
Xie Journal of Inequalities and Applications  (2018) 2018:255 
https://doi.org/10.1186/s13660-018-1833-5

R E S E A R C H Open Access

Monotonicity of the number of positive
entries in nonnegative matrix powers
Qimiao Xie1*

*Correspondence:
qmxie@shmtu.edu.cn
1College of Ocean Science and
Engineering, Shanghai Maritime
University, Shanghai, China

Abstract
Let A be a nonnegative matrix of order n and f (A) denote the number of positive
entries in A. We prove that if f (A) ≤ 3 or f (A) ≥ n2 – 2n + 2, then the sequence
{f (Ak)}∞k=1 is monotonic for positive integers k.
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1 Introduction
A matrix is nonnegative (positive) if all of its entries are nonnegative (positive) real num-
bers. Nonnegative matrices have many attractive properties and are important in a variety
of applications [1, 2]. For two nonnegative matrices A and B of the same size, the notation
A ≥ B or B ≤ A means that A – B is nonnegative.

A sign pattern is a matrix whose entries are from the set {+, –, 0}. In a talk at the 12th
ILAS conference (Regina, Canada, June 26–29, 2005), Professor Xingzhi Zhan posed the
following problem.

Problem ([4], p. 233) Characterize those sign patterns of square nonnegative matrices A
such that the sequence {f (Ak)}∞k=1 is nondecreasing.

A nonnegative square matrix A is said to be primitive if there exists a positive integer k
such that Ak is positive. If we denote by f (A) the number of positive entries in A, it seems
that the sequence {f (Ak)}∞k=1 is increasing for any primitive matrix A. However, Šidák [3]
observed that there is a primitive matrix A of order 9 satisfying f (A) = 18 > f (A2) = 16.
This is the motivation for us to investigate the nonnegative matrix A such that {f (Ak)}∞k=1

is monotonic. It is reasonable to expect that the sequence will be monotonic when f (A) is
too small or too large.

Since the value of each positive entry in A does not affect f (Ak) for all positive integers k,
it suffices to consider the 0–1 matrix, i.e., the matrix whose entries are either 0 or 1. Denote
by Eij the matrix with its entry in the ith row and jth column being 1 and with all other
entries being 0. For simplicity we use 0 to denote the zero matrix whose size will be clear
from the context.
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2 Main results
Let A be a nonnegative square matrix. We will use the fact that if A2 ≥ A (A2 ≤ A), then
Ak+1 ≥ Ak (Ak+1 ≤ Ak) for all positive integers k and thus {f (Ak)}∞k=1 is increasing (decreas-
ing).

Theorem 1 Let A be a 0–1 matrix of order n. If f (A) ≤ 2, then the sequence {f (Ak)}∞k=1 is
decreasing.

Proof The case f (A) = 0 is trivial.
If f (A) = 1, then A = Eij, 1 ≤ i, j ≤ n. Thus, for k = 2, 3, . . . ,

Ak = Ek
ij =

⎧
⎨

⎩

Eii, i = j;

0, i �= j,

which implies that {f (Ak)}∞k=1 is decreasing. Next suppose f (A) = 2.
Since {f (Ak)}∞k=1 is invariant under permutation similarity or transpose of A, it suffices

to consider the following cases.
(1) A = E11 + E22. Then A2 = A.
(2) A = E11 + E12. Then A2 = A.
(3) A = E11 + E23. Then A2 = E11 ≤ A.
(4) A = E12 + E13. Then A2 = 0.
(5) A = E12 + E21. Then Ak = E11 + E22 for all even k, Ak = A for all odd k.
(6) A = E12 + E23. Then A2 = E13, A3 = 0.
(7) A = E12 + E34. Then A2 = 0.
It can be seen that in each case {f (Ak)}∞k=1 is decreasing. This completes the proof. �

Theorem 2 Let A be a 0–1 matrix of order n. If f (A) = 3, then the sequence {f (Ak)}∞k=1 is
monotonic.

Proof Under permutation similarity and transpose, it suffices to consider the following
cases.

(1) A = E11 + E22 + E33. Then A2 = A.
(2) A = E11 + E22 + E12. Then A2 = A + E12 ≥ A.
(3) A = E11 + E22 + E13. Then A2 = A.
(4) A = E11 + E22 + E34. Then A2 = E11 + E22 ≤ A.
(5) A = E11 + E12 + E13. Then A2 = A.
(6) A = E11 + E12 + E21. Then A2 = A + E11 + E22 ≥ A.
(7) A = E11 + E12 + E31. Then A2 = A + E32 ≥ A.
(8) A = E11 + E12 + E23. Then Ak = E11 + E12 + E13 for all k ≥ 2.
(9) A = E11 + E12 + E32. Then A2 = E11 + E12 ≤ A.
(10) A = E11 + E12 + E34. Then A2 = E11 + E12 ≤ A.
(11) A = E11 + E23 + E24. Then A2 = E11 ≤ A.
(12) A = E11 + E23 + E32. Then Ak = E11 + E22 + E33 for all even k, Ak = A for all odd k.
(13) A = E11 + E23 + E34. Then A2 = E11 + E24, Ak = E11 for all k ≥ 3.
(14) A = E11 + E23 + E45. Then A2 = E11 ≤ A.
(15) A = E12 + E13 + E14. Then A2 = 0.
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(16) A = E12 + E13 + E21. Then Ak = E11 + E22 + E23 for all even k, Ak = A for all odd k.
(17) A = E12 + E13 + E41. Then A2 = E42 + E43, A3 = 0.
(18) A = E12 + E13 + E23. Then A2 = E13 ≤ A.
(19) A = E12 + E13 + E24. Then A2 = E14, A3 = 0.
(20) A = E12 + E13 + E42. Then A2 = 0.
(21) A = E12 + E13 + E45. Then A2 = 0.
(22) A = E12 + E21 + E34. Then Ak = E11 + E22 for all even k, Ak = E12 + E21 for all odd k ≥ 3.
(23) A = E12 + E23 + E31. Then

Ak =

⎧
⎪⎪⎨

⎪⎪⎩

E11 + E22 + E33, k ≡ 0 (mod3);

A, k ≡ 1 (mod3);

E13 + E21 + E32, k ≡ 2 (mod3).

(24) A = E12 + E23 + E34. Then A2 = E13 + E24, A3 = E14, A4 = 0.
(25) A = E12 + E23 + E45. Then A2 = E13, A3 = 0.
(26) A = E12 + E34 + E56. Then A2 = 0.
Since in each case {f (Ak)}∞k=1 is either increasing or decreasing, this completes the

proof. �

Corollary 3 Let A be a 0–1 matrix of order 2. Then the sequence {f (Ak)}∞k=1 is monotonic.

Remark When A is of order n ≥ 3 with f (A) = 4, the following example shows that
{f (Ak)}∞k=1 may not be monotonic. Consider

A = E12 + E13 + E21 + E31.

Direct computation shows that

A2 = 2E11 + E22 + E23 + E32 + E33, A3 = 2A.

Thus f (A) = 4 < f (A2) = 5 > f (A3) = 4.
On the one hand, Theorems 1 and 2 show that {f (Ak)}∞k=1 is monotonic when f (A) ≤ 3.

On the other hand, {f (Ak)}∞k=1 is expected to be also monotonic when f (A) is large enough.
Next we discuss the number of positive entries that A has to guarantee the sequence in-
creasing.

The permanent of a matrix A = (aij)n×n is defined as

per A =
∑

σ∈Sn

n∏

i=1

ai,σ (i),

where Sn is the set of permutations of the integers 1, 2, . . . , n. First we have the following
important fact.

Lemma 4 Let A be a 0–1 matrix of order n. If per A > 0, then the sequence {f (Ak)}∞k=1 is
increasing.
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Proof Since A is a 0–1 matrix with per A > 0, there exists a permutation matrix P such that
A ≥ P. Now let A = P + B, where B is also a 0–1 matrix. Then Ak+1 = A · Ak = (P + B)Ak =
P · Ak + B · Ak ≥ P · Ak for all positive integers k. Thus f (Ak+1) ≥ f (P · Ak) = f (Ak), which
implies that {f (Ak)}∞k=1 is increasing. �

Theorem 5 Let A be a 0–1 matrix of order n. If f (A) ≥ n2 – 2n + 2, then the sequence
{f (Ak)}∞k=1 is increasing.

Proof First if per A > 0, by Lemma 4, {f (Ak)}∞k=1 is increasing.
Next suppose per A = 0. Then by the Frobenius–König theorem [4, p. 46], A has an r × s

zero submatrix with r + s = n + 1. Since f (A) ≥ n2 – 2n + 2, A has at most 2n – 2 zero entries.
Thus rs ≤ 2n – 2. It can be seen that r and s must be one of the following solutions.

(1) r = 1, s = n;
(2) r = n, s = 1;
(3) r = 2, s = n – 1;
(4) r = n – 1, s = 2.
If r = 1, s = n or r = n, s = 1, i.e., A has a zero row or a zero column, then A is permutation

similar to a matrix of the form

[
B C
0 0

]

or its transpose, where B is of order n – 1 and C is a column vector. Since A has at most
2n–2 zero entries, B has at most n–2 zero entries. Then there exists a permutation matrix
Q of order n – 1 such that B ≥ Q. Note that

[
B C
0 0

]k+1

=

[
B C
0 0

][
B C
0 0

]k

=

[
B C
0 0

][
Bk Bk–1C
0 0

]

≥
[

Q C
0 0

][
Bk Bk–1C
0 0

]

=

[
QBk QBk–1C

0 0

]

.

Thus

f
(
Ak+1) = f

⎛

⎝

[
B C
0 0

]k+1
⎞

⎠ ≥ f

([
QBk QBk–1C

0 0

])

= f
(
QBk) + f

(
QBk–1C

)
= f

(
Bk) + f

(
Bk–1C

)

= f

([
Bk Bk–1C
0 0

])

= f

⎛

⎝

[
B C
0 0

]k
⎞

⎠ = f
(
Ak)

for all positive integers k, which implies that {f (Ak)}∞k=1 is increasing.
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If r = 2, s = n – 1 or r = n – 1, s = 2, then A is permutation similar to one of the matrices
A1, A2, AT

1 , AT
2 , where

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0 1
0 · · · 0 1
1 · · · 1 1
...

. . .
...

...
1 · · · 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0
1 0 · · · 0
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Direct computation shows that A2
1 ≥ A1, A2

2 ≥ A2. Thus {f (Ak)}∞k=1 is increasing. This com-
pletes the proof. �

Remark When f (A) = n2 – 2n + 1, the following example shows that {f (Ak)}∞k=1 may not be
increasing. Consider

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
1 0 · · · 0
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Direct computation shows that f (A) = n2 – 2n + 1 > f (A2) = n2 – 2n.

3 Conclusion
This paper considers the number of positive entries f (A) in a nonnegative matrix A and
deals with the question of whether the sequence {f (Ak)}∞k=1 is monotonic. We prove that
if f (A) ≤ 3 or f (A) ≥ n2 – 2n + 2, then the sequence must be monotonic. Some examples
show that if 4 ≤ f (A) ≤ n2 – 2n + 1 when n ≥ 3, then the sequence may not be monotonic.

Acknowledgements
The author would like to express her sincere thanks to referees and the editor for their enthusiastic guidance and help.

Funding
This research was supported by the National Natural Science Foundation of China (Grant No. 71503166).

Availability of data and materials
Not applicable.

Competing interests
The author declares that she has no competing interests.

Authors’ contributions
The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 July 2018 Accepted: 1 September 2018

References
1. Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, Cambridge (1997)
2. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)
3. Šidák, Z.: On the number of positive elements in powers of a non-negative matrix. Čas. Pěst. Mat. 89, 28–30 (1964)
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