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1 Introduction
If0< fooo f2(x)dx < 00 and 0 < fooo g%(y)dy < oo, then we have the following well-known
Hilbert integral inequality (see [1]):

® [ fx)g0) ( ~ ~, )i
/0 ./o P dxdy<m /0 f(x)dx/0 gnady| , (1)

where the constant factor 7 is the best possible. In 1925, by introducing the pair of con-

jugate exponents (p,q) (p > 1, }7 + % = 1), Hardy et al. gave an extension of (1) (see [1],
Theorem 316). Recently, by means of weight functions, some new extensions of (1) and
the Hardy’s work were given by Yang [2, 3] and in [4—9]. Most of them are built in the
quarter plane of the first quadrant.

In 2007, Yang [10] provided a Hilbert-type integral inequality in the whole plane with
the exponent function and intermediate variables as follows:

L - o0 3
[ irEyaas(Gs)([orws[ ceos), o

where the constant factor B( ) is the best possible (A > 0, B(u, v) is the beta function).
He et al. [11-19] proved some new Hilbert-type integral inequalities in the whole plane
with the best possible constant factors.
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In 2017, Hong [20] gave two equivalent statements between Hilbert-type inequalities
with general homogenous kernel and a few parameters. A few authors continue to study
this topic (see [21-25]).

In this paper, by using real analysis and weight functions we obtain a few equivalent
statements of a Hilbert-type integral inequality in the whole plane related to the exponent
function with intermediate variables. The constant factor related to the gamma function
is proved to be the best possible. We also consider some particular cases and operator

expressions.

2 Some lemmas
For y,p,0 >0, setting h(u) := e (4> 0), we find

kﬁ}’)(a)::/ h(u)u"_lduz/ e uV du (v:puV)
0 0

1 *© r
= e VO gy = (o/y) e R, =(0,00), (3)
Yool Yool
0

where I'(s) := fooo e Ldv (Res > 0) is the gamma function (see [26]).
Ford € {-1,1}, a, B € (-1,1), we set

X =l +ax,  ypi=lyl+ By (xy€R=(-00,00)),
Es={teR|tP =1}, E,={teR’ <1}

Lemmal Forc>0,0 =«,B €(-1,1), we have

1 1 1
;% dt = - , 4
/}; 0 C|:(1+9)08+1 + (1_9)c5+11| ( )

1 1 1
tldt = — ; 5
_[55 0 c |:(1 + 9)—c5+1 + (1 _ 9)c8+1:| ( )

and for ¢ <0, we have

/t;““dt:/ t97 1 dt = oo.
Es E_s

Proof Setting Ef := {t e R,;t’ > 1}, Ej:={-teRy (=1)? > 1}, we find Es =E{ UE; and

fa; ;97 dt = ng [+ 0):5]’“H dt + / [a- (9)(—t)]’“s’1 dt

Es
1 1
= + £ dt.
[(1+9)65+1 (1_9)68+11|_[5g

Setting ¢ = us, we find

—c8-1 L (% 11 1 X
O dt = — us O Dy 51 gy = u " du.
E! 181 J1 1

§
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Hence, for ¢ > 0, (4) follows, and for ¢ <0, fEa tg”‘s‘l dt = 00. Since, for ¢ > 0,

1 1 1
£V dt = / £ g = + / 1 du,
La 0 Ey) 0 § +9)—c8+1 (1_9)—c8+1 0 u u

we have (5), and for ¢ <0, [, ¢! dt = co.

The lemma is proved. O

In the following, We further assume that p > 1, }7 +=-=1,6 e {-1,1}, o, B € (-1,1),

1
q
v,0,0>0,01 €R, kg’)(o) is given by (3), and

2k§,y)(o) p
(1 _ a2)1/q(1 _ /32)1/10 : ( )

K)(0):=
Forne N={1,2,...}, E,; = [-1,1], x € Es, we define:

0 1 1 1
8 +7:-1 ) +7;-1
I(_)(x) ::/ e—p(xo,y,g)yy; q dy, 1(+)(x) ::/ e p(xay,s)yy; q dy,
-1 0

o+L-1
I(x) = [(_)(x) + I(+)(x) = / e_p(vayﬁ)yyﬁ qn dy

E

For yg = (sgn(y) + B)y, where

-1, y<0,
Sgn()’) = 0) y = Or
1, >0,

§ LY . )
=(1 > 1+ Es),
%), = (1 +asgnx))’|x| _531—111?1}{( )"} (x € Es)
and1—|o| <1+ |e))'<1+|a| <1 -]|a])!, we have

(L£B)x, = map:= (1= IBI) (L~ lal) >0 (x € Ey). (7)

For fixed x € Es, setting u = &%y, we find

SO pd S )
x g 1 x b 1
100 == / AT D T — / e U T dy,
1-8 Jo 1-8 Jo
—8(a+qln) (1+ﬁ)x5 —8(o+ ql—n) m
o o,B
IM(x) = * / ey dy > Yo e T gy,
+B Jo 1+8 Jo
3 S
—8( +Ln) 1 (1-B)xg, a1 1 (1+8)x, 1
0= ™| — / ey o dy 4 / ey dy
1-8Jo 1+8Jo
~8(c+L)
2 T [k 1
o f efpuV ua+qn 1 du. (8)
1+8 0
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Forne N={1,2,...}, x € E_5, we define:
-1 H o-L_1
-0
© 5 o-L-1
1= [ ey gy
1
o-L_1
@)=+ J0w) = [ ey gy
E_;
Since, for x € E_g,
% =(1+a sgn(x))8|x|5 < 611{1211741}{(1 + |a|)5} =(1- |oz|)_1,
el-1,
we have
-1
My p = (1 + |,3|)(1 - |0l|) > (1 + I,BI)xi (x € E_5). )
For fixed x € E_;, setting u = x‘;yﬁ, we find
g Sod)
O = e U dy > / ey’ dy,
1- ﬂ (lfﬂ)x?x 1- ﬁ MO‘:B
g g
](+)(x) _ KXo e_puVua 7 1 du > Ko / e_puV T 1 du,
1+ /3 (1+B)xd 1+ /3 My,
-8e-20[ 1 o o-1_ 1 o0 o1 _
J(x) = x4 o [— ey dy + eyt du]
1B Ja-ps L+ B Japd,
—8(c-1)
2% L 1
2 / ey dy. (10)
1+ Mot,ﬁ
In view of (8) and (10), we have the following:
Lemma 2 We have the following inequalities:
8(o1- )1
L= f Ix)xe 7 dx
Es
2 —8(o—op+1)- e, 1_
> 1 /32/. xaa(a o) 1dx/ eyt ot dy, (11)
- Es 0
S(o1+55)-1
Jo= | J@xe T dx
E_s
2 o+l o0 1
> . f xi(al o+5)-1 dx/ P T gy (12)
1- ,3 E_s Mo,p

Page 4 of 14
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Lemma 3 Ifthere exists a constant M such that, for any nonnegative measurable functions
f(x)and g(y) in R,

) /: f: e "W f(x)gly) dx dy

1

3 M[/mxg(l_&yl)—lfp(x) dx] p [/wy/qs(l—a)—lgq(y) dy:| q’ (13)

then we have o1 = 0.

Proof 1If oy > o, then for n > UI%U (n € N), we define the functions:

xs(al_pl”)_l x€E y 7 yeE
fn(x) = o ) 8 gn(y) = B ) -1
0, x € R\Es, 0,

and by (4) and (5) it follows that

1

[/M”WWMM[[ﬁ”QmwT
([ as) () o)

1

[ 1 ]z[ 1 1 ]%
=n + 5 - + — < 00.
(1+06)W1 (1-a)ntt 1+p)att Q-p)utt

By (11) and (13) (for f =f,,, g = g,) we have

2 -8 et 1_
5 | *a o) gy e ur e dy
1-8%Jg 0

<L-= f / e @B £ (x)g,(y) dx dy < MJ; < 00.

l
Since for any n > ;, o- 01 +1 <0,by Lemma 1 it follows that fE xg O T

dx 0.
In view off wh g=pu? 1,7 i

du > 0, we find that co < MJ; < oo, which is a contradic-

tion.
3o+ 5)-1 cE o-ai-1 cE
x ’ x -0 ~ b )
Fulwy:= 7 ’ Z) =17 yem
0, X € R\E_(;, 0, VAS R\E},
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and by (4) and (5) it follows that
o 1o o 1
~ ~ Z o)1~ a
Joi= |:/ xz(l_am)_lﬁ(x) dx] |:/ )’;13(1 ) 1gZ()’) dy:|
1 1
3 1 r =14 q
(L ey ()
E_s Eq
1

[ 1 1 Tz[ 1 1 r
=n 5o T 5 it =1 | <o
Q+a)=*t (1-a)7*! 1L+p)ntt A-p)n

By (12) and (13) (for f = f,, g = @,) we have

2 S(o1— +l -1 o0 _1_
2/ xa(al T ey gy
1- ﬁ E_s Mot,/S

<h= / / e‘”("gyﬂ)yﬂ,(x)gn(y) dxdy < MJ, < co.

! 1 <0,byL 1 it follows th Sor-at ) g -
=7’ 01— 0 +; =0, by Lemma it follows t ath_on, X =

Since for any n >
o

u’ , o—

00. In view of fAZﬁ e Py qL”_l du > 0, we have oo < Miz < 00, which is a contradic-
tion.

Hence we conclude that 7 = 0.

The lemma is proved. g

Lemma 4 Ifthere exists a constant M such that, for any nonnegative measurable functions
fx)and g(y) in R,

/:: /_: e—p(xéyﬁ)yf(x)g(y) dxdy

<M [ f ” AP1=8)1 21 () dx] ’ [ / N Y gt (y) dy} " (14)

then we have I(D(l};;(a) <M.

Proof For o, = 0, by (8) we have
8(o-p7)-1 _
I :/ I(x)xo,a P dlei ) +1§+),
Es
_ 8(o-2)-1 8(o-2)-1
- / I A Y (P / [ ™ g,
Es Es

In view of the presented results, we find
o 1 R
I = —/ X" f eyt e T dudx
1-8 Jg 0
1

_%_1 * —pu? o+Ll-1 *© —pu? o+L-1
=— Ko e u v duy— e u v dul|dx
1-8 JE 0 1-p)d



Zhong et al. Journal of Inequalities and Applications (2018) 2018:234 Page 7 of 14

1 1 1
- [ — + 3 i|k§’)<a+—>
I-BLA+a)nt (1-a)nt! qn

5
—— | x," 1/ W dy dx. (15)
(1-p)x

Since e’ 41 is continuous in (0,00), and e ”*" 4** — 0 (1 — o0), there exists a positive
constant M; such that e 42° <M, (u € [my,p,00)). By (4) it follows that

S [ |
0< | x4,” e u’ T dudx
E; 1-p)x,

—8(o+-L)-1
_,_1 e o+l M1 fE5 Xa w dx
<M; | x," U duldx = 5
Es ( qn

1% (1-p)"

o+ )M 1 . 1
- (1 _ ,3)0_# (1 n a)‘s((’*ﬁ)*l (1 _ a)8(0+1%n)+1 ’

so that

1 _s_
— 1/ e Ut e dudx = O(1).
1-8 E,; 1-B)x

By (15) it follows that

k()/) 1
/- o (o+qn)[ 1 ., 1 5 }_0(1)‘ 16)
1-F La+a)yi*t (1-a)nt

N

In the same way, we have

1 o+ ) 1 1 o1
—1§*)= [ — . ]— 0 (17)
n 1+ 1+a)t (1-a)nt! n
By (14) (for f =f,, g = g4), we have
1 Yoo, oy L5
—L=—(,7 +1 < -M}.
" 1 n( 1 1 ) = ]1
For n — o0, by Fatou lemma (see [27]), (16), and (17) we find
2 2% (o) 2 \r/ 2 \i
<M ,
1-82 1-a2 — 1-a? 1-p2
2k(y)(0)
so that K y)(U) = M)l/pqw < M.
The lemma is proved. O
Lemma 5 We define the following weight functions:
03(0,9) =¥ / e 3ol gy (yeR), (18)
—00
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ws(0,x%) = xi"/ e‘p("gyﬁ)yyg‘ldy (x e R). (19)

(o¢]

Then we have

1—0{2 2

5 ws(0,y) = _2}3 ws(o,x) = kl(j’)(a) (x,y € R\{O}). (20)

Proof For fixed y € R\{0}, setting u = %y, we find

0

o) =5 [ e (-]

—00

do-1

dx

o0
+y‘g/ e Parp)” [(1 +oz)x:|&rf1 dx
0

(A /ooe_””yu”‘lduz 2k );
l-a 1+a/ /)y 1-a2”

for fixed x € R\{0}, setting u = x° g, it follows that

0 00
)
wa(a,x):xi”/ e Garp)” g 1afy+x / e‘p(x“yﬁ)yyg_ldy
- 0

o]

2 & 2
= —/ e uoV dy = k7).
1-82Jo

Hence we have (20).

The lemma is proved. O

3 Main results
Theorem 1 If M is a constant, then the following statements (i), (ii), and (iii) are equiva-
lent:

(i) Foranyf(x) >0, we have:

{ [ e a8 f(x) dxr dy } !

[ / b 1=301)= lfp(x)dx] ) (21)

(i) Forany f(x),g(y) > 0, we have:

/ / (eep)” (x)g(y) dxdy

< M[ / gl dx] ' [ / ) dy] " (22)

(iii) 01 =0, and K{}(0) <M.
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Proof (i)=>(ii). By Holder’s inequality (see [28]) we have

1= [T [ e smas | ey

o0 o0

<J [ [ OoyZ“_")‘lgq(y) dy} " (23)

Then by (21) we have (22).
(if)=>(iii). By Lemma 1 we have 071 = 0. Then by Lemma 2 we have K ;’2 (o) <M.
(iii)=>(i). For 01 = o, by Holder’s inequality with weight (see [28]) and (18) we have

oo bp
|:/ e anﬂ’ﬂ f(x) dx:|
(c-1)/p
> £ (x) v
AL g e )
—00 Xa -yﬁ

-1gp So-1 rla
< /Oo o(x37p) Vyﬂ fP ) dx[[ -pbyp)” Fa i dxi|
— oo ((Sa 1)plq o yfga 1)gq/p

[} P
B q(1-0)-11p-1 e Vyﬂ P (%)
- [wﬁ(a’y)yﬂ ] /:oo e’ %) x(&a 1)plq dx
() p-1 00 “1ep(y
2 o+
_ < kp (Z)) y;}p 1/ p(dyp)Y y,fés fl)(/) dx. (24)
1-« ~ xBo-Dpla

By Fubini’s theorem (see [27]), (24), and (19) we have

2k (o) oy Ve ST @)
=) e ’%%WMM
(L [[miepiaa]

_K(ﬂ(U)[/mx‘;(l_ag)_lfp(x)dx}p.

For K 5(0) < M, we have (21) (when o7 = o).
Therefore, statements (i), (ii), and (iii) are equivalent.
The theorem is proved. O

Theorem 2 [f M is a constant, then the following statements (i), (ii), and (iii) are equiva-

lent:
(i) Forany f(x) > 0 satisfying 0 < [ KL ep(34) dix < 00, we have:

U: i [/-: et f(x) de dy}}ﬂ

<M[/Ooxg(1_sa)—1fp(x) dx]];. (25)
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(ii) Forany f(x) = O satisfying 0 < [ k" ™77 7(x) dx < 00, and g(x) = 0 satisfying
0< /7% yz(l_a)_lgq()’) dy < 00, we have:

[ enn g anas
. M[/wxg(l_sﬁ)_lfp(x) dx]ﬁ [/wyg(l—a)—lgq(y) dy] ‘_I' (26)

(iii) K)(0) <M.

Moreover, if statement (iii) holds, then the constant factor M = K;’,’ﬁ)(cr) in (25) and (26)
is the best possible.

In particular, (1) for § =1, M = I(g}; (0), we have the following equivalent inequalities
with nonhomogeneous kernel:

{/: a U: e ) f(x) de dy};

< ](2//3) (o) |:f°° xﬁ(l—cr)—lfp(x) dx] r , (27)

/: /: e ") f(x)g(y) dax dy

q

<K(flf’;(g)[f“xﬁu_a)ﬂfp(x)dx}p[/ooy%u_n)—lgq(y) dyi| ) (28)

where Kgﬁ)(a) is the best possible constant factor;
(2)fors6=-1, M=K l% (o), we have the following equivalent inequalities with homoge-
neous kernel of degree 0:

{/_: ,3”’1 [/_: e P01 f(x) dx]p dy}};’

1

<K <o>[ / T dx}”, (29)

f: /,: e POrR) f(x)g(y) dxdy

1o o 1
<Kgg (o‘)|:/ xg(lm)—lfp(x) dx:|1’ |:/ yz(l—o)flgq(y) dy} q’ (30)

where Kgfg(a) is the best possible constant factor.

Proof For o1 = o, under and the assumption of statement (i), if (24) takes the form of
equality for y € R\{0}, then there exist constants A and B such that they are not both zero
and (see [28])

y57! s0-1

— ___fP(x)=B—%— ;
Gopig) @) =B ae inR.
Ko ¢

A
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We suppose that A # 0 (otherwise, B = A = 0). Then it follows that

a.e.in R.

B
xp(l—éo‘)—l y4 _ q(o-1)
o f (x) yﬁ Ax

o

Since [ ;! dx = oo, this contradicts the fact that 0 < [ xﬁ(kaa)*lf” () dx < 0o. Hence

(24) takes the form of strict inequality, and so does (21). Hence (25) and (26) are valid.

In view of Theorem 1, we still can conclude that statements (i), (ii), and (iii) in Theorem 2
are equivalent.

When statement (iii) holds, namely, K l% (o) < M, if there exists a constant M(< K 0% (o))
such that (26) is valid, then M = Kg_’g(a), and we can conclude that the constant factor
M= I(gg (0) in (26) is the best possible.

The constant factor M = K ;yg (o) in (25) is still the best possible. Otherwise, by (23) (for
01 = 0), we would get a contradiction that the constant factor M = K;),/ﬁ)(o) in (26) is not
the best possible.

The theorem is proved. d

4 Operator expressions
We set the following functions: ¢(x) := K077 (x e R), and ¥ (y) = yz(l_a)_l, where from
Yl P(y) = ;_1 (y € R). Define the following real normed linear spaces:

Lyy(R):= {f; fllp = (/ go(x)[f(x)‘p dx)p < oo},
Lgy(R):= {g; lgllgy = (/_ I/f()/)|<gf(y)|qdy> ! < oo},

Lp,wl—p(R) = {h; ”h”p,wl-p = (/ wl_p(y)|h(3’)|p dy>p < OO}

In view of Theorem 2, for f € L, ,(R), setting

h(y) := / Ooe‘p(yf‘/"“)yf(x) dx (yeR),

by (25) we have

12l y1r = </ P o) dy)p < M|[fllpy < 00. (31)

Definition 1 Define the Hilbert-type integral operator T : L ,(R) — L, ,1-»(R) as fol-
lows: For any f € L, ,(R), there exists a unique representation Tf = h; € L, ;1-»(R), satis-
fying for any y € R, Tf (y) = 1 ().

In view of (31), it follows that | If ||, y1-» = 41, y1-» < M|f]l > and then the operator
T is bounded and satisfies

iy -
l f”p,wl P <

1T = <
Felpe®  fllpg
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If we define the formal inner product of Tf and g as

oo

1.9 [

—00

[ / e 0P f(x) dx]g(y) dy,
then we can rewrite Theorem 2 as follows.

Theorem 3 If M is a constant, then the following statements (i), (ii), and (iii) are equiva-
lent:
(i) Foranyf(x)>0,f €L,,(R), |fllpe >0, we have:

1ZF N pyrr < MIS Nl p- (32)
(i) For f(x),g0) = 0,f € Lpy(R), g € Lyy (R, [ llpg» Igllgp > 0, we have:

(Tf,0) < Mlf lipp gl g (33)
(i) K)(0) <M.

Moreover, if statement (iii) holds, then the constant factor M = Kgf;(o) in (32) and (33)

is the best possible, namely, | T = Kgg (o).

Remark1 (1) In particular, for @ = 8 = 0in (27) and (28), we have the following equivalent
inequalities:

{/OO |y[Po ! [/OO e (%) dx]pdy}i

O[] o

f: /,: e f(x)g(y) dx dy

O [Cwroripas] | [T pmorgoa ] (35)

2l (o /y)

where e is the best possible constant factor.

If f(—x) = f(x), g(—y) =g(y) (x,y € R,), then we have the following equivalent inequali-

([ (o] of

. I;/(ZU//);) [/wap(l_a)_lfp(x) dx:|1;, (36)

ties:

/ Oo f " e f()g(y) dxdy
0 0

L) [ / "t dxr [ f "ot dy] " 37)
ve?” Lo 0

Lloly)
ypolY

where is the best possible constant factor.
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(2) For @ = B = 0in (29) and (30), we have the following equivalent inequalities:

{/oo ye! [/oo e""y/xlyf(x)dx:r dy}p

2l (o /y) +o) »
< ool |:/_ |oe[PFO)=L P () dxi| , (38)
/ . / e f(x)gly) ey
ZF(G/]/) = +0)— I% OO _o)— %
T sl [ o],
2o /y)

where

Jory s the best possible constant factor.

If f(—x) = f(x), g(-y) = g(¥) (x,y € R,), then we have the following equivalent inequali-
ties:

([ ([ o] of

y;f/’;) [ / - fp(x)dx] : (40)

/ . / T e flagly) dxdy
0 0

< I'(o/y) |:/ooxp(l+a)—1fp(x) dx] g [fqu(l‘a)‘lgq(y) dy:| é’ (41)
o 0

yp°lr

Lo/

where o7 ) is the best possible constant factor.

5 Conclusions

In this paper, by using real analysis and weight functions we obtain a few equivalent state-
ments of a Hilbert-type integral inequality in the whole plane related to the kernel of expo-
nent function with the intermediate variables (Theorem 1). The constant factor related to
the gamma function is proved to be the best possible in Theorem 2. We also consider some
particular cases and the operator expressions in Remark 1 and Theorem 3. The lemmas
and theorems provide an extensive account of this type of inequalities.
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