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Abstract

In this paper some new general fractional integral inequalities for convex and
m-convex functions by involving an extended Mittag-Leffler function are presented.
These results produce inequalities for several kinds of fractional integral operators.
Some interesting special cases of our main results are also pointed out.
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1 Introduction, definitions, and preliminaries

Convex functions are very important in the field of integral inequalities. A lot of fractional
integral inequalities and novel results have been established due to convex functions (for
more details, see [1, 8, 13, 14]).

Definition 1 A function f : I — R, where I is an interval in R, is said to be a convex

function if

flex+(1-0)y) < tf (%) + 1= £)f (9) (1)
holds for t € [0,1] and x,y € I.

A convex function f : I — R is also equivalently defined by the Hadamard inequality

f(a;b)_b ﬂ/f ﬂ)+f(b)

where a,bel,a<b.

The concept of m-convexity was introduced in [17] and since then many properties,

especially inequalities, have been obtained for this class of functions (see [3, 6, 7, 18]).
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Definition 2 A function f: [0,b] — R, b > 0 is called m-convex, where m € [0, 1], if for
every x,y € [0,b] and ¢ € [0, 1], we have

f(tx+ m(1=t)y) < tf (x) + m(1 = )f ().

For m = 1, we recapture the definition of convex functions, and for m = 0, the definition
of star-shaped functions defined on [0, b]. We recall that a function f : [0,b] — R is called
star-shaped if

f(tx) <tf(x) forallte[0,1] andx € [0,b].

If we denote by K,,,(b) the set of m-convex functions defined on [0, b] for which f(0) <0,
then

Ky (b) C K, (b) C Ko(b),

whenever m € (0,1). Note that in the class Kj(b) there are only convex functions f :
[0, 5] — R for which f(0) < 0 (see [4]), while ko(b) contains star-shaped functions.

Example 1.1 ([6]) The function f : [0,00) — R, given by

1
flx) = o (x* - 54° + 92 — 5x),

isa % -convex function but it is not m-convex for any m € (%, 1].

For more results and inequalities related to m-convex functions, one can consult, for

example, [3, 6, 7] along with the references therein.

Recently in [2] Andri¢ et al. defined an extended generalized Mittag-Leffler function

EV ,8,k,c

o] (+;p) as follows.

Definition 3 ([2]) Let u,,y,c € C, R(w), R(x), R() >0, R(c) > R(y) >0withp>0,8 >
y,8,k,c

0,and 0 < k <&+ N(n). Then the extended generalized Mittag-Leftler function E (& p)
is defined by
= (J/ + nk,c - )/) (C)nk t"
Eep) =Y B , @
P = ) Mun + o) D

n=0

where B, is the generalized beta function defined by

1
Bp(x,y) =/ F1(1 - -l 1D dy
0

T (c+nk)
L) -

In [2] properties of the generalized Mittag-Leffler function are discussed, and it is given

and (¢)u« is the Pochhammer symbol defined as (¢)« =

that E;:i‘f’c(t; p) is absolutely convergent for k < § + f(u). Let S be the sum of series of
absolute terms of the Mittag-Leffler function E}:i’f’c(t; p), then we have IEI’:i’f’C(t; pIl<S.

We use this property of Mittag-Leffler function in our results where we need.
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The corresponding left and right sided extended generalized fractional integral opera-
tors are defined as follows.

Definition 4 ([2]) Let w, u,,Ly,c € C, R(u), R(a), R(]) > 0, R(c) > R(y) >0 with p > 0,
§>0and 0 <k <& +MN(u). Let f € L1[a,b] and x € [a, b]. Then the extended generalized

. . v.8.k,c y,8,k,c
fractional integral operators €, ")’ ,.f and €,/ f are defined by

(2% wp) = / (v = 0 LB R (ol — 1 p)f (0) di 3)

and

b
(e tos f)(x,p)—/ (£ = )" LEL (w(t — %) p)f (8) dt. (@)

X

From extended generalized fractional integral operators, we have
,8,k,
(€)rtmar D P)
X
= / (x—1)*" IEV 8k ok “(wix — £ p) dt
a

a-1 p(V + I’lk Cc— 7/) (C)nk Wn(x_ t)lm
/ 9 Z Borc—y) Tun+a) On

- Bp(y +nk,c— ]/) (C)nk un+a-1
= d
2 Besy) Tt B [ oot

oo

— o Bp(y + Ylk,C - V) (C)nk w” n 1
) Ty Tan @ 0 v

n=0

Hence

(€0%e 1) p) = (x—a) ELSSE (wix — a); p),

walw,at wa+1,l

and similarly

(€0 5 1)@ ) = (b = EL5 (w(b = )" p).

et bw,b wa+l,l
We use the following notations in our results:
Coar (1) = (1055 1) (@) ©)
and
Cop-(:p) = (107, 1) ;). 6)

For more information related to Mittag-Leffler functions and corresponding fractional
integral operators, the readers are referred to [9-12, 15, 16, 19].
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In this paper we give general fractional integral inequalities for convex and m-convex
functions by involving an extended Mittag-Leffler function and deduce some results al-
ready published in [1, 5, 6, 8, 13]. Also we give a Hadamard type inequality for convex and
m-convex functions by involving an extended Mittag-Leffler function.

2 Main results
Here we give some fractional integral inequalities for convex and m-convex functions via

an extended generalized Mittag-Leffler function and corresponding fractional integral op-
erators given in (3) and (4). The following lemma is useful to establish the results.

Lemma 2.1 Let f : [a,mb] — R be a differentiable function such that f' € L[a, mb] with
0 <a<mb.Alsolet g: [a,mb] — R be a continuous function on [a, mb], then the following
identity for extended generalized fractional integral operators holds:

mb o
( / g(s)EZ,’i'j’c(ws"; 2] ds) [f (@) + f(mb)]
mrt 5k ot 5k
o (/ SOE )" (05"5p) dS) gOEL (ot p)f(e)dt
mb mb sk a-1 sk
“"fa (/ ZOE i (w5"5p) dS> gOE (0" p)f (1) dt
mb t o
_ / < / ZGET 4 (wss p) ds> F(8)dt
mb mb o
- / ( / g(s)EZ:i’f’c(ws“;p) ds) f(t)dt. (7)
a t
Proof On integrating by parts one can have
mb t o
/ </ g(s)EZ:i’f’c(ws“;p) ds) f(Odt
mb o
= < / g(s)EZ}'i’j’c(ws"; 2 ds) f(mb)
"t 5k ot 5k
“"f (/ WE " (0s"5p) dS) gWE (ot p)f (1) dt ®)
and
mb mb o
/ < / EOEL (ws"; p) ds) £(t) dt
a t
b 5.k ¢
([ ert ) ) sia
e o 5k ot 5k
,0,K,C 10,K,C
+ o /; < /t g(s)EZ,a,l (ws“;p) ds) g(t)EZ,a,l (wt“;p)f(t)dt. 9)
Subtracting (9) from (8), we get (7) which is the required identity. a

If we take m = 1 in (7), then we get the following identity for a convex function.
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Corollary 2.2 Letf :[a,b] C [0,00) — R be a differentiable function such that f' € L, [a, b]
with a < b. Also let g : [a,b] — R be continuous on [a, b], then the following identity for
extended generalized fractional integral operators holds:

b o
(/ SOE ui (w5"3p) ds) [f@+f®)]
b t a-1
- / ( / 2WE) (05"5p) dS) GOE 5 (ot p)f (1) dt
b b a-1
- / ( / g(S)EZ:i’,/;'C(ws";p) ds) g(t)EZ:i’j'c(wt“; P (Dt
b t o
[ ([ womzesnas) roa
b b Ve . o )
_ SO)E,,  (ws";p)ds) f(t)dt. (10)

We use identity (7) to establish the following fractional integral inequality.

Theorem 2.3 Let f : [a,mb] — R be a differentiable function such that f' € L, [a, mb] with
0 < a <mb. Also let g : [a,mb] — R be a continuous function on [a,mb). If || is an m-

convex function on [a, mb), then the following inequality for extended generalized fractional
integral operators holds:

mb p
‘(/ g(S)EZ:i’flc (a)s/‘;p) ds) (f(a) +f(mb))
mb t " a1l .
- / ( / gOE (w85 p) dS) EOE A (it p)f (6) dt
mb mb ok a1 ,
- / ( / gOE (w5 p) d8> gOE! A (wt"; p)f (1) dt
a ¢

(mb - @) gL S | ,
<y r@ s mlr @) 1)

Jor k<8 +MN(p) and ||glloo = SUPse(gmp) 1€(E)]-

Proof From Lemma 2.1, we have
" 5.k *
‘ (/ EO)E] o (ws"3p) dS> (f(@) +f(mb))
([ 8.k ! 5k
e / ( / g(S)EZ:av,lvc (a)sﬂ; p) ds) {0 E;);,'ay,zyc (a)t“; p)f(t) dt
" ok ! 5.k
o / ( / SOE) ) (ws";p) ds) GOE M (ot p)f (1) dt
a t
mb t
<[] o as

mb
+/
a

f'(¢)] dt

o

mb
/ g(s)E;:i'f’c(a)s“;p) ds| |f'(t)|dt. (12)
t
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Using absolute convergence of the Mittag-Leffler function and [|g|lec = Sup,(, ) 1€(¢)], we
have

mb o
‘ (f SOE i (@s"p) dS) (f(@) + (mb))
" 8.k ! 5k
_a/ (/ gWE " (s"5p) ds) gOE) .y (" p)f (t) dt
mb mb sk a1 o
¢ / ( / SOE ;) (0s";p) dS) EOE (" p)f (1) dt'
a t

a a

mb mb
< Jlglle, 5 ( / (6 - a)*|f/(0)] di + / (mb - 0|/ (9) dt>. (13)

Since |f’| is an m-convex function, we have

mb —

o < 22~ )| + m% 17'®)| (14)

mb—a

for t € [a, mb].
Using (14) in (13), we have

mb o
‘(/ ZOE 1 (@s"p) ds) (f(@) + mb)) (15)
mb t a1
o (/ LOE .y (05"ip) dS) GOE (wr"ip)f (©) dt
mb mb a1
- / ( / gOELL (@s":p) dS) g(t)EZji’j’”(wt#;p)f(t)dt'

mb _ —
Sllgllgosa(/ (t—ﬂ)“<mb t[f’(a)|+mt a [f’(b)\)dt

mb—a mb—a
mb mb—t t—a
b-t)* ——I|f —1f'(b)| ) dt ).
+£ (m ) <mb—av(a)|+mmb—av()|> )
After simple calculation of the above inequality, we get (11) which is required. d

If we take m = 1 in (11), then we get the following result for a convex function.
Corollary 2.4 Letf :[a,b] C [0,00) — R be a differentiable function such that f' € L1 [a, b]

with a < b. Also let g : [a, b] — R be a continuous function on [a, b). If |f'| is a convex func-

tion on [a, b), then the following inequality for extended generalized fractional integral op-
erators holds:

b o
’( / EEEN (ws"; p) ds) [f@ +f )]

b t a-1
~o [ ([ e0Rzi @) B @0
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b b a-1
o [ ([ wrt o a) 0B o 0a
a t

(b-a)MIglS* (. ,
=y U@l o)) 1e)

Jork <8 +MN(w) and ||glloo = SUPse(yp 18(E)]-

Remark 2.5 In Theorem 2.3.
(i) If we put p =0, then we get [6, Theorem 3.2].
(i) If we put w =p =0and m =1, then we get [13, Theorem 6].
(iii) Ifwetakew=p=0,m=1,a = % and g(s) = 1, then we get [8, Corollary 2.3].
(iv) For g(s) =1 alongwithw =p =0, m =1, and @ = u, we get [13, Corollary 2].

Remark 2.6 In Corollary 2.4.
(i) If we put p =0, then we get [1, Theorem 3.2].
(i) If we put w = p =0, then we get [13, Theorem 6].
(iii) Forw=p=0,a =%, and g(s) = 1, we get [8, Corollary 2.3].
(iv) For g(s) =1 along with w = p = 0, we get [13, Corollary 2].

Next we give the following fractional integral inequality.
Theorem 2.7 Let f : [a, mb] — R be a differentiable function such that f € L,[a, mb] with

0 <a<mb.Alsoletg:[a,mb] — R be a continuous function on [a, mb]. If |f'|? is a convex

function on [a, mb], then for q > 0 the following inequality for extended generalized frac-
tional integral operators holds:

mb o
‘( / g(s)EZ:Z”];’C (ws";p) ds) (f (a) +f (mb))
mb t a-1
—a / ( / gO)EL ("3 p) d5> gOEL (0t p)f (8)dt

mb mb a1
-« / ( / g(S)E ) (s p) dS) QOE A (ot p)f (¢) dt
a t

_ 2mb - &) g%, <Lf/(a)|q ¥ mlf/(b)ﬁ)i
- 2

1 (17)
(ap +1)7

Sork <8 +N() and |Iglloc = SUPye (g 1€(0)] and}? + é =1.

Proof From Lemma 2.1 and by using Holder’s inequality, we have

mb o
’( / g(s)EZ:i’f’c(a)s“;p) ds) (f(a) +f(mb))
mb t a-1
o f (/ ZOE] i (w5";p) dS) gOE] " (w0t p)f(0) dt

mb mb a-1
- / ( / g)EL (5" p) dS> GOE S (ot p)f (1) dt
a ¢
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t
8.k,
[ e sty as
a

5 (L-mh apdt>%<‘/;Mb[f’(t)|th>%
. (/Q’"b apdt)l% </arnbLf/(t)|th>%. (18)

Using absolute convergence of the Mittag-Leffler function and [|g|loc = Sup,(, 1€(¢)l, we

mb
,8,k,
/t SOEL Y (5”3 p) ds

have

mb o
’( / EOENY (ws";p) ds> (f(a) + £ (mb))
mb t a-1
—a / ( / SOEN (ws";p) ds) SOEIY (" p)f (1) dt

mb mb a-1
- / ( / gOELL (5" p) dS> QO (s p)f (0 dt
a t

mb [l,
< ||g||zosa(( f 1t~ al dt)
mb %, mb é
+<f |mb—t|"‘1’dt> )( V’(t)|th> ) (19)

Since |f'(¢)|4 is an m-convex function, we have
mb —t t—a
/ ¢ q ! q / b q. 20
o< 2=l @ eme |6 (20)
Using (20) in (19), we have
b 8k ¢
([ ot as) (r@-rond)
mhort 5k ot 5k
-« / ( / SOEL . (ws";p) dS> SOE) o) (" p)f (1)t
mb (o 5k ot 5k
~a / ( / SOE . (ws";p) dS) SOE) 3 (" p)f (1) dt'
a t

mb 1 mb 1
o qu «Q, r a, P
< llgle,s ((/ |t—a|pdt) +(/ |mb—t|1’dt) )

" mb-t,, t-a |, 7
x(ﬂ Zb_a[f(a)|q+mWil[f(b)|q). (21)

After simple calculation of the above inequality, we get (17) which is required. 0
If we take m = 1 in (17), then we get the following result for a convex function.
Corollary 2.8 Letf :[a,b] C [0,00) — R be a differentiable function such thatf' € L, [a, b]

with a < b. Also let g : [a,b] — R be a continuous function on [a,b]. If |f'|? is a convex

function on [a, b, then for q > 0 the following inequality for extended generalized fractional
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integral operators holds:

b o
l( f S)E) (ws";p) d ) [f (@) +£(b)]
b t a-1

—a/ (f g(s)EZg];C(a)s";p) ds) g(t)EZZ];C(a)t",p)f(t) dt

b b a-1
—a/ (/ g(s )Ey“c(a)s";p)ds> g(t)EZi];C(wt“,p)f(t)dt

ol

2= a)a“ugn“ s [Wa)lq ; If' W} (22)

(ap+1)7
Jor k <8+ (w) and [1glloo = SUPc(y ) 18(2)] cmcl}l7 + % =1.

Remark 2.9 In Theorem 2.7.
(i) If we put p =0, then we get [6, Theorem 3.6].
(i) If we put w =p =0and m =1, then we get [13, Theorem 7].
(iii) If we take w=p=0,m =1along witha = £ then we get [8, Theorem 2.5].
If wetakeg(s)=1,m=1,andw=p=0, then we get [5, Theorem 2.3].

(iv
Ifweputw=p=0,m=1,and a = 1, then we get [5, Corollary 3].

- - Z

(v

Remark 2.10 In Corollary 2.8.
(i) If we put p =0, then we get [1, Theorem 3.5].
(i) If we put w = p =0, then we get [13, Theorem 7].
(ili) Ifwe putw=p=0,a =1, then we get [13, Corollary 3].
(iv) If we take w = p = 0 along with & = &, then we get [8, Theorem 2.5].
)

(v) If we take g(s) = 1 and w = p = 0, then we get [5, Theorem 2.3].

In the next result we give Hadamard type inequalities for m-convex functions via an

extended Mittag-Leffler function.

Theorem 2.11 Letf : [a,mb] — R be a function such thatf € L,[a, mb] withQ < a < mb. If
f is m-convex on [a, mb], then the following inequalities for extended generalized fractional

integral operators hold:
b
Zf(a +m )Ca,(%ﬁ(mb;p)
y,8,k,c . a+l(, v.0kc 1
= (eualw qasgrys )ombip) + m (Gﬂ,a,l,m“w',(%)f ) (mp)
(f(a) m? ( >)Ca+l(a+mb (mb;p)

““(f(b)+mf( )) a5 ( ,p> (23)

r_ 2l
where o' = -0
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Proof Since f is an m-convex function, we have

2f<“””b> 5f<5a+ %m) +mf(22—mta+ b) (24)

2 2 2

Also from m-convexity of f, we have

t 2—t 2—t t
f(iﬂ"'me) +mf<ﬂa+§b>

<5 (r@-mr( ) e m(roem (%) (25)

Multiplying (24) by ¢*~'E]; akc(wt“, p) on both sides and then integrating over [0,1], w

have

b
2f<a+2m )/0 Uy (w0t p) de

lalysh " t 2-t Ay
< E (wt";p)f 24+ —m t

2—t
+mf P 1EZi];C a)tﬂ,p)f<%d+ b) dt. (26)
Putting = £a + %tmb and v = 3£a + Lb in (26), we have

b mb
g (52) [ - -S4 s
2

mb
< [ om0 s
2
a+mb

o a a-1
+ m‘“l/u <v— %> EZi]l“ (m“ /< ) )/(v) dv.

m

By using (3), (4), and (5) we get the first inequality of (23).

1 v.8.ke
E[l.Oll

Now multiplying (25) by t*~ (wt*; p) on both sides and then integrating over [0, 1],

we have
el ek, t 2t
/0 t IEI}:O([C( tu,p)f<5ﬂ+me)dt
» 2—t
+m/ 1o 1EZ§,]; t",p)f(—ma+ b)

1 ! .
<5 (r@-mr(5) [ et o) a

+m<f(b)+mf<%>)/o LT (ot p) dit. (27)
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Putting u = La + m%tband v=2ta + Lbin (27), we have

mb
/ (mb — u)* ™ EV> (o (mb — u)"; p)f (1) du

+mb
2

a+mb a—
2m
+/ (v— 1) EZZIEC<m“w (v— —> ,p)j(v)dv
a m

SR mzf(mi» (b — ) EL 54 o mb — ) p)

()

a+mb

2m a ot 8,k,c a g
X L (v - Z) E (m“a)’ (v - Z) ;p) dt. (28)

m

By using (3), (4), and (6), we get the second inequality of (23). a

If we take m = 1in (23), then we get the following Hadamard type inequality for a convex
function.

Corollary 2.12 Let f : [a,b] € [0,00) — R be a function such that f € Ly[a,b] with a < b.
If f is convex on [a,b), then the following inequalities for extended generalized fractional
integral operators hold:

f<a+b)c (a+b (bp)

2 )

< [(GZZ/;;(#) S)ip) + (eyyé,k,c B )_f) (a;p)]

;L,ot,l,a/,(Tb
b
< MCM(%)_ (g;p), (29)

2Mw

’ =
where ' = =57

Remark 2.13 In Theorem 2.11.
(i) If we put p =0, then we get [6, Theorem 3.10].
(i) f weputw=p=0,m=1,and a = 1, then we get the classical Hadamard inequality.

Remark 2.14 In Corollary 2.12.
(i) If we put p =0, then we get [1, Theorem 3.9].
(i) If we put w =p =0and « = 1, then we get the classical Hadamard inequality.
(ili) If we take w = p = 0, then we get [14, Theorem 4].

3 Concluding remarks

We have investigated more general fractional integral inequalities. By selecting specific
values of parameters quite interesting results can be obtained. For example selecting p = 0,
fractional integral inequalities for fractional integral operators defined by Salim and Faraj

in [12], selecting [ = § = 1, fractional integral inequalities for fractional integral operators
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defined by Rahman et al. in [11], selecting p = 0 and / = § = 1, fractional integral inequali-
ties for fractional integral operators defined by Shukla and Prajapati in [15] (see also [16]),
selecting p = 0 and / = § = k = 1, fractional integral inequalities for fractional integral op-
erators defined by Prabhakar in [10], selecting p = w = 0, fractional integral inequalities
for Riemann-Liouville fractional integral operators.
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