewise increasing.

The precise definition of ρ–-mixing random variables was introduced initially by Zhang
and Wang [5] in 1999. Obviously, ρ–-mixing random variables include NA and ρ∗-mixing
random variables, which have a lot of applications, their limit properties have aroused wide
interest recently, and a lot of results have been obtained by many authors. In 2005, Zhou
[6] proved the almost central limit theorem of the ρ–-mixing sequence. The almost sure
central limit theorem for products of the partial sums of ρ–-mixing sequences was given
by Tan [7] in 2012. Because the denominator of the self-normalized partial sums contains
random variables, this brings about difficulties to the study of the self-normalized form
limit theorem of the ρ–-mixing sequence. At present, there are very few results of this
kind. In this paper, we extend Theorem A, and get the almost sure central limit theorem
for self-normalized products of the some partial sums of ρ–-mixing sequences.

Throughout this paper, an ∼ bn means limn→∞ an
bn

= 1, and C denotes a positive constant,
which may take different values whenever it appears in different expressions, and log x =
ln(x ∨ e). We assume {X, Xn}n∈N is a strictly stationary sequence of ρ–-mixing random
variables, and we denote Yi = Xi – μ.

For every 1 ≤ i ≤ k ≤ n, define

Ȳni = –
√

nI(Yi < –
√

n) + YiI
(|Yi| ≤

√
n
)

+
√

nI(Yi >
√

n),

Tk,n =
k∑

i=1

Ȳni, V 2
n =

n∑

i=1

Y 2
i , V̄ 2

n =
n∑

i=1

Ȳ 2
ni,

V̄ 2
n,1 =

n∑

i=1

Ȳ 2
niI(Yi ≥ 0), V̄ 2

n,2 =
n∑

i=1

Ȳ 2
niI(Yi < 0),

σ 2
n = Var(Tn,n), δ2

n = E
(
Ȳ 2

n1
)
, δ2

n,1 = EȲ 2
n1I(Y1 ≥ 0), δ2

n,2 = EȲ 2
n1I(Y1 < 0),

apparently, δ2
n = δ2

n,1 + δ2
n,2, E(V̄ 2

n ) = nδ2
n = nδ2

n,1 + nδ2
n,2.

Our main theorem is as follows.

Theorem 1 Let {X, Xn}n∈N be a strictly stationary ρ–-mixing sequence of positive ran-
dom variables with EX = μ > 0, and for some r > 2, we have 0 < E|X|r < ∞. Denote
Sk,i =

∑k
j=1 Xj – Xi, 1 ≤ i ≤ k and Y = X – μ. Suppose that

(a1) Ev(Y 2I(Y ≥ 0)) > 0, E(Y 2I(Y < 0)) > 0,
(a2) σ 2

1 = EX2
1 + 2

∑∞
k=2 Cov(X1, Xk) > 0,

∑∞
k=2 |Cov(X1, Xk)| < ∞,

(a3) σ 2
k ∼ β2kδ2

k , for some β > 0,
(a4) ρ–(n) = O(log–δ n), ∃δ > 1.
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Suppose 0 ≤ α < 1
2 , and let

dk =
exp(logα k)

k
, Dn =

n∑

k=1

dk , (1)

then, for ∀x ∈ R, we have

lim
n→∞

1
Dn

n∑

k=1

dkI
[( ∏k

i=1 Sk,i

(k – 1)kμk

) μ
βVk ≤ x

]

= F(x) a.s., (2)

where F(·) is the distribution function of the random variables eN , N is a standard normal
random variable.

Corollary 1 By [8], (2) remains valid if we replace the weight sequence {dk , k ≥ 1} by any
{d∗

k , k ≥ 1} such that 0 ≤ d∗
k ≤ dk ,

∑∞
k=1 d∗

k = ∞.

Corollary 2 If {Xn, n ≥ 1} is a sequence of strictly stationary independent positive random
variables then one has (a3) and β = 1.

2 Some lemmas
We will need the following lemmas.

Lemma 2.1 ([7]) Let {X, Xn}n∈N be a strictly stationary sequence of ρ–-mixing ran-
dom variables with EX1 = 0, 0 < EX2

1 < ∞, σ 2
1 = EX2

1 + 2
∑∞

k=2 Cov(X1, Xk) > 0 and
∑∞

k=2 |Cov(X1, Xk)| < ∞, then, for 0 < p < 2, we have

Sn

n
1
p

→ 0, a.s., n → ∞.

Lemma 2.2 ([9]) Let {X, Xn}n∈N be a sequence of ρ–-mixing random variables, with

EXn = 0, E|Xn|q < ∞, ∀n ≥ 1, q ≥ 2,

then there is a positive constant C = C(q,ρ–(·)) only depending on q and ρ–(·) such that

E
(

max
1≤j≤n

|Sj|q
)

≤ C

{ n∑

i=1

E|Xi|q +

( n∑

i=1

EX2
i

) q
2
}

.

Lemma 2.3 ([10]) Suppose that f1(x) and f2(y) are real, bounded, absolutely continuous
functions on R with |f ′

1(x)| ≤ C1 and |f ′
2(y)| ≤ C2, then, for any random variables X and Y ,

∣
∣Cov

(
f1(X), f2(Y )

)∣
∣ ≤ C1C2

{
– Cov(X, Y ) + 8ρ–(X, Y )‖X‖2,1‖Y‖2,1

}
,

where ‖X‖2,1 =
∫ ∞

0 (P(|X| > x)) 1
2 dx.
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Lemma 2.4 Let {ξ , ξn}n∈N be a sequence of uniformly bounded random variables. If ∃δ > 1,
ρ–(n) = O(log–δ n), there exist constants C > 0 and ε > 0, such that

|Eξkξl| ≤ C
(

ρ–(k) +
(

k
l

)ε)

, 1 ≤ 2k < l, (3)

then

lim
n→∞

1
Dn

n∑

k=1

dkξk = 0, a.s.

Proof See the proof of Theorem 1 in [7]. �

Lemma 2.5 If the assumptions of Theorem 1 hold, then

lim
n→∞

1
Dn

n∑

k=1

dkI
[

Tk,k – E(Tk,k)
βδk

√
k

≤ x
]

= 
(x) a.s.,∀x ∈ R, (4)

lim
n→∞

1
Dn

n∑

k=1

dk

[

f
( V̄ 2

k,l

kδ2
k,l

)

– Ef
( V̄ 2

k,l

kδ2
k,l

)]

= 0 a.s., l = 1, 2, (5)

where dk and Dk is defined as (1) and f is real, bounded, absolutely continuous function
on R.

Proof Firstly, we prove (4), by the property of ρ–-mixing sequence, we know that
{Ȳni}n≥1,i≤n is a ρ–-mixing sequence; using Lemma 2.1 in [7], the condition (a2), (a3), and
β > 0, δ2

k → EY 2 > 0, it follows that

Tk,k – E(Tk,k)
βδk

√
k

d→ N , k → ∞,

hence, for any g(x) which is a bounded function with bounded continuous derivative, we
have

Eg
(

Tk,k – E(Tk,k)
βδk

√
k

)

→ Eg(N ), k → ∞,

by the Toeplitz lemma, we get

lim
n→∞

1
Dn

n∑

k=1

dkE
[

g
(

Tk,k – E(Tk,k)
βδk

√
k

)]

= E
(
g(N )

)
.

On the other hand, from Theorem 7.1 of [11] and Sect. 2 of [12], we know that (4) is
equivalent to

lim
n→∞

1
Dn

n∑

k=1

dkg
(

Tk,k – E(Tk,k)
βδk

√
k

)

= E
(
g(N )

)
a.s.,



Tan and Liu Journal of Inequalities and Applications  (2018) 2018:242 Page 5 of 14

hence, to prove (4), it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dk

[

g
(

Tk,k – E(Tk,k)
βδk

√
k

)

– E
(

g
Tk,k – E(Tk,k)

βδk
√

k

)]

= 0 a.s., (6)

noting that

ξk = g
(

Tk,k – E(Tk,k)
βδk

√
k

)

– E
(

g
(

Tk,k – E(Tk,k)
βδk

√
k

))

,

for every 1 ≤ 2k < l, we have

|Eξkξl| =
∣
∣
∣
∣Cov

(

g
(

Tk,k – ETk,k

βδk
√

k

)

, g
(

Tl,l – ETl,l

βδl
√

l

))∣
∣
∣
∣

≤
∣
∣
∣
∣Cov

(

g
(

Tk,k – ETk,k

βδk
√

k

)

, g
(

Tl,l – ETl,l

βδl
√

l

)

– g
(

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

))∣
∣
∣
∣

+
∣
∣
∣
∣Cov

(

g
(

Tk,k – ETk,k

βδk
√

k

)

, g
(

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

))∣
∣
∣
∣

= I1 + I2. (7)

First we estimate I1; we know that g is a bounded Lipschitz function, i.e., there exists a
constant C such that

∣
∣g(x) – g(y)

∣
∣ ≤ C|x – y|

for any x, y ∈ R, since {Ȳni}n≥1,i≤n also is a ρ–-mixing sequence; we use the condition δ2
l →

E(Y 2) < ∞, l → ∞, and Lemma 2.2, to get

I1 ≤ C
E|T2k,l – ET2k,l|√

l
≤ C

√
E(T2k,l – ET2k,l)2

√
l

≤ C√
l

√
√
√
√

2k∑

i=1

EȲ 2
l,i ≤ C√

l

√
√
√
√

2k∑

i=1

EY 2 ≤ C
(

k
l

) 1
2

. (8)

Next we estimate I2; by Lemma 2.2, we have

Var

(
Tk,k – ETk,k

βδk
√

k

)

≤ C
k

Var(Tk,k – ETk,k)

≤ C
k

k∑

i=1

E(Ȳki – EȲki)2 ≤ C
k

k∑

i=1

E(Ȳki)2 ≤ C
k

· k ≤ C
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and

Var

(
Tl,l – ETl,l – (T2k,l – ET2k,l)

βδl
√

l

)

≤ C
l

Var
(
Tl,l – ETl,l – (T2k,l – ET2k,l)

)

≤ C
l

l∑

i=2k+1

E(Ȳli – EȲli)2 ≤ C
l

( l∑

i=1

EȲ 2
li

)

≤ C
l

· l ≤ C.

By the definition of a ρ–-mixing sequence, EY 2 < ∞, and Lemma 2.3, we have

I2 ≤
(

– Cov

(
Tk,k – ETk,k

βδk
√

k
,

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

)

+ 8ρ–
(

Tk,k – ETk,k

βδk
√

k
,

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

)

·
∥
∥
∥
∥

Tk,k – ETk,k

βδk
√

k

∥
∥
∥
∥

2,1
·
∥
∥
∥
∥

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

∥
∥
∥
∥

2,1

)

≤ Cρ–(k)
(

Var

(
Tk,k – ETk,k

βδk
√

k

)) 1
2 ·

(

Var

(
Tl,l – ETl,l – (T2k,l – ET2k,l)

βδl
√

l

)) 1
2

+ 8ρ–(k) ·
∥
∥
∥
∥

Tk,k – ETk,k

βδk
√

k

∥
∥
∥
∥

2,1
·
∥
∥
∥
∥

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

∥
∥
∥
∥

2,1
.

By ‖X‖2,1 ≤ r/(r – 2)‖X‖r , r > 2 (see p. 254 of [10] or p. 251 of [13]), Minkowski inequality,
Lemma 2.2, and the Hölder inequality, we get

∥
∥
∥
∥

Tk,k – ETk,k

βδk
√

k

∥
∥
∥
∥

2,1
≤ r

r – 2

∥
∥
∥
∥

Tk,k – ETk,k

βδk
√

k

∥
∥
∥
∥

r

=
r

r – 2
1

βδk
√

k
(
E|Tk,k – ETk,k|r

) 1
r

≤ C√
k

( k∑

i=1

E|Ȳki|r +

( k∑

i=1

EȲ 2
ki

)r/2)1/r

≤ C√
k
(
k + kr/2)1/r ≤ C,

similarly

∥
∥
∥
∥

Tl,l – ETl,l – (T2k,l – ET2k,l)
βδl

√
l

∥
∥
∥
∥

2,1
≤ C.

Hence

I2 ≤ Cρ–(k). (9)

Combining with (7)–(9), (3) holds, and by (a4), Lemma 2.4, (6) holds, then (4) is true.
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Secondly, we prove (5); for ∀k ≥ 1, ηk = f (V̄ 2
k,1/(kδ2

k,1)) – E(f (V̄ 2
k,1/(kδ2

k,1))), we have

|Eηkηl| =
∣
∣
∣
∣Cov

(

f
( V̄ 2

k,1

kδ2
k,1

)

, f
( V̄ 2

l,1

lδ2
l,1

))∣
∣
∣
∣

≤
∣
∣
∣
∣Cov

(

f
( V̄ 2

k,1

kδ2
k,1

)

, f
( V̄ 2

l,1

lδ2
l,1

)

– f
(∑l

i=2k+1 Ȳ 2
l,iI(Yi ≥ 0)

lδ2
l,1

))∣
∣
∣
∣

+
∣
∣
∣
∣Cov

(

f
( V̄ 2

k,1

kδ2
k,1

)

, f
(∑l

i=2k+1 Ȳ 2
l,iI(Yi ≥ 0)

lδ2
l,1

))∣
∣
∣
∣

= J1 + J2, (10)

by the property of f , we know

J1 ≤ C

(

E

( 2k∑

i=1

Ȳ 2
kiI(Yi ≥ 0)

)
/

l

)

≤ C
(

k
l

)

. (11)

Now we estimate J2,

Var

( V̄ 2
k,1

kδ2
k,1

)

= Var

(∑k
i=1 Ȳ 2

kiI(Yi ≥ 0)
kδ2

k,1

)

≤ C
k2 E

( k∑

i=1

Ȳ 2
kiI(Yi ≥ 0)

)2

=
C
k2 E

( k∑

i=1

Ȳ 2
kiI(Yi ≥ 0) – E

( k∑

i=1

Ȳ 2
kiI(Yi ≥ 0)

)

+ E

( k∑

i=1

Ȳ 2
kiI(Yi ≥ 0)

))2

≤ C
k2 E

( k∑

i=1

(
Ȳ 2

kiI(Yi ≥ 0) – E
(
Ȳ 2

kiI(Yi ≥ 0)
))

)2

+
C
k2

( k∑

i=1

E
(
Ȳ 2

kiI(Yi ≥ 0)
)
)2

≤ C
k2

k∑

i=1

EȲ 4
kiI(Yi ≥ 0) +

C
k2

(
kE

(
Ȳ 2

k1I(Y1 ≥ 0)
))2

≤ C
k2

k∑

i=1

Ek(Yi)2 ≤ C,

and similarly Var(
∑l

i=2k+1 Ȳ 2
li I(Yi ≥ 0)/(lδ2

l,1)) ≤ C. On the other hand, we have

∥
∥
∥
∥

V̄ 2
k,1

kδ2
k,1

∥
∥
∥
∥

2,1
≤ r

r – 2
· C

k
(
E
∣
∣V̄ 2

k,1
∣
∣r)1/r

≤ C
k

(

E

∣
∣
∣
∣
∣

k∑

i=1

(
Ȳ 2

kiI(Yi ≥ 0) – E
(
Ȳ 2

kiI(Yi ≥ 0)
))

∣
∣
∣
∣
∣

r

+

∣
∣
∣
∣
∣

k∑

i=1

E
(
Ȳ 2

kiI(Yi ≥ 0)
)
∣
∣
∣
∣
∣

r)1/r

≤ C
k

( k∑

i=1

E
∣
∣
(
Ȳ 2

kiI(Yi ≥ 0) – E
(
Ȳ 2

kiI(Yi ≥ 0)
))∣

∣r
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+

( k∑

i=1

E
(
Ȳ 2

kiI(Yi ≥ 0) – E
(
Ȳ 2

kiI(Yi ≥ 0)
))2

)r/2)1/r

+
C
k

∣
∣
∣
∣
∣

k∑

i=1

E
(
Ȳ 2

kiI(Yi ≥ 0)
)
∣
∣
∣
∣
∣

≤ C
k

( k∑

i=1

E
∣
∣Ȳ 2

kiI(Yi ≥ 0)
∣
∣r +

( k∑

i=1

E
∣
∣Ȳ 2

kiI(Yi ≥ 0)
∣
∣2

)r/2)1/r

+
C
k

∣
∣kE

(
Ȳ 2

k1I(Y1 ≥ 0)
)∣
∣

≤ C
k

( k∑

i=1

E|√kYi|r +

( k∑

i=1

E|√kYi|2
)r/2)1/r

+ C1

≤ C
k

(
k1+r/2 + kr)1/r + C1 ≤ C,

similarly

∥
∥
∥
∥
∥

l∑

i=2k+1

Ȳ 2
li I(Yi ≥ 0)/

(
lδ2

l,1
)
∥
∥
∥
∥
∥

2,1

≤ C.

Thus, by Lemma 2.3, we have

J2 ≤ C
{

– Cov

( V̄ 2
k,1

kδ2
k,1

,
∑l

i=2k+1 Ȳ 2
li I(Yi ≥ 0)

lδ2
l,1

)

+ 8ρ–
( V̄ 2

k,1

kδ2
k,1

,
∑l

i=2k+1 Ȳ 2
li I(Yi ≥ 0)

lδ2
l,1

)

·
∥
∥
∥
∥

V̄ 2
k,1

kδ2
k,1

∥
∥
∥
∥

2,1
·
∥
∥
∥
∥

∑l
i=2k+1 Ȳ 2

li I(Yi ≥ 0)
lδ2

l,1

∥
∥
∥
∥

2,1

}

≤ C
{

ρ–(k)
(

Var

( V̄ 2
k,1

kδ2
k,1

))1/2

· Var

(∑l
i=2k+1 Ȳ 2

li I(Yi ≥ 0)
lδ2

l,1

)1/2

+ ρ–(k) ·
∥
∥
∥
∥

V̄ 2
k,1

kδ2
k,1

∥
∥
∥
∥

2,1
·
∥
∥
∥
∥

∑l
i=2k+1 Ȳ 2

li I(Yi ≥ 0)
lδ2

l,1

∥
∥
∥
∥

2,1

}

≤ Cρ–(k), (12)

hence, combining with (11) and (12), (3) holds, and by Lemma 2.4, (5) holds. �

3 Proof of Theorem 1
Let Ck,i = Sk,i

(k–1)μ , hence, (2) is equivalent to

lim
n→∞

1
Dn

n∑

k=1

dkI

(
μ

βVk

k∑

i=1

log Ck,i ≤ x

)

= 
(x) a.s. (13)

So we only need to prove (13), for a fixed k, 1 ≤ k ≤ n and ∀ε > 0; we have

lim
k→∞

P

{ ∞⋃

m=k

(∣
∣
∣
∣
Xi

m

∣
∣
∣
∣ ≥ ε

)}

= lim
k→∞

P
{∣
∣
∣
∣
Xi

k

∣
∣
∣
∣ ≥ ε

}

= lim
k→∞

P
{|X1| ≥ εk

}
= 0,
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therefore, by Theorem 1.5.2 in [14], we have

Xi

k
→ 0 a.s. k → ∞,

on the unanimous establishment of i.
By Lemma 2.1, for some 4

3 < p < 2, and enough large k, we have

sup
1≤i≤k

|Ck,i – 1| ≤
∣
∣
∣
∣

∑k
j=1(Xj – μ)
(k – 1)μ

∣
∣
∣
∣ + sup

1≤i≤k

∣
∣
∣
∣

Xi

(k – 1)μ

∣
∣
∣
∣ +

1
k – 1

≤
∣
∣
∣
∣
Sk – kμ

k
1
p

· k
1
p

(k – 1)μ

∣
∣
∣
∣ ≤ Ck

1
p –1,

by log(1 + x) = x + O(x2), x → 0, we get

∣
∣
∣
∣
∣

μ

βδk
√

(1 ± ε)k

k∑

i=1

ln Ck,i –
μ

βδk
√

(1 ± ε)k

k∑

i=1

(Ck,i – 1)

∣
∣
∣
∣
∣

≤ Cμ

βδk
√

(1 ± ε)k

k∑

i=1

(Ck,i – 1)2

≤ C√
k

k
2
p –1 → 0 a.s., k → ∞,

and then, for δ > 0 and every ω, there exists k0 = k0(ω, δ, x); when k > k0, we have

I

{
μ

βδk
√

(1 ± ε)k

k∑

i=1

(Ck,i – 1) ≤ x – δ

}

≤ I

{
μ

βδk
√

(1 ± ε)k

k∑

i=1

log Ck,i ≤ x

}

≤ I

{
μ

βδk
√

(1 ± ε)k

k∑

i=1

(Ck,i – 1) ≤ x + δ

}

, (14)

under the condition |Xi – μ| ≤ √
k, 1 ≤ i ≤ k, we have

μ

k∑

i=1

(Ck,i – 1) =
k∑

i=1

Sk,i – (k – 1)μ
k – 1

=
k∑

i=1

Yi =
k∑

i=1

Ȳki = Tk,i, (15)

furthermore, by (14) and (15), for any given 0 < ε < 1, δ > 0, when k > k0, we obtain

I

(
μ

βVk

k∑

i=1

log Ck,i ≤ x

)

≤ I
(

Tk,i

δkβ
√

k(1 + ε)
≤ x + δ

)

+ I
(
V̄ 2

k > (1 + ε)kδ2
k
)

+ I

( k⋃

i=1

(|Xi – μ| >
√

k
)
)

, x ≥ 0,
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I

(
μ

βVk

k∑

i=1

log Ck,i ≤ x

)

≤ I
(

Tk,i

δkβ
√

k(1 – ε)
≤ x + δ

)

+ I
(
V̄ 2

k < (1 – ε)kδ2
k
)

+ I

( k⋃

i=1

(|Xi – μ| >
√

k
)
)

, x < 0,

I

(
μ

βVk

k∑

i=1

log Ck,i ≤ x

)

≥ I
(

Tk,i

δkβ
√

k(1 – ε)
≤ x – δ

)

– I
(
V̄ 2

k < (1 – ε)kδ2
k
)

– I

( k⋃

i=1

(|Xi – μ| >
√

k
)
)

, x ≥ 0,

I

(
μ

βVk

k∑

i=1

log Ck,i ≤ x

)

≥ I
(

Tk,i

δkβ
√

k(1 + ε)
≤ x – δ

)

– I
(
V̄ 2

k > (1 + ε)kδ2
k
)

– I

( k⋃

i=1

(|Xi – μ| >
√

k
)
)

, x < 0.

Therefore, to prove (13), for any 0 < ε < 1, δ1 > 0, it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dkI
(

Tk,i

βδk
√

k
≤ √

1 ± εx ± δ1

)

= 
(
√

1 ± εx ± δ1) a.s., (16)

lim
n→∞

1
Dn

n∑

k=1

dkI

( k⋃

i=1

(|Xi – μ| >
√

k
)
)

= 0 a.s., (17)

lim
n→∞

1
Dn

n∑

k=1

dkI
(
V̄ 2

k > (1 + ε)kδ2
k
)

= 0 a.s., (18)

lim
n→∞

1
Dn

n∑

k=1

dkI
(
V̄ 2

k < (1 – ε)kδ2
k
)

= 0 a.s. (19)

Firstly, we prove (16), by E(Y 2) < ∞, we know limx→∞ x2P(|Y | > x) = 0, and by E(Y ) = 0,
it follows that

∣
∣E(Tk,i)

∣
∣ =

∣
∣
∣
∣
∣
E

( k∑

i=1

Ȳki

)∣
∣
∣
∣
∣

= |kEȲk1|

≤ k
∣
∣E

(
Y I

(|Y | >
√

k
))∣

∣ + k
3
2 E

(
I
(|Y | >

√
k
))

≤ √
kE

(
Y 2I

(|Y | >
√

k
))

+ k
3
2 P

(|Y | >
√

k
)

= o(
√

k),
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so, combining with δ2
k → E(Y 2) < ∞, for any α > 0, when k → ∞, we have

I
(

Tk,i – ETk,i

βδk
√

k
≤ √

1 ± εx ± δ1 – α

)

≤ I
(

Tk,i

βδk
√

k
≤ √

1 ± εx ± δ1

)

≤ I
(

Tk,i – ETk,i

βδk
√

k
≤ √

1 ± εx ± δ1 + α

)

,

thus, by (4), we get

lim
n→∞

1
Dn

n∑

k=1

dkI
(

Tk,i

βδk
√

k
≤ √

1 ± εx ± δ1

)

≥ lim
n→∞

1
Dn

n∑

k=1

dkI
(

Tk,i – ETk,i

βδk
√

k
≤ √

1 ± εx ± δ1 – α

)

→ 
(
√

1 ± εx ± δ1 – α), (20)

lim
n→∞

1
Dn

n∑

k=1

dkI
(

Tk,i

βδk
√

k
≤ √

1 ± εx ± δ1

)

≤ lim
n→∞

1
Dn

n∑

k=1

dkI
(

Tk,i – ETk,i

βδk
√

k
≤ √

1 ± εx ± δ1 + α

)

→ 
(
√

1 ± εx ± δ1 + α) a.s., (21)

letting α → 0 in (20) and (21), (16) holds.
Now, we prove (17); by E(Y 2) < ∞, we know limx→∞ x2P(|Y | > x) = 0, such that

EI

( k⋃

i=1

(|Yi| >
√

k
)
)

≤
k∑

i=1

P
(|Yi| >

√
k
) ≤ kP

(|Y | >
√

k
) → 0, k → ∞,

by the Toeplitz lemma, we get

lim
n→∞

1
Dn

n∑

k=1

dkEI

( k⋃

i=1

(|Yi| >
√

k
)
)

→ 0 a.s., (22)

hence, to prove (17), it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dk

(

I

( k⋃

i=1

(|Yi| >
√

k
)
)

– E

[

I

( k⋃

i=1

(|Yi| >
√

k
)
)])

→ 0 a.s., (23)

writing

Zk = I

( k⋃

i=1

(|Yi| >
√

k
)
)

– E

[

I

( k⋃

i=1

(|Yi| >
√

k
)
)]

,
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for every 0 ≤ 2k < l, so by the definition of ρ–-mixing sequence, we have

E|ZkZl| =

∣
∣
∣
∣
∣
Cov

(

I

( k⋃

i=1

(|Yi| >
√

k
)
)

, I

( l⋃

i=1

(|Yi| >
√

l
)
))∣

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Cov

(

I

( k⋃

i=1

(|Yi| >
√

k
)
)

, I

( l⋃

i=1

(|Yi| >
√

l
)
)

– I

( l⋃

i=2k+1

(|Yi| >
√

l
)
))∣

∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

( k⋃

i=1

(|Yi| >
√

k
)
)

, I

( l⋃

i=2k+1

(|Yi| >
√

l
)
))∣

∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
I

( l⋃

i=1

(|Yi| >
√

l
)
)

– I

( l⋃

i=2k+1

(|Yi| >
√

l
)
)∣

∣
∣
∣
∣

+ ρ–(k)

√
√
√
√Var

(

I

( k⋃

i=1

(|Yi| >
√

k
)
))

Var

(

I

( l⋃

i=2k+1

(|Yi| >
√

l
)
))

≤ E

[

I

( 2k⋃

i=1

(|Yi| >
√

l
)
)]

+ Cρ–(k)

≤
k∑

i=1

P
(|Yi| >

√
l
)

+ Cρ–(k)

≤ kP
(|Y | >

√
l
)

+ Cρ–(k)

≤ C
(

k
l

+ ρ–(k)
)

,

so by Lemma 2.4, (23) holds. And combining with (22), we know that (17) holds.
Next, we prove (18); by E(V̄ 2

k ) = kδ2
k , V̄ 2

k = V̄ 2
k,1 + V̄ 2

k,2, E(V̄ 2
k,l) = kδ2

k,l , and δ2
k,1 ≤ δ2

k , l = 1, 2,
we have

I
(
V̄ 2

k > (1 + ε)kδ2
k
)

= I
(
V̄ 2

k – E
(
V̄ 2

k
)

> εkδ2
k
)

≤ I
(
V̄ 2

k,1 – E
(
V̄ 2

k,1
)

> εkδ2
k /2

)
+ I

(
V̄ 2

k,2 – E
(
V̄ 2

k,2
)

> εkδ2
k /2

)

≤ I
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

)

+ I
(

V̄ 2
k,2 >

(

1 +
ε

2

)

kδ2
k,2

)

,

therefore, by the arbitrariness of ε > 0, to prove (18), it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dkI
(

V̄ 2
k,l >

(

1 +
ε

2

)

kδ2
k,l

)

= 0 a.s. l = 1, 2, (24)

when l = 1, for given ε > 0, let f be a bounded function with bounded continuous derivative
such that

I(x > 1 + ε) ≤ f (x) ≤ I
(

x > 1 +
ε

2

)

, (25)
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under the condition

E
(
V̄ 2

k,1
)

= kδ2
k,1, E

(
Y 2) < ∞, E

(
Y 2I(Y ≥ 0)

)
> 0,

by the Markov inequality, and Lemma 2.2, we get

P
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

)

= P
(

V̄ 2
k,1 – E

(
V̄ 2

k,1
)

>
ε

2
kδ2

k,1

)

≤ C
E(V̄ 2

k,1 – E(V̄ 2
k,1))2

k2 ≤ C
∑k

i=1 E(Ȳ 2
kiI(Ȳki ≥ 0))2

k2

≤ C
EȲ 4

k1I(Ȳk1 ≥ 0)
k

≤ C
EY 4I(0 ≤ Y ≤ √

k) + k2P(Y >
√

k)
k

, (26)

because E(Y 2) < ∞ implies limx→∞ x2P(|Y | > x) = 0, we have

EY 4I(0 ≤ Y ≤ √
k) =

∫ ∞

0
P
(|Y |I(0 ≤ Y ≤ √

k) ≥ t
)
4t3 dt

≤ C
∫ √

k

0
P
(|Y | ≥ t

)
t3 dt

=
∫ √

k

0
o(1)t dt = o(1)k,

thus, combining with (26),

P
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

)

→ 0, k → ∞.

Therefore, from (5), (25) and the Toeplitz lemma

0 ≤ 1
Dn

n∑

k=1

dkI
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

)

≤ 1
Dn

n∑

k=1

dkf
( V̄ 2

k,1

kδ2
k,1

)

=
1

Dn

n∑

k=1

dkE
(

f
( V̄ 2

k,1

kδ2
k,1

))

+
1

Dn

n∑

k=1

dk

(

f
( V̄ 2

k,1

kδ2
k,1

)

– E
(

f
( V̄ 2

k,1

kδ2
k,1

)))

≤ 1
Dn

n∑

k=1

dkE
(

I
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

))

+
1

Dn

n∑

k=1

dk

(

f
( V̄ 2

k,1

kδ2
k,1

)

– E
(

f
( V̄ 2

k,1

kδ2
k,1

)))

=
1

Dn

n∑

k=1

dkP
(

V̄ 2
k,1 >

(

1 +
ε

2

)

kδ2
k,1

)

+
1

Dn

n∑

k=1

dk

(

f
( V̄ 2

k,1

kδ2
k,1

)

– E
(

f
( V̄ 2

k,1

kδ2
k,1

)))

→ 0 a.s., k → ∞,

hence, (24) holds for l = 1. Similarly, we can prove (24) for l = 2, so (18) is true. By similar
methods used to prove (18), we can prove (19), this completes the proof of Theorem 1.
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