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Abstract
In this paper, we introduce and study the notion of rough I2-lacunary statistical
convergence of double sequences in normed linear spaces. We also introduce the
notion of rough I2-lacunary statistical limit set of a double sequence and discuss
some properties of this set.
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1 Introduction
Throughout the paper, N and R denote the set of all positive integers and the set of all
real numbers, respectively. The concept of convergence of a sequence of real numbers has
been extended to statistical convergence independently by Fast [1] and Schoenberg [2].
This concept was extended to the double sequences by Mursaleen and Edely [3]. Lacunary
statistical convergence was defined by Fridy and Orhan [4]. Çakan and Altay [5] presented
multidimensional analogues of the results presented by Fridy and Orhan [4].

The idea of I-convergence was introduced by Kostyrko et al. [6] as a generalization of
statistical convergence which is based on the structure of the ideal I of subset of the set
of natural numbers. Kostyrko et al. [7] studied the idea of I-convergence and extremal
I-limit points. Das et al. [8, 9] introduced the concept of I-convergence of double se-
quences in a metric space and studied some properties of this convergence. A lot of devel-
opment have been made in area about statistical convergence, I-convergence and double
sequences after the work of [1, 2, 10–28].

The notion of lacunary ideal convergence of real sequences was introduced in [29]. Das
et al. [30, 31] introduced new notions, namely I-statistical convergence and I-lacunary
statistical convergence by using ideal. Belen et al. [32] introduced the notion of ideal sta-
tistical convergence of double sequences, which is a new generalization of the notions
of statistical convergence and usual convergence. Kumar et al. [33] introduced I-lacunary
statistical convergence of double sequences. Further investigation and applications on this
notion can be found in [34].

The idea of rough convergence was first introduced by Phu [35] in finite-dimensional
normed spaces. In another paper [36] related to this subject, Phu defined the rough conti-
nuity of linear operators and showed that every linear operator f : X → Y is r -continuous
at every point x ∈ X under the assumption dim Y < ∞ and r > 0, where X and Y are normed
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spaces. In [37], Phu extended the results given in [35] to infinite-dimensional normed
spaces. Aytar [38] studied the rough statistical convergence. Also, Aytar [39] studied that
the rough limit set and the core of a real sequence. Recently, Dündar and Çakan [11, 40],
Pal et al. [41] introduced the notion of rough I-convergence and the set of rough I-limit
points of a sequence and studied the notion of rough convergence and the set of rough
limit points of a double sequence. Further this notion of rough convergence of double se-
quence has been extended to rough statistical convergence of double sequence by Malik
et al. [42] using double natural density of N×N in the similar way as the notion of conver-
gence of double sequence in Pringsheim sense was generalized to statistical convergence
of double sequence. Also, Dündar [43] investigated rough I2-convergence of double se-
quences. The notion of I-statistical convergence of double sequences was introduced by
Malik and Ghosh [44] in the theory of rough convergence.

In view of the recent applications of ideals in the theory of convergence of sequences, it
seems very natural to extend the interesting concept of rough lacunary statistical conver-
gence further by using ideals which we mainly do here.

So it is quite natural to think, if the new notion of I-lacunary statistical convergence of
double sequences can be introduced in the theory of rough convergence.

2 Definitions and notations
In this section, we recall some definitions and notations, which form the base for the
present study [6, 10, 11, 23, 32, 33, 35, 38, 40, 42–46].

Throughout the paper, let r be a nonnegative real number and R
n denotes the real n-

dimensional space with the norm ‖ · ‖. Consider a sequence x = (xi) ⊂R
n.

The sequence x = (xi) is said to be r-convergent to x∗, denoted by xi
r−→ x∗, provided

that

∀ε > 0 ∃iε ∈N : i ≥ iε ⇒ ‖xi – x∗‖ < r + ε.

The set

LIMrx :=
{

x∗ ∈R
n : xi

r−→ x∗
}

is called the r-limit set of the sequence x = (xi). A sequence x = (xi) is said to be r-
convergent if LIMrx �= ∅. In this case, r is called the convergence degree of the sequence
x = (xi). For r = 0, we get the ordinary convergence. There are several reasons for this in-
terest (see [35]).

A family of sets I ⊆ 2N is called an ideal if and only if
(i) ∅ ∈ I ,

(ii) for each A, B ∈ I we have A ∪ B ∈ I ,
(iii) for each A ∈ I and each B ⊆ A we have B ∈ I .
An ideal is called non-trivial if N /∈ I and a non-trivial ideal is called admissible if {n} ∈ I

for each n ∈ N.
A family of sets F ⊆ 2N is a filter in N if and only if

(i) ∅ /∈F ,
(ii) for each A, B ∈F we have A ∩ B ∈F ,

(iii) for each A ∈F and each B ⊇ A we have B ∈F .
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If I is a non-trivial ideal in N ( i.e., N /∈ I), then the family of sets

F (I) = {M ⊂N : ∃A ∈ I : M = N \ A}

is a filter of N and it is called the filter associated with the ideal I .
A sequence x = (xi) is said to be rough I-convergent (r-I-convergent) to x∗ with the

roughness degree r, denoted by xi
r-I−→ x∗ provided that {i ∈ N : ‖xi – x∗‖ ≥ r + ε} ∈ I for

every ε > 0; or equivalently, if the condition

I- lim sup‖xi – x∗‖ ≤ r (1)

is satisfied. In addition, we can write xi
r-I−→ x∗ iff the inequality ‖xi – x∗‖ < r + ε holds for

every ε > 0 and almost all i.
A double sequence x = (xmn)(m,n)∈N×N of real numbers is said to be bounded if there exists

a positive real number M such that |xmn| < M, for all m, n ∈N. That is

‖x‖∞ = sup
m,n

|xmn| < ∞.

A double sequence x = (xmn) of real numbers is said to be convergent to L ∈ R in Pring-
sheim’s sense (shortly, p-convergent to L ∈ R), if for any ε > 0, there exists Nε ∈ N such
that |xmn – L| < ε, whenever m, n > Nε . In this case, we write

lim
m,n→∞ xmn = L.

We recall that a subset K of N×N is said to have natural density d(K) if

d(K) = lim
m,n→∞

K(m, n)
m.n

,

where K(m, n) = |{(j, k) ∈ N×N : j ≤ m, k ≤ n}|.
Throughout the paper we consider a sequence x = (xmn) such that (xmn) ∈ R

n.
Let x = (xmn) be a double sequence in a normed space (X,‖ · ‖) and r be a non-negative

real number. x is said to be r-statistically convergent to ξ , denoted by x
r-st2−→ ξ , if for ε > 0

we have d(A(ε)) = 0, where A(ε) = {(m, n) ∈ N × N : ‖xmn – ξ‖ ≥ r + ε}. In this case, ξ is
called the r-statistical limit of x.

A non-trivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i} belong
to I2 for each i ∈N.

It is evident that a strongly admissible ideal is admissible also.
Throughout the paper we take I2 as a strongly admissible ideal in N×N.
Let (X,ρ) be a metric space A double sequence x = (xmn) in X is said to be I2-convergent

to L ∈ X, if for any ε > 0 we have A(ε) = {(m, n) ∈ N×N : ρ(xmn, L) ≥ ε} ∈ I2. In this case,
we say that x is I2-convergent and we write

I2- lim
m,n→∞ xmn = L.
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A double sequence x = (xmn) is said to be rough convergent (r-convergent) to x∗ with
the roughness degree r, denoted by xmn

r−→ x∗ provided that

∀ε > 0 ∃kε ∈N : m, n ≥ kε ⇒ ‖xmn – x∗‖ < r + ε, (2)

or equivalently, if

lim sup‖xmn – x∗‖ ≤ r. (3)

A double sequence x = (xmn) is said to be r-I2-convergent to x∗ with the roughness de-

gree r, denoted by xmn
r-I2−→ x∗ provided that

{
(m, n) ∈N×N : ‖xmn – x∗‖ ≥ r + ε

} ∈ I2, (4)

for every ε > 0; or equivalently, if the condition

I2- lim sup‖xmn – x∗‖ ≤ r (5)

is satisfied. In addition, we can write xmn
r-I2−→ x∗ iff the inequality ‖xmn – x∗‖ < r + ε holds

for every ε > 0 and almost all (m, n).
Now, we give the definition of I2-asymptotic density of N×N.
A subset K ⊂N×N is said to be have I2-asymptotic density dI2 (K) if

dI2 (K) = I2- lim
m,n→∞

|K(m, n)|
m.n

,

where K(m, n) = {(j, k) ∈ N × N : j ≤ m, k ≤ n; (j, k) ∈ K} and |K(m, n)| denotes number of
elements of the set K(m, n).

A double sequence x = {xjk} of real numbers is I2-statistically convergent to ε, and we

write x I2-st→ ξ , provided that for any ε > 0 and δ > 0

{
(m, n) ∈N×N:

1
mn

∣∣{(j, k) : ‖xjk – ξ‖ ≥ ε, j ≤ m, k ≤ n
}∣∣ ≥ δ

}
∈ I2.

Let x = {xjk} be a double sequence in a normed linear space (X,‖·‖) and r be a non-negative
real number. Then x is said to be rough I2-statistical convergent to ξ or r-I2-statistical
convergent to ξ if for any ε > 0 and δ > 0

{
(m, n) ∈N×N:

1
mn

∣∣{(j, k), j ≤ m, k ≤ n : ‖xjk – ξ‖ ≥ r + ε
}∣∣ ≥ δ

}
∈ I2.

In this case, ξ is called the rough I2-statistical limit of x = {xjk} and we denote it by

x
r-I2-st−→ ξ .
A double sequence θ = θus = {(ku, ls)} is called a double lacunary sequence if there exist

two increasing sequences of integers (ku) and (ls) such that

k0 = 0, hu = ku – ku–1 → ∞ and l0 = 0, hs = ls – ls–1 → ∞, u, s → ∞.
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We will use the notation kus := kuls, hus := huhs and θus is determined by

Jus :=
{

(k, l) : ku–1 < k ≤ ku and ls–1 < l ≤ ls
}

,

qu :=
ku

ku–1
, qs :=

ls

ls–1
and qus := quqs.

Throughout the paper, by θ2 = θus = {(ku, ls)} we will denote a double lacunary sequence of
positive real numbers, respectively, unless otherwise stated.

A double sequence x = {xmn} of numbers is said to be I2-lacunary statistical convergent
or Sθ2 (I2)-convergent to L, if for each ε > 0 and δ > 0,

{
(u, s) ∈N×N :

1
hus

∣∣{(m, n) ∈ Jus : |xmn – L| ≥ ε
}∣∣ ≥ δ

}
∈ I2.

In this case, we write xmn → L(Sθ2 (I2)) or Sθ2 (I2)-limm,n→∞ xmn = L.

3 Main results
Definition 3.1 Let x = {xjk} be a double sequence in a normed linear space (X,‖ · ‖) and r
be a non-negative real number. Then x is said to be rough lacunary statistical convergent
to ξ or r-lacunary statistical convergent to ξ if for any ε > 0

lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ = 0.

In this case ξ is called the rough lacunary statistical limit of x = {xjk} and we denote it by

x
r-Sθ2−→ ξ .

Definition 3.2 Let x = {xjk} be a double sequence in a normed linear space (X,‖ · ‖) and r
be a non-negative real number. Then x is said to be rough I2-lacunary statistical conver-
gent to ξ or r-I2-lacunary statistical convergent to ξ if for any ε > 0 and δ > 0

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ ≥ δ

}
∈ I2.

In this case, ξ is called the rough I2-lacunary statistical limit of x = {xjk} and we denote it

by x
r-Iθ2 -st
−→ ξ .

Remark 3.3 Note that if I2 is the ideal

I0
2 =

{
A ⊂N×N : ∃m(A) ∈N such that i, j ≥ m(A) ⇒ (i, j) /∈ A

}
,

then rough I2-lacunary statistical convergence coincides with rough lacunary statistical
convergence.

Here r in the above definition is called the roughness degree of the rough I2-lacunary
statistical convergence. If r = 0, we obtain the notion of I2-lacunary convergence. But our
main interest is when r > 0. It may happen that a double sequence x = {xjk} is not I2-
lacunary statistical convergent in the usual sense, but there exists a double sequence y =
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{yjk}, which is I2-lacunary statistically convergent and satisfying the condition ‖xjk –yjk‖ ≤
r for all (j, k). Then x is rough I2-lacunary statistically convergent to the same limit.

From the above definition it is clear that the rough I2-lacunary statistical limit of a dou-
ble sequence is not unique. So we consider the set of rough I2-lacunary statistical limits
of a double sequence x and we use the notation Iθ2 -st- LIMr

x to denote the set of all rough
I2-lacunary statistical limits of a double sequence x. We say that a double sequence x is
rough I2-lacunary statistically convergent if Iθ2 -st- LIMr

x �= ∅.
Throughout the paper X denotes a normed linear space (X,‖ · ‖) and x denotes the

double sequence {xjk} in X.
Now, we discuss some basic properties of rough I2-lacunary statistically convergence of

double sequences.

Theorem 3.4 Let x = {xjk} be a double sequence and r ≥ 0. Then Iθ2 -st- LIMr
x ≤ 2r. In

particular if x is rough I2-lacunary statistically convergent to ξ , then

Iθ2 -st- LIMr
x = Br(ξ ),

where Br(ξ ) = {y ∈ X : ‖y – ξ‖ ≤ r} and so

diam
(
Iθ2 -st- LIMr

x
)

= 2r.

Proof Let diam(Iθ2 -st- LIMr
x) > 2r. Then there exist y, z ∈ Iθ2 -st- LIMr

x such that ‖y – z‖ >
2r. Now, we select ε > 0 so that ε < ‖y–z‖

2 – r. Let

A =
{

(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}

and

B =
{

(j, k) ∈ Jus : ‖xjk – z‖ ≥ r + ε
}

.

Then

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A ∪ B
}∣∣

≤ 1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A
}∣∣ +

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ B
}∣∣,

and so by the property of I2-convergence

I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A ∪ B
}∣∣

≤ I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A
}∣∣

+ I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ B
}∣∣

= 0.
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Thus,
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A ∪ B
}∣∣ ≥ δ

}
∈ I2

for all δ > 0. Let

H =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A ∪ B
}∣∣ ≥ 1

2

}
.

Clearly H ∈ I2, so choose (u0, s0) ∈N×N \ H . Then

1
hu0s0

∣∣{(j, k) ∈ Jus : (j, k) ∈ A ∪ B
}∣∣ <

1
2

.

So, we have

1
hu0s0

∣∣{(j, k) ∈ Jus : (j, k) /∈ A ∪ B
}∣∣ ≥ 1 –

1
2

=
1
2

,

i.e., {(j, k) ∈ Jus : (j, k) /∈ A ∪ B} is a nonempty set.
Take (j0, k0) ∈ Jus such that (j0, k0) /∈ A∪B. Then (j0, k0) ∈ Ac ∩Bc and so ‖xj0k0 – y‖ < r + ε

and ‖xj0k0 – z‖ < r + ε. Hence, we have

‖y – z‖ ≤ ‖xj0k0 – y‖ + ‖xj0k0 – z‖
≤ 2(r + ε)

≤ ‖y – z‖,

which is absurd. Therefore, Iθ2 -st- LIMr
x ≤ 2r.

If Iθ2 -st- LIMr
x = ξ , then we proceed as follows. Let ε > 0 and δ > 0 be given. Then

A =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ ε
}∣∣ ≥ δ

}
∈ I2.

Then for (u, s) /∈ A we have

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ ε
}∣∣ < δ,

i.e.,

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ < ε
}∣∣ ≥ 1 – δ. (6)

Now, for each y ∈ Br(ξ ) we have

‖xjk – y‖ ≤ ‖xjk – ξ‖ + ‖ξ – y‖ ≤ ‖xjk – ξ‖ + r. (7)

Let

Bus =
{

(j, k) ∈ Jus : ‖xjk – ξ‖ < ε
}

.
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Then for (j, k) ∈ Bus we have ‖xjk – y‖ < r + ε. Hence, we have

Bus =
{

(j, k) ∈ Jus : ‖xjk – y‖ < r + ε
}

.

This implies

|Bus|
hus

≤ 1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ < r + ε
}∣∣,

i.e.,

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ < r + ε
}∣∣ ≥ 1 – δ.

Thus, for all (j, k) /∈ A,

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}∣∣ < 1 – (1 – δ)

and so we have
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus;‖xjk – y‖ ≥ r + ε
}∣∣ ≥ δ

}
⊂ A.

Since A ∈ I2

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}∣∣ ≥ δ

}
∈ I2.

This shows that y ∈ Iθ2 -st- LIMr
x. Therefore, Iθ2 -st- LIMr

x ⊃ Br(ξ ).
Conversely, let y ∈ Iθ2 -st- LIMr

x, ‖y – ξ‖ > r and ε = ‖y–ξ‖–r
2 . Now, we take

M1 =
{

(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}

and

M2 =
{

(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ ε
}

.

Then

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M1 ∪ M2
}∣∣

≤ 1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M1
}∣∣ +

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M2
}∣∣,

and by the property of I2-convergence

I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M1 ∪ M2
}∣∣

= I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M1
}∣∣
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+ I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M2
}∣∣

= 0.

Now, we let

M =
{

(u, s) ∈ N×N :
1

hus

∣∣{(j, k) : (j, k) ∈ M1 ∪ M2
}∣∣ ≥ 1

2

}
.

Clearly M ∈ I2 and we choose (u0, s0) ∈N×N \ M. Then we have

1
hu0s0

∣∣{(j, k) : (j, k) ∈ M1 ∪ M2
}∣∣ <

1
2

,

and so

1
hu0s0

∣∣{(j, k) : (j, k) /∈ M1 ∪ M2
}∣∣ ≥ 1 –

1
2

=
1
2

,

i.e., {(j, k) : (j, k) /∈ M1 ∪M2} is a nonempty set. Let (j0, k0) ∈ Jus such that (j0, k0) /∈ M1 ∪M2.
Then (j0, k0) ∈ Mc

1 ∩ Mc
2 and hence ‖xj0k0 – y‖ < r + ε and ‖xj0k0 – ξ‖ < ε. So

‖y – ξ‖ ≤ ‖xj0k0 – y‖ + ‖xj0k0 – ξ‖ ≤ r + 2ε ≤ ‖y – ξ‖,

which is absurd. Therefore, ‖y – ξ‖ ≤ r and so y ∈ Br(ξ ). Consequently, we have

Iθ2 -st- LIMr
x = Br(ξ ). �

Theorem 3.5 Let x = {xjk} be a double sequence and r ≥ 0 be a real number. Then the
rough I2-lacunary statistical limit set of the double sequence x, i.e., the set Iθ2 -st- LIMr

x is
closed.

Proof If Iθ2 -st- LIMr
x = ∅, then there is nothing to prove.

Let us assume that Iθ2 -st- LIMr
x �= ∅. Now, consider a double sequence {yjk} in

Iθ2 -st- LIMr
x with limj,k→∞ yjk = y. Choose ε > 0 and δ > 0. Then there exists i ε

2
∈ N such

that for all j, k ≥ i ε
2

‖yjk – y‖ <
ε

2
.

Let j0, k0 > i ε
2

. Then yj0k0 ∈ Iθ2 -st- LIMr
x. Consequently, we have

A =
{

(u, s) ∈N×N :
1

hus

∣∣∣∣

{
(j, k) ∈ Jus;‖xjk – yj0k0‖ ≥ r +

ε

2

}∣∣∣∣ ≥ δ

}
∈ I2.

Clearly M = N×N \ A is nonempty, choose (u, s) ∈ M. We have

1
hus

∣∣∣∣

{
(j, k) ∈ Jus : ‖xjk – yj0k0‖ ≥ r +

ε

2

}∣∣∣∣ < δ
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and so

1
hus

∣∣∣∣

{
(j, k) ∈ Jus : ‖xjk – yj0k0‖ < r +

ε

2

}∣∣∣∣ ≥ 1 – δ.

Put

Bus =
{

(j, k) ∈ Jus : ‖xjk – yj0k0‖ < r +
ε

2

}

and select (j, k) ∈ Bus. Then we have

‖xjk – y‖ ≤ ‖xjk – yj0k0‖ + ‖yj0k0 – y‖
< r +

ε

2
+

ε

2

= r + ε,

and so

Bus ⊂ {
(j, k) ∈ Jus : ‖xjk – y‖ < r + ε

}
,

which implies

1 – δ ≤ |Bus|
hus

≤ 1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ < r + ε
}∣∣.

Therefore,

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}∣∣ < 1 – (1 – δ) = δ

and so we have

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – y‖ ≥ r + ε
}∣∣ ≥ δ

}
⊂ A ∈ I2.

This shows that y ∈ Iθ2 -st- LIMr
x. Hence, Iθ2 -st- LIMr

x is a closed set. �

Theorem 3.6 Let x = {xjk} be a double sequence and r ≥ 0 be a real number. Then the
rough I2-lacunary statistical limit set Iθ2 -st-LIMr

x of the double sequence x is a convex set.

Proof Let y0, y1 ∈ Iθ2 -st- LIMr
x and ε > 0 be given. Let

A0 =
{

(j, k) ∈ Jus : ‖xjk – y0‖ ≥ r + ε
}

and

A1 =
{

(j, k) ∈ Jus : ‖xjk – y1‖ ≥ r + ε
}

.
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Then by Theorem 3.4, for δ > 0 we have

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A0 ∪ A1
}∣∣ ≥ δ

}
∈ I2.

Now, we choose 0 < δ1 < 1 such that 0 < 1 – δ1 < δ and let

A =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A0 ∪ A1
}∣∣ ≥ 1 – δ1

}
.

Then A ∈ I2. For all (u, s) /∈ A, we have

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A0 ∪ A1
}∣∣ < 1 – δ1

and so

1
hus

∣∣{(j, k) ∈ Jus : (j, k) /∈ A0 ∪ A1
}∣∣ ≥ {

1 – (1 – δ1)
}

= δ1.

Therefore, {(j, k) : (j, k) /∈ A0 ∪ A1} is a nonempty set. Let us take (j0, k0) ∈ Ac
0 ∩ Ac

1 and
0 ≤ μ ≤ 1. Then

∥∥xj0k0 –
[
(1 – μ)y0 + μy1

]∥∥ =
∥∥(1 – μ)xj0k0 + μxj0k0 –

[
(1 – μ)y0 + μy1

]∥∥

≤ (1 – μ)‖xj0k0 – y0‖ + μ‖xj0k0 – y1‖
< (1 – μ)(r + ε) + μ(r + ε) = r + ε.

Let

M =
{

(j, k) ∈ Jus :
∥∥xjk –

[
(1 – μ)y0 + μy1

]∥∥ ≥ r + ε
}

.

Then clearly, Ac
0 ∩ Ac

1 ⊂ Mc. So for (u, s) /∈ A, we have

δ1 ≤ 1
hus

∣∣{(j, k) ∈ Jus : (j, k) /∈ A0 ∪ A1
}∣∣ ≤ 1

hus

∣∣{(j, k) ∈ Jus : (j, k) /∈ M
}∣∣

and so

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M
}∣∣ < 1 – δ1 < δ.

Therefore,

Ac ⊂
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M
}∣∣ < δ

}
.

Since Ac ∈F (I2), we have

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ M
}∣∣ < δ

}
∈F (I2)
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and so
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) : (j, k) ∈ M
}∣∣ ≥ δ

}
∈ I2.

This completes the proof. �

Theorem 3.7 A double sequence x = {xjk} is rough I2-lacunary statistical convergent to ξ if
and only if there exists a double sequence y = {yjk} such that Iθ2 -st-y = ξ and ‖xjk – yjk‖ ≤ r,
for all (j, k) ∈N×N.

Proof Let y = {yjk} be a double sequence in X, which is I2-lacunary statistically convergent
to ξ and ‖xjk – yjk‖ ≤ r, for all (j, k) ∈N×N. Then for any ε > 0 and δ > 0

A =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ ≥ ε
}∣∣ ≥ δ

}
∈ I2.

Let (u, s) /∈ A. Then we have

1
hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ ≥ ε
}∣∣ < δ ⇒ 1

hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ < ε
}∣∣ ≥ 1 – δ.

Now, we let

Bus =
{

(j, k) ∈ Jus : ‖yjk – ξ‖ < ε
}

.

Then, for (j, k) ∈ Bus, we have

‖xjk – ξ‖ ≤ ‖xjk – yjk‖ + ‖yjk – ξ‖ < r + ε,

and so

Bus ⊂ {
(j, k) ∈ Jus : ‖xjk – ξ‖ < r + ε

}

⇒ |Bus|
hus

≤ 1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ < r + ε
}∣∣

⇒ 1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ < r + ε
}∣∣ ≥ 1 – δ

⇒ 1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ < 1 – (1 – δ) = δ.

Thus, we have
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ ≥ δ

}
⊂ A

and, since A ∈ I2,
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ ≥ δ

}
∈ I2.

Hence, Iθ2 -st-y = ξ .
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Conversely, suppose that Iθ2 -st-y = ξ . Then, for ε > 0 and δ > 0,

A =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ ≥ δ

}
∈ I2.

Let (u, s) /∈ A. Then we have

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε
}∣∣ < δ

and so

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ < r + ε
}∣∣ ≥ 1 – δ.

Let

Bus =
{

(j, k) ∈ Jus : ‖xjk – ξ‖ < r + ε
}

.

Now, we define a double sequence y = {yjk} as follows:

yjk =

{
ξ , if ‖xjk – ξ‖ ≤ r,
xjk + r ξ–xjk

‖xjk –ξ‖ , otherwise.

Then

‖yjk – ξ‖ =

{
0, if ‖xjk – ξ‖ ≤ r,
‖xjk – ξ + r ξ–xjk

‖xjk –ξ‖‖, otherwise,

=

{
0, if ‖xjk – ξ‖ ≤ r,
‖xjk – ξ‖ – r, otherwise.

Let (j, k) ∈ Bus. Then we have

‖yjk – ξ‖ = 0, if ‖xjk – ξ‖ ≤ r and ‖yjk – ξ‖ < ε, if r < ‖xjk – ξ‖ < r + ε

and so

Bus ⊂ {
(j, k) ∈ Jus : ‖yjk – ξ‖ < ε

}
.

This implies

|Bus|
hus

≤ 1
hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ < ε
}∣∣.

Hence, we have

1
hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ < ε
}∣∣ ≥ 1 – δ

⇒ 1
hus

∣∣{(j, k) ∈ Jus : ‖yjk – ξ‖ ≥ ε
}∣∣ < 1 – (1 – δ) = δ,
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and so
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ ε
}∣∣ ≥ δ

}
⊂ A.

Since A ∈ I2 we have

{
(u, s) ∈N×N :

1
hus

∣∣{(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ ε
}∣∣ ≥ δ

}
∈ I2.

So, Iθ2 -st-y = ξ . �

Definition 3.8 A double sequence x = {xjk} is said to be Iθ2 -statistically bounded if there
exists a positive number K such that for any δ > 0 the set

A =
{

(u, s) ∈N×N :
1

hus

∣∣{(j, k) ∈ Jus : ‖xjk‖ ≥ K
}∣∣ ≥ δ

}
∈ I2.

The next result provides a relationship between boundedness and rough Iθ2 -statistical
convergence of double sequences.

Theorem 3.9 If a double sequence x = {xjk} is bounded then there exists r ≥ 0 such that
Iθ2 -st- LIMr

x �= ∅.

Proof Let x = {xjk} be bounded double sequence. There exists a positive real number K
such that ‖xjk‖ < K , for all (j, k) ∈ Jus. Let ε > 0 be given. Then

{
(j, k) ∈ Jus : ‖xjk – 0‖ ≥ K + ε

}
= ∅.

Therefore, 0 ∈ Iθ2 -st- LIMK
x and so Iθ2 -st- LIMK

x �= ∅. �

Remark 3.10 The converse of the above theorem is not true. For example, let us consider
the double sequence x = {xjk} in R defined by

xjk=

{
jk, if j and k are squares,
5, otherwise.

Then Iθ2 -st- LIM0
x = {5} �= ∅ but the double sequence x is unbounded.

Definition 3.11 A point λ ∈ X is said to be an I2-lacunary statistical cluster point of a
double sequence x = {xjk} in X if for any ε > 0

dI2

({
(j, k) ∈ Jus : ‖xjk – λ‖ < ε

}) �= 0,

where

dI2 (A) = I2- lim
u,s→∞

1
hus

∣∣{(j, k) ∈ Jus : (j, k) ∈ A
}∣∣,

if it exists. The set of I2-lacunary statistical cluster points of x is denoted by �
Sθ2
x (I2).
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Theorem 3.12 For any arbitrary α ∈ �
Sθ2
x (I2) of a double sequence x = {xjk} we have

‖ξ – α‖ ≤ r, for all ξ ∈ Iθ2 -st- LIMr
x.

Proof Assume that there exists a point α ∈ �
Sθ2
x (I2) and ξ ∈ Iθ2 -st- LIMr

x such that
‖ξ – α‖ > r. Let ε = ‖ξ–α‖–r

3 . Then

{
(j, k) ∈ Jus : ‖xjk – ξ‖ ≥ r + ε

} ⊃ {
(j, k) ∈ Jus : ‖xjk – α‖ < ε

}
. (8)

Since α ∈ �
Sθ2
x (I2) we have

dI2

({
(j, k) ∈ Jus : ‖xjk – α‖ < ε

}) �= 0.

Hence by (8) we have

dI2

({
(j, k) ∈ Jus : ‖xjk – α‖ ≥ r + ε

}) �= 0,

which contradicts that ξ ∈ Iθ2 -st- LIMr
x. Hence, ‖ξ – α‖ ≤ r. �

4 Conclusion
The rough convergence has recently been studied by several authors. In view of the recent
applications of ideals in the theory of convergence of sequences, it seems very natural to
extend the interesting concept of rough lacunary statistical convergence further by using
ideals, which we mainly do here; and we investigate some properties of this new type of
convergence. So, we have extended some well-known results.
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