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1 Introduction
Let p > 1 and 0 ≤ θ ≤ 1. Then the function sin–1

p (θ ) and the number πp are defined by

sin–1
p (θ ) =

∫ θ

0

1
(1 – tp)1/p dt (1.1)

and

πp

2
= sin–1

p (1) =
∫ 1

0

1
(1 – tp)1/p dt =

π

p sin(π/p)
=

1
p

B(1/p, 1 – 1/p), (1.2)

respectively, where B is the classical beta function. The inverse function of sin–1
p (θ ) defined

on [0,πp/2] is said to be the generalized sine function and denoted by sinp. From (1.1) and
(1.2) we clearly see that sin2(θ ) = sin(θ ) and π2 = π . The generalized sine function sinp(θ )
and πp appeared in the eigenvalue problem of one-dimensional p-Laplacian

–
(∣∣u′∣∣p–2u′)′ = λ|u|p–2u, u(0) = u(1) = 0.

Indeed, the eigenvalues are given by λn = (p – 1)(nπp)p and the corresponding eigen-
function to λn is u(x) = sinp(nπnx) for each n = 1, 2, 3, . . . . In the same way one can define
the generalized cosine and tangent functions and their inverse functions [1–3].

Let x ∈ (–1, 1), and a, b and c be the real numbers with c �= 0, –1, –2, . . . . Then the Gaus-
sian hypergeometric function F(a, b; c; x) [4–11] is defined by

F(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
, (1.3)
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where (a, n) denotes the shifted factorial function (a, n) = a(a+1) · · · (a+n–1), n = 1, 2, . . . ,
and (a, 0) = 1 for a �= 0. The well-known complete elliptic integrals K(r) and E(r) [12–15]
of the first and second kinds are respectively defined by

K(r) =
π

2
F
(

1
2

,
1
2

; 1; r2
)

=
∫ π/2

0

dθ√
1 – r2 sin2 θ

=
∫ 1

0

dt√
(1 – t2)(1 – r2t2)

and

E(r) =
π

2
F
(

1
2

, –
1
2

; 1; r2
)

=
∫ π/2

0

√
1 – r2 sin2 θ dθ =

∫ 1

0

√
1 – r2t2

1 – t2 dt.

Let p ∈ (1,∞) and r ∈ [0, 1). Then the complete p-elliptic integrals Kp(r) and Ep(r) [16,
17] of the first and second kinds are respectively defined by

Kp(r) =
∫ πp/2

0

dθ

(1 – rp sinp
p θ )1–1/p =

∫ 1

0

dt
(1 – tp)1/p(1 – rptp)1–1/p (1.4)

and

Ep(r) =
∫ πp/2

0

(
1 – rp sinp

p θ
)1/p dθ =

∫ 1

0

(
1 – rptp

1 – tp

)1/p

dt. (1.5)

From (1.4) and (1.5) we clearly see that the complete p-elliptic integrals Kp(r) and Ep(r)
respectively reduce to the complete elliptic integrals K(r) and E(r) if p = 2. Recently, the
complete p-elliptic integrals Kp(r) and Ep(r) and their special cases K(r) and E(r) have
attracted the attention of many mathematicians [18–30].

Takeuchi [31] generalized several well-known theorems for the complete elliptic inte-
grals K(r) and E(r), such as Legendre’s formula, Gaussian’s AGM approximation formulas
for π , differential equations, and other similar results of the theory of complete elliptic
integrals to the complete p-elliptic integrals Kp(r) and Ep(r), and proved that

Kp(r) =
πp

2
F
(

1
p

, 1 –
1
p

; 1; rp
)

, (1.6)

Ep(r) =
πp

2
F
(

1
p

, –
1
p

; 1; rp
)

. (1.7)

Anderson, Qiu, and Vamanamurthy [32] discussed the monotonicity and convexity
properties of the function

r �→ f (r) =
E(r) – r′2K(r)

r2 · r′2

E ′(r) – r2K′(r)

and proved that the double inequality

π

4
< f (r) <

π

4
+

(
4
π

–
π

4

)
r (1.8)

holds for all r ∈ (0, 1). Both inequalities given in (1.8) are sharp as r → 0, while the second
inequality is also sharp as r → 1. Here and in what follows, we denote r′ = (1 – rp)1/p,
K′

p(r) = Kp(r′), and E ′
p(r) = Ep(r′).



Huang et al. Journal of Inequalities and Applications  (2018) 2018:239 Page 3 of 11

Alzer and Richards [33] proved that the function

r �→ �(r) =
E(r) – r′2K(r)

r2 –
E ′(r) – r2K′(r)

r′2

is strictly increasing and convex from (0, 1) onto (π/4 – 1, 1 –π/4), and the double inequal-
ity

π

4
– 1 + αr < �(r) <

π

4
– 1 + βr (1.9)

holds for all r ∈ (0, 1) with the best constant α = 0 and β = 2 – π/2.
Inequalities (1.8) and (1.9) have been generalized to the generalized elliptic integrals by

Huang et al. in [34].
The main purpose of the article is to generalize inequalities (1.8) and (1.9) to the com-

plete p-elliptic integrals. We discuss the monotonicity and convexity properties of the
functions

r �→ fp(r) =
Ep(r) – r′pKp(r)

rp · r′p

E ′p(r) – rpK′p(r)
, (1.10)

r �→ gp(r) =
Ep(r) – r′pKp(r)

rp –
E ′

p(r) – rpK′
p(r)

r′p , (1.11)

and present their corresponding sharp inequalities.

2 Lemmas
In order to prove our main results, we need several formulas and lemmas, which we
present in this section.

The following formulas for the hypergeometric function and complete p-elliptic inte-
grals can be found in the literature [5, 1.20(10), (1.16), 1.19(4), (1.48)]], [18], and [35, Equa-
tion (26)]:

F(a, b; a + b + 1; x) = (1 – x)F(a + 1, b + 1; a + b + 1; x), (2.1)

dF(a, b; c; x)
dx

=
ab
c

F(a + 1, b + 1; c + 1; x), (2.2)

F(a, b; c; 1) =
�(c)�(c – a – b)
�(c – a)�(c – b)

(c > a + b), (2.3)

F(a, b; c; x) ∼ –
log(1 – x)

B(a, b)
(x → 1, c = a + b), (2.4)

(σ – ρ)F(α,ρ;σ + 1; z) = σF(α,ρ;σ ; z) – ρF(α,ρ + 1;σ + 1; z), (2.5)

dKp(r)
dr

=
Ep(r) – r′pKa(r)

rr′p ,
dEa(r)

dr
=
Ep(r) – Kp(r)

r
, (2.6)

where �(x) is the classical gamma function.

Lemma 2.1 Let p ∈ (1,∞). Then the function

r �→ f 1
p (r) =

Ep(r) – r′pKp(r)
rp (2.7)

is strictly increasing and convex from (0, 1) onto ((p – 1)πp/(2p), 1).
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Proof It follows from (1.3), (1.6), and (1.7) that

Ep(r) – r′pKp(r)

=
πp

2

[
F
(

1
p

, –
1
p

, 1; rp
)

–
(
1 – rp)F

(
1
p

, 1 –
1
p

; 1; rp
)]

=
πp

2

[ ∞∑
n=0

( 1
p , n)(– 1

p , n)
(n!)2 rpn –

(
1 – rp) ∞∑

n=0

( 1
p , n)(1 – 1

p , n)
(n!)2 rpn

]

=
πp

2

[ ∞∑
n=0

( 1
p , n)(– 1

p , n) – ( 1
p , n)(1 – 1

p , n)
(n!)2 rpn +

∞∑
n=0

( 1
p , n)(1 – 1

p , n)
(n!)2 rp(n+1)

]

=
πp

2

∞∑
n=1

n2( 1
p , n – 1)(1 – 1

p , n – 1) – n( 1
p , n)(1 – 1

p , n – 1)
(n!)2 rpn

=
πp

2

∞∑
n=1

n( 1
p , n – 1)(1 – 1

p , n – 1)(1 – 1
p )

(n!)2 rpn

=
πprp

2

(
1 –

1
p

) ∞∑
n=0

1
n + 1

anrpn,

where an = (1/p, n)(1 – 1/p, n)(n!)–2. Therefore,

f 1
p (r) =

Ep(r) – r′pKp(r)
rp =

πp

2

(
1 –

1
p

) ∞∑
n=0

1
n + 1

anrpn (2.8)

and f 1
p (r) is strictly increasing and convex on (0, 1) due to 1 – 1/p > 0.

From (1.5), (1.6), (2.4), (2.7), and (2.8) we clearly see that

Ep
(
1–)

= 1, lim
r→1–

r′pKp(r) = 0,

f 1
p
(
0+)

=
(p – 1)πp

2p
, f 1

p
(
1–)

= 1. �

Lemma 2.2 (see [18, Lemma 2.3]) Let I ⊂ R be an interval and f , g : I → (0,∞) be two
positive real-valued functions. Then the product fg is convex on I if both f and g are convex
and increasing (decreasing) on I .

Lemma 2.3 Let p > 1. Then the function

r �→ J(r) =
(1 – rp)(Ep(r) – (1 + rp)Kp(r))

r2p–1 (2.9)

is strictly increasing from (0, 1) onto (–∞, 0).

Proof Let

f1(r) =
(
1 – rp)[F

(
1
p

, –
1
p

; 1; rp
)

–
(
1 + rp)F

(
1
p

, 1 –
1
p

; 1; rp
)]

. (2.10)
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Then it follows from (1.3), (1.6), (1.7), (2.9), and (2.10) that

J(r) =
πp

2r2p–1 f1(r), (2.11)

f1(r) =
(
1 – rp)

[ ∞∑
n=0

( 1
p , n)(– 1

p , n)
(n!)2 rpn –

(
1 + rp) ∞∑

n=0

( 1
p , n)(1 – 1

p , n)
(n!)2 rpn

]

=
(
1 – rp)

[ ∞∑
n=0

( 1
p , n)(– 1

p , n) – ( 1
p , n)(1 – 1

p , n)
(n!)2 rpn –

∞∑
n=0

( 1
p , n)(1 – 1

p , n)
(n!)2 rp(n+1)

]

=
(
1 – rp) ∞∑

n=1

–n2( 1
p , n – 1)(1 – 1

p , n – 1) – n( 1
p , n)(1 – 1

p , n – 1)
(n!)2 rpn

=
(
1 – rp) ∞∑

n=1

( 1
p , n – 1)(1 – 1

p , n – 1)((1 – 1
p )n – 2n2)

(n!)2 rpn

=
∞∑

n=1

( 1
p , n – 1)(1 – 1

p , n – 1)((1 – 1
p )n – 2n2)

(n!)2 rpn

–
∞∑

n=2

( 1
p , n – 2)(1 – 1

p , n – 2)((1 – 1
p )(n – 1) – 2(n – 1)2)

((n – 1)!)2 rpn

=
(

–1 –
1
p

)
rp

+
∞∑

n=2

( 1
p , n – 2)(1 – 1

p , n – 2)[2n(n + 1
p3 – 2) + 1

p3 – 2
p2 – 1

p + 2]

(n!)2 rpn. (2.12)

Equations (2.11) and (2.12) lead to

J(r) =
πp

2

{
–

1 + p
prp–1

+
∞∑

n=2

( 1
p , n – 2)(1 – 1

p , n – 2)[2n(n + 1
p3 – 2) + 1

p3 – 2
p2 – 1

p + 2]

(n!)2 rp(n–2)+1

}
. (2.13)

It is easy to verify that

2n
(

n +
1
p3 – 2

)
+

1
p3 –

2
p2 –

1
p

+ 2 > 0 (2.14)

for p > 1 and n ≥ 2.
Therefore, the monotonicity of J(r) on the interval (0, 1) follows easily from (2.13) and

(2.14).
From (2.3), (2.4), (2.10), (2.11), and (2.13) we clearly see that J(0+) = –∞ and

lim
r→1–

F
(

1
p

, –
1
p

; 1; rp
)

=
1

�(1 – 1/p)�(1 + 1/p)
, lim

r→1–

(
1 – rp)F

(
1
p

, 1 –
1
p

; 1; rp
)

= 0,

J
(
1–)

= 0. �
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Lemma 2.4 (see [5, Theorem 1.25]) Let a, b ∈R with a < b, f , g : [a, b] → R be continuous
on [a, b] and be differentiable on (a, b) such that g ′(x) �= 0 on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

3 Main results
Theorem 3.1 Let p > 1 and fp(r) be defined by (1.10). Then fp(r) is strictly increasing and
convex from (0, 1) onto ((p – 1)πp/(2p), 2p/[(p – 1)πp]), and the double inequality

(p – 1)πp

2p
+ αr < fp(r) <

(p – 1)πp

2p
+ βr (3.1)

holds for all r ∈ (0, 1) if and only if α ≤ 0 and β ≥ 2p/[(p – 1)πp] – (p – 1)πp/(2p). Moreover,
both inequalities in (3.1) are sharp as r → 0, while the second inequality is sharp as r → 1.

Proof Let f 1
p (r) be defined by (2.7). Then fp(r) can be rewritten as

fp(r) =
Ep(r) – r′pKp(r)

rp · r′p

E ′p(r) – rpK′p(r)
= f 1

p (r) · 1
f 1
p (r′)

. (3.2)

From Lemma 2.1 we know that both the functions f 1
p (r) and 1/f 1

p (r′) are positive and
strictly increasing on (0, 1), hence fp(r) is also strictly increasing on (0, 1).

Next, we prove that 1/f 1
a (r′) is convex on (0, 1). It follows from (2.6) and (2.7) that

d
dr

(
1

f 1
p (r)

)
=

prp–1(Ep(r) – r′pKp(r)) – (p – 1)r2p–1Kp(r)
(Ep(r) – r′pKp(r))2

=
p(Ep(r) – r′pKp(r)) – (p – 1)rpKp(r)

(Ep(r)–r′pKp(r))2

rp–1

=
g1(r)
g2(r)

, (3.3)

where

g1(r) = p
(
Ep(r) – r′pKp(r)

)
+ (1 – p)rpKp(r), g2(r) =

(Ep(r) – r′pKp(r))2

rp–1 ,

g ′
1(r)

g ′
2(r)

=
r2p–1

(1 – rp)(Ep(r) – (1 + rp)Kp(r))
=

1
J(r)

,
(3.4)

where J(r) is defined by (2.9).
From (1.3), (1.6), (1.7), and Lemma 2.1 we clearly see that

g1
(
0+)

= g2
(
0+)

= 0. (3.5)

Equations (3.3)–(3.5) and Lemmas 2.3 and 2.4 lead to the conclusion that the function
d
dr (1/f 1

p (r)) is strictly decreasing on (0, 1), which implies that the function d
dr (1/f 1

p (r′)) is
strictly increasing on (0, 1) and 1/f 1

a (r′) is convex on (0, 1).
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Therefore, fp(r) is convex on (0, 1) follows from Lemmas 2.1 and 2.2 together with (3.2)
and the convexity of 1/f 1

a (r′).
The limit values

fp
(
0+)

=
(p – 1)πp

2p
, fp

(
1–)

=
2p

(p – 1)πp
(3.6)

follow easily from Lemma 2.1 and (3.2).
It follows from (2.8) and (3.2) that

lim
r→0+

dfp(r)
dr

= lim
r→0+

∑∞
n=0

an
n+1 (1 – rp)n ∑∞

n=1
pnan
n+1 rpn–1 + rp–1 ∑∞

n=0
an

n+1 rpn ∑∞
n=1

pnan
n+1 (1 – rp)n–1

[
∑∞

n=0
an

n+1 (1 – rp)n]2

= 0. (3.7)

Therefore, inequality (3.1) holds for all r ∈ (0, 1) if and only if α ≤ 0, and β ≥ 2p/[(p –
1)πp] – ((p – 1)πp/(2p) follows easily from (3.6) and (3.7) together with the monotonicity
and convexity of fp(r) on (0, 1). From (3.6) we clearly see that both inequalities in (3.1) are
sharp as r → 0 and the second inequality is sharp as r → 1. �

Theorem 3.2 Let p ≥ 2 and gp(r) be defined in (1.11). Then gp(r) is strictly increasing and
convex from (0, 1) onto ((p – 1)πp/(2p) – 1, 1 – (p – 1)πp/(2p)), and the double inequality

(p – 1)πp

2p
– 1 + αr < gp(r) <

(p – 1)πp

2p
– 1 + βr (3.8)

holds for all r ∈ (0, 1) if and only if α ≤ 0 and β ≥ 2–(p–1)πp/p. Moreover, both inequalities
in (3.8) are sharp as r → 0, while the second inequality is sharp as r → 1.

Proof Let

Mp(r) =
πp

2rp

[
F
(

1
p

, –
1
p

; 1; rp
)

– r′pF
(

1
p

, 1 –
1
p

; 1; rp
)]

.

Then from (1.3), (1.6), (1.7), and (1.11) we get

Mp(r) =
πp(p – 1)

2p
F
(

1 –
1
p

,
1
p

; 2; rp
)

, (3.9)

gp(r) = Mp(r) – Mp
(
r′)

=
πp(p – 1)

2p

[
F
(

1 –
1
p

,
1
p

; 2; rp
)

– F
(

1 –
1
p

,
1
p

; 2; 1 – rp
)]

. (3.10)

It follows from (2.1), (2.2), (2.5), and (3.10) that

dgp(r)
dr

=
(p – 1)2πp

4p2 rp–1
[

F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+ F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)]

,

dgp(r)
dr

|r=0 = 0, (3.11)
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d2gp(r)
dr2 =

(p – 1)3πp

4p2 rp–2
[

F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+ F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
πp(p – 1)2(1 + p)(2p – 1)

12p3 r2p–2

×
(

F
(

3 –
1
p

, 2 +
1
p

; 4; rp
)

– F
(

3 –
1
p

, 2 +
1
p

; 4; 1 – rp
))]

, (3.12)

F
(

3 –
1
p

, 2 +
1
p

; 4; 1 – rp
)

=
1
rp F

(
2 –

1
p

, 1 +
1
p

; 4; 1 – rp
)

, (3.13)

(
2 –

1
p

)
F
(

2 –
1
p

, 1 +
1
p

; 4; 1 – rp
)

= 3F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

–
(

1 +
1
p

)
F
(

2 –
1
p

, 2 +
1
p

; 4; 1 – rp
)

. (3.14)

Equations (1.3) and (3.12)–(3.14) lead to

4p2

(p – 1)2πp
rp–2g ′′

p (r)

= (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+ (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
(2p – 1)(p + 1)

3p
rpF

(
3 –

1
p

, 2 +
1
p

; 4; rp
)

– rp (2p – 1)(p + 1)
3p

F
(

3 –
1
p

, 2 +
1
p

; 4; 1 – rp
)

= (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+ (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
(2p – 1)(p + 1)

3p
rpF

(
3 –

1
p

, 2 +
1
p

; 4; rp
)

–
(2p – 1)(p + 1)

3p
F
(

2 –
1
p

, 1 +
1
p

; 4; 1 – rp
)

= (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+
(2p – 1)(p + 1)

3p
rpF

(
3 –

1
p

, 2 +
1
p

; 4; rp
)

+ (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

– (2p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
(2p – 1)2

3p
F
(

3 –
1
p

, 1 +
1
p

; 4; 1 – rp
)

= (p – 1)F
(

2 –
1
p

, 1 +
1
p

; 3; rp
)

+
(2p – 1)(p + 1)

3p
rpF

(
3 –

1
p

, 2 +
1
p

; 4; rp
)

– pF
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
(2p – 1)2

3p
F
(

1 +
1
p

, 3 –
1
p

; 4; 1 – rp
)

> p – 1 – pF
(

2 –
1
p

, 1 +
1
p

; 3; 1 – rp
)

+
(2p – 1)2

3p
F
(

1 +
1
p

, 3 –
1
p

; 4; 1 – rp
)

= p – 1 – p
∞∑

n=0

(1 + 1
p , n)(2 – 1

p , n)
(3, n)

(1 – rp)n

n!

+
(2p – 1)2

3p

∞∑
n=0

(1 + 1
p , n)(3 – 1

p , n)
(4, n)

(1 – rp)n

n!
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=
∞∑

n=0

(1 + 1
p , n)(2 – 1

p , n)
(3, n + 1)

[
(p – 1)n + p +

1
p

– 4
]

(1 – rp)n

n!

≥
1∑

n=0

(1 + 1
p , n)(2 – 1

p , n)
(3, n + 1)

[
(p – 1)n + p +

1
p

– 4
]

(1 – rp)n

n!

=
20p4 – 36p3 – p2 + 6p – 1

12p3 > 0 (3.15)

for p ≥ 2.
Therefore, the monotonicity and convexity for gp(r) on the interval (0, 1) follow from

(3.11) and (3.15).
It follows from (1.2), (1.3), (2.3), (3.9), and (3.10) that

Mp
(
0+)

=
(p – 1)πp

2p
, Mp

(
1–)

= 1,

gp
(
0+)

=
(p – 1)πp

2p
– 1, gp

(
1–)

= 1 –
(p – 1)πp

2p
.

(3.16)

Therefore, the desired results in Theorem 3.2 follow easily from (3.11) and (3.16) to-
gether with the monotonicity and convexity of gp(r) on the interval (0, 1). �

Remark 3.3 Let p = 2. Then we clearly see that inequalities (3.1) and (3.8) reduce to in-
equalities (1.8) and (1.9), respectively.

Corollary 3.4 Let p ≥ 2, gp(r) be defined by (1.11) and

Lp(x, y) = gp(xy) – gp(x) – gp(y). (3.17)

Then the double inequality

(p – 1)πp

2p
– 1 < Lp(x, y) < 1 –

(p – 1)πp

2p

holds for all x, y ∈ (0, 1).

Proof It follows from (3.17) and the proof of Theorem 3.2 that

∂

∂x
Lp(x, y) = yg ′

p(xy) – g ′
p(x), (3.18)

∂2

∂x∂y
Lp(x, y) = g ′

p(xy) + xyg ′′
p (xy) > 0 (3.19)

for all x, y ∈ (0, 1).
From (3.17)–(3.19) we get

∂

∂x
Lp(x, y) <

∂

∂x
Lp(x, y)|y=1 = 0,

–gp(1) = Lp(1, y) < Lp(x, y) < Lp(0, y) = –gp(y).
(3.20)

Therefore, Corollary 3.4 follows easily from Theorem 3.2 and (3.20). �
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4 Methods
The main purpose of the article is to generalize inequalities (1.8) and (1.9) for the complete
elliptic integrals to the complete p-elliptic integrals. To achieve this goal we discuss the
monotonicity and convexity properties for the functions given by (1.10) and (1.11) by use
of the analytical properties of the Gaussian hypergeometric function and the well-known
monotone form of l’Hôpital’s rule given in [5, Theorem 1.25].

5 Results and discussion
In the article, we present the monotonicity and convexity properties and provide the sharp
bounds for the functions

r �→ fp(r) =
Ep(r) – r′pKp(r)

rp · r′p

E ′p(r) – rpK′p(r)

and

r �→ gp(r) =
Ep(r) – r′pKp(r)

rp –
E ′

p(r) – rpK′
p(r)

r′p

on the interval (0, 1).
The obtained results are the generalization of the well-known results on the classical

complete elliptic integrals given in [32, 33].

6 Conclusion
In this paper, we generalize the monotonicity, convexity, and bounds for the functions
involving the complete elliptic integrals to the complete p-elliptic integrals. The given idea
may stimulate further research in the theory of generalized elliptic integrals.
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