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Abstract
We prove a priori estimates up to their second order derivatives for solutions to the
obstacle problem of curvature equations on Riemannian manifolds (Mn,g) arising
from conformal deformation. With the a priori estimates the existence of a C1,1

solution to the obstacle problem with Dirichlet boundary value is obtained by
approximation.
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1 Introduction
Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 3 with smooth boundary
∂M, M̄ := M ∪ ∂M. In conformal geometry, it is interesting to find a complete metric g̃ ∈
[g], the conformal class of g , with which the manifold has prescribed curvature. In general,
such conformal deformation can be interpreted by certain partial differential equations.
See [8, 13, 22, 25, 26] for more details.

In [8], Guan studied the existence of a complete conformal metric g̃ of negative Ricci
curvature on M satisfying

f
(
–λ

(
g̃–1Ricg̃

))
= ψ in M, (1.1)

where Ricg̃ is the Ricci tensor of g̃ , and λ(g̃–1Ricg̃) = (λ1, . . . ,λn) are the eigenvalues of
g̃–1Ricg̃ . The transformation formula for the Ricci tensor under conformal deformation
g̃ = e2ug is given by

1
n – 2

Ricg̃ =
1

n – 2
Ricg – ∇2u –

(
�u

n – 2
+ |∇u|2

)
g + du ⊗ du,

where ∇u, ∇2u, and �u denote the gradient, Hessian, and Laplacian of u with respect to
the metric g , respectively. When f is homogenous of degree one, it is easy to verify that
equation (1.1) is equivalent to the following form:

f
(

λ

(
g–1

[
∇2u +

�u
n – 2

g + |∇u|2g – du ⊗ du –
Ricg

n – 2

]))
=

ψ(x)
n – 2

e2u. (1.2)
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In this paper, we study the obstacle problem of equation (1.2). More generally, let

T[u] := ∇2u + s du ⊗ du +
(

γ�u –
t
2
|∇u|2

)
g + χ ,

where χ is a smooth (0, 2) tensor, γ > 0 is a constant, and s, t ∈R. We consider the following
equation:

max
{

u – h, –
(
f
(
λ
(
g–1T[u]

))
– ψ[u]

)}
= 0 in M (1.3)

with the Dirichlet boundary condition

u = ϕ on ∂M, (1.4)

where h ∈ C3(M̄), ϕ ∈ C4(∂M), h > ϕ on ∂M, ψ[u] = ψ(x, u) is a positive function in
C3(M̄ ×R).

Equations as (1.1) and (1.3) are the Hessian equations, which were well studied by many
authors such as [2, 7, 9–12, 23, 24]. Generally, f ∈ C2(	)∩C0(	̄) is a symmetric function of
λ ∈R

n, defined in an open, convex, and symmetric cone 	 �R
n, with vertex at the origin,

which contains the positive cone: 	+
n := {λ ∈ R

n : each component λi > 0} and satisfies the
following fundamental structure conditions:

fi ≡ ∂f
∂λi

> 0 in 	, 1 ≤ i ≤ n, (1.5)

f is a concave function, (1.6)

and

f > 0 in 	, f = 0 on ∂	. (1.7)

Here, for convenience, we also assume that

f is homogeneous of degree one. (1.8)

We observe that by the concavity and homogeneity of f ,

∑
fi(λ) = f (λ) +

∑
fi(λ)(1 – λi) ≥ f (1, . . . , 1) > 0 in 	. (1.9)

Important classes of f are the elementary symmetric functions and their quotients, i.e.,

f (λ) = (σk)
1
k (λ) :=

( ∑

1≤i1<···<ik≤n

λi1 · · ·λik

) 1
k

, 1 ≤ k ≤ n,

and

f (λ) =
(

σk

σl

) 1
k–l

, 0 ≤ l < k ≤ n.
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Let F be defined by F(r) = f (λ(r)) for r = {rij} ∈ Sn×n with λ(r) ∈ 	, where Sn×n is the set
of n × n symmetric matrices. It is shown in [2] that (1.5) implies F is an elliptic operator
and (1.6) ensures that F is concave.

A function u ∈ C2(M) is called admissible at x ∈ M if λ(g–1T[u])(x) ∈ 	, and we call it
admissible in M when it is admissible at each x in M. In this paper, we prove the existence
of an admissible viscosity solution of (1.3) and (1.4) in C1,1(M̄) (see [1, 3] for the definition
of viscosity solutions).

Many authors have studied various obstacle problems. In [6], Gerhardt considered a hy-
persurface bounded from below by an obstacle with prescribed mean curvature in R

n. Lee
[17] considered the obstacle problem for the Monge–Ampère equation (i.e., f = (σn) 1

n ) for
the case that T[u] = D2u, ψ ≡ 1, and ϕ ≡ 0, and proved the C1,1 regularity of the viscosity
solution in a strictly convex domain in R

n. Xiong and Bao [27] extended the work of Lee to
a nonconvex domain inR

n with general ψ and ϕ under additional assumptions. Bao, Dong,
and Jiao treated a class of obstacle problems in [1] assuming that T[u] = ∇2u + A(x, u,∇u),
under a certain technical assumption. Because of the term γ�u (γ > 0), here we only need
a minimal amount of assumptions. For other works, see [4, 14, 15, 18–21].

Our main result is the following theorem.

Theorem 1.1 Assume that (1.5)–(1.8) and either the following condition

lim
z→+∞ψ(x, z) = +∞, ∀x ∈ M̄, (1.10)

or

2s – nt
1 + nγ

< 2λ1 (1.11)

hold, where λ1 is the first eigenvalue of the problem

⎧
⎨

⎩
�u + λ(trχ )+u = 0 on M̄,

u = 0 on ∂M
(1.12)

(λ1 = +∞ if trχ ≤ 0). Then there exists a viscosity solution u ∈ C1,1(M̄) to (1.3) and (1.4), if
there exists a subsolution u ∈ C0(M̄) ∩ C1(M̄δ) for some δ > 0 such that

⎧
⎪⎪⎨

⎪⎪⎩

f (λ(g–1T[u])) ≥ ψ[u], in M,

u = ϕ, on ∂M,

u ≤ h, in M,

(1.13)

where Mδ = {x ∈ M : dist(x, ∂M) ≤ δ}. Moreover, we have that u ∈ C3,α(E) for any α ∈ (0, 1),
and f (λ(g–1T[u])) = ψ[u] in E, where E := {x ∈ M : u(x) < h(x)}.

Remark 1.2 (1.10), as well as (1.11), is used in Lemma 3.2 to derive an upper bound for
u. Assumption (1.13) is just applied to derive a lower bound for u on M and ∇νu on ∂M,
where ν is the interior unit normal to ∂M.
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Remark 1.3 We can construct some subsolutions of (1.2) satisfying (1.13) as in [15] fol-
lowing ideas from [2] and [7] since

|∇u|2g – du ⊗ du

is positive definite and that we can obtain a priori upper bound of any admissible function
(Lemma 3.2) under additional conditions that there exists a sufficiently large number R > 0
such that at each point x ∈ ∂M,

(κ1, . . . ,κn–1, R) ∈ 	, (1.14)

where κ1, . . . ,κn–1 are the principal curvatures of ∂M with respect to the interior normal,
and that for every C > 0 and every compact set K in 	 there is a number R = R(C, K) such
that

f (Rλ) ≥ C for all λ ∈ K . (1.15)

We use a penalization technique to prove the existence of viscosity solutions to (1.3) and
(1.4). We shall consider the following singular perturbation problem:

⎧
⎨

⎩
f (λ(g–1T[u])) = ψ[u] + βε(u – h) in M,

u = ϕ on ∂M,
(1.16)

where the penalty function βε ∈ C2(R) satisfies

βε ,β ′
ε ,β ′′

ε ≥ 0 on R,βε(z) = 0, whenever z ≤ 0;

βε(z) → ∞ as ε → 0+, whenever z > 0.
(1.17)

An example given in [27] is

βε(z) =

⎧
⎨

⎩
0, z ≤ 0,

z3/ε, z > 0,
(1.18)

for ε ∈ (0, 1). Observe that u is also a subsolution to (1.16).
Let

U =
{

uε|uε ∈ C4(M̄) is an admissible solution of (1.16) with uε ≥ u on M̄
}

.

We aim to derive the uniform bound

|uε|C2(M̄) ≤ C (1.19)

for uε ∈ U, where C is independent of ε. After establishing (1.19), the equation (1.16)
becomes uniformly elliptic by (1.7). By Evans–Krylov [5], [16] theorem, we can derive
the C2,α estimates (which may depend on ε) of uε . Higher estimates can be derived by
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Schauder theory. Following the proof as in [8] or [1], we can prove there exists an admis-
sible solution uε to (1.16). Then we can conclude by (1.19) that there exists a viscosity
solution u ∈ C1,1(M̄) to (1.3) and (1.4), see [1, 27].

Thus, our main work is focused on the a priori estimates for admissible solutions up
to their second order derivatives. In Sect. 2, we achieve the estimates for second order
derivatives. Finally, we end this paper with gradient and C0 estimates in Sect. 3.

2 Estimates for second order derivatives
In this section, we prove a priori estimates of second order derivatives for admissible so-
lutions. From now on, we drop the subscript ε when there is no possible confusion.

Theorem 2.1 Assume that f satisfies (1.5)–(1.8) and u ∈ C4(M̄) is an admissible solution
to (1.16). Then

sup
M

∣
∣∇2u

∣
∣ ≤ C

(
1 + sup

∂M

∣
∣∇2u

∣
∣
)

, (2.1)

where C depends on |u|C1(M̄) and other known data.

Proof Set

W (x) = max
ξ∈TxM,|ξ |=1

(∇ξξ u + s|∇ξ u|2)eφ , x ∈ M̄,

where φ is a function to be determined. Assume that W is achieved at an interior point
x0 ∈ M and a unit direction ξ ∈ Tx0 M. Choose a smooth orthonormal local frame e1, . . . , en

about x0 such that ξ = e1, ∇iej(x0) = 0 and that Tij(x0) is diagonal. We write G = ∇11u +
s|∇1u|2. Assume G(x0) > 0 (otherwise we are done).

At the point x0, where the function log G + φ (defined near x0) attains its maximum, we
have

∇iG
G

+ ∇iφ = 0, i = 1, . . . , n, (2.2)

and

∇iiG
G

–
(∇iG

G

)2

+ ∇iiφ ≤ 0. (2.3)

By (2.3) we have

Fii(∇iiG + G∇iiφ – G|∇iφ|2) ≤ 0 (2.4)

and

�G + G�φ – G|∇φ|2 ≤ 0. (2.5)

Since γ > 0, we obtain

Fii(∇iiG + γ�G + G∇iiφ + γ G�φ – G|∇iφ|2 – γ G|∇φ|2) ≤ 0. (2.6)



Bao and Xing Journal of Inequalities and Applications  (2018) 2018:238 Page 6 of 12

By calculation, we get

∇iG = ∇i11u + 2s∇1u∇i1u, (2.7)

and

∇iiG = ∇ii11u + 2s
(|∇i1u|2 + ∇1u∇ii1u

)
. (2.8)

Recall the formula for interchanging order of covariant derivatives

∇ijkv – ∇kijv = Rl
kij∇lv, (2.9)

and

∇ijklv – ∇klijv = Rm
ljk∇imv + ∇iRm

ljk∇mv + Rm
lik∇jmv

+ Rm
jik∇lmv + Rm

jil∇kmv + ∇kRm
jil∇mv. (2.10)

It follows from (2.10)

∇iiG ≥ ∇11iiu + 2s
(|∇i1u|2 + ∇1u∇1iiu

)
– C(1 + G), (2.11)

and

∇iiG + γ�G ≥ ∇11iiu + 2s
(|∇i1u|2 + ∇1u∇1iiu

)
+ γ∇11(�u)

+ 2sγ
(|∇i1u|2 + ∇1u∇1(�u)

)
– C(1 + G). (2.12)

Differentiating equation (1.16) once at x0, we obtain for 1 ≤ k ≤ n,

∇kF = Fii∇kTii = ψxk + ψz∇ku + ∇kβε(u – h). (2.13)

It is easy to see that

Fii∇1(∇iiu + γ�u) = Fii∇1

(
Tii[u] – s|∇iu|2 +

t
2
|∇u|2 – χii

)

≥ ∇1F – 2sFii∇iu∇1iu + t∇ku∇1ku
∑

i

Fii –
∑

i

Fii (2.14)

and that

Fii∇11(∇iiu + γ�u) = Fii∇11

(
Tii[u] – s|∇iu|2 +

t
2
|∇u|2 – χii

)

≥ Fii∇11Tii[u] – 2sFii(∇iu∇11iu + |∇1iu|2)

+ t
∑

k

(∇ku∇11ku + |∇1ku|2)
∑

i

Fii – C
∑

i

Fii. (2.15)
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With (2.9) we see

2s∇iu∇11iu ≤ 2s∇iu(∇iG – 2s∇1u∇i1u) + C

≤ –4s2∇iu∇1u∇i1u + C
(
1 + G|∇φ|), (2.16)

and similarly

t∇ku∇11ku ≥ –2st∇ku∇1u∇k1u – C
(
1 + G|∇φ|). (2.17)

With (2.12), (2.14)–(2.17), and the concavity of F , we derive

Fii(∇iiG + γ�G) ≥ ∇11F + 2s∇1u∇1F + (2sγ + t)
∑

k

|∇1ku|2
∑

Fii

– C
(

G + G|∇φ| +
∑

j,k

|∇jku|
)

≥ ∇11F + 2s∇1u∇1F – C
(
G2 + G|∇φ|).

(2.18)

By (1.9) and β ′′
ε > 0 it follows from (2.6) and (2.18) that

Fii(∇iiφ – |∇iφ|2) + γ
(
�φ – |∇φ|2)

∑
Fii

≤ C
(
G + |∇φ|)

∑
Fii +

(
C
G

– 1
)

β ′
ε(u – h). (2.19)

Let

φ := η(w) =
(

1 –
w
2a

)–1/2

, w =
|∇u|2

2
,

where a > supM w is a constant to be determined. We have

1 ≤ η <
√

2, η′ =
η3

4a
, η′′ =

3η′2

η

and

∇iiφ – |∇iφ|2 = η′∇iiw +
(
η′′ – η′2)|∇iw|2 ≥ η′∇iiw. (2.20)

Next, by (2.14)

Fii(∇iiw + γ�w)

= Fii
(∑

l

|∇ilu|2 + γ
∑

k,l

|∇klu|2
)

+ Fii∇lu
(∇iilu + γ�(∇lu)

)

≥ Fii∇lu
(

∇liiu + γ
∑

k

∇lkku
)

+
(
γ G2 – CG

)∑
Fii

≥ –Cβ ′
ε(u – h) +

(
γ G2 – CG

)∑
Fii. (2.21)
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Combining (2.19), (2.20), (2.21), and |∇φ| ≤ Cη′G, we have

η′(γ G2 – CG
)∑

Fii ≤ C
(
G + η′G

)∑
Fii +

(
C
G

– 1 + Cη′
)

β ′
ε(u – h). (2.22)

We could assume that G ≥ 2C. When a > 2C, the coefficient of β ′
ε(u – h) is negative. Then

we can derive G ≤ 4aC
γ

. �

To derive the boundary estimates for ∇2u, we note that tr(sdu ⊗ du – t
2 |∇u|2g + χ ) ≤ C

on M̄, where C is independent of ε, though it may depend on |u|C1(M̄). As in [1, 4], let H
be the solution to

⎧
⎨

⎩
(1 + nγ )�H + C = 0 in M,

H = ϕ on ∂M.

Then we have u ≤ H in M by the maximum principle and βε(u – h) ≡ 0 in Mδ = {x ∈ M :
dist(x, ∂M) ≤ δ}, where δ is sufficiently small. Thus,

⎧
⎨

⎩
f (λ(g–1T[u])) = ψ[u] in Mδ ,

u = ϕ on ∂M.
(2.23)

By the same arguments of Sect. 4 in [8], we obtain that

sup
∂M

∣
∣∇2u

∣
∣ ≤ C, (2.24)

where C depends on |u|C1(M̄) and other known data.
Combining (2.1) and (2.24), we therefore get the full estimates for second order deriva-

tives.

3 Gradient estimates, maximum principle, and existence
For the gradient estimates, we have the following theorem.

Theorem 3.1 Assume that (1.5)–(1.8) hold. Let u ∈ C3(M̄) be an admissible solution to
(1.16). Then

sup
M

|∇u| ≤ C
(

1 + sup
∂M

|∇u|
)

, (3.1)

where C depends on |u|C0(M̄) and other known data.

Proof Suppose that weφ , where w = |∇u|2
2 and φ = φ(u) to be determined satisfying that

φ′(u) > 0, achieves a maximum at an interior point x0 ∈ M. As before, we choose a smooth
orthonormal local frame e1, . . . , en about x0 such that ∇ei ej = 0 at x0 and {Tij(x0)} is diago-
nal. Differentiating weφ at x0 twice, we have

∇iw + w∇iφ = 0 (3.2)
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and

∇iiw – w(∇iφ)2 + w∇iiφ ≤ 0. (3.3)

Differentiating w, we see

∇iw =
∑

k

∇ku∇iku, ∇iiw =
∑

k

(∇iku)2 +
∑

k

∇ku∇iiku.

Using (3.2) it follows from (3.3) that

Fii
(

δkl –
∇ku∇lu

2w

)
∇iku∇ilu + Fii∇ku∇iiku – wFii

(
(∇iφ)2

2
– ∇iiφ

)
≤ 0 (3.4)

and

∑

i,k,l

(
δkl –

∇ku∇lu
2w

)
∇iku∇ilu + ∇ku�(∇ku) –

w
2

|∇φ|2 + w�φ ≤ 0. (3.5)

Note that the first term in (3.4) and (3.5) is nonnegative. Multiply γ
∑

Fii to (3.5) and add
what we got to (3.4). Thus, by (2.9) we obtain

Fii∇ku(∇kiiu + γ∇k�u) –
w
2

Fii(|∇iφ|2 + γ |∇φ|2)

+ wFii(∇iiφ + γ�φ) ≤ C|∇u|2
∑

Fii. (3.6)

Now we compute the first term in (3.6). Firstly, we have

∇iφ = φ′∇iu, ∇iiφ = φ′∇iiu + φ′′(∇iu)2.

Using (3.2), we easily get that

Fii∇ku(∇kiiu + γ∇k�u)

= Fii∇ku∇k

(
Tii – s|∇iu|2 +

t
2
|∇u|2 – χii

)

= ∇ku∇k(ψ + βε) + wφ′Fii(2s|∇iu|2 – t|∇u|2) – Fii∇ku∇kχii. (3.7)

By the homogeneity of F , we also get

Fii(∇iiφ + γ�φ)

= φ′′Fii(|∇iu|2 + γ |∇u|2) + φ′Fii
(

Tii – s|∇iu|2 +
t
2
|∇u|2 – χii

)

= φ′′Fii(|∇iu|2 + γ |∇u|2) + φ′
(

F – sFii|∇iu|2 +
t
2

Fii|∇u|2 – Fiiχii

)
. (3.8)
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According to (3.7) and (3.8), it follows from (3.6)

γ |∇u|2
(

φ′′ –
1
2
(
φ′)2 –

t
2γ

φ′
)∑

Fii +
(

φ′′ –
1
2
(
φ′)2 + sφ′

)
Fii(∇iu)2

≤ –φ′(ψ + βε – Fiiχii
)

+ C
∑

Fii –
∇ku∇k(ψ + βε)

w

≤ –
(

φ′βε +
∇ku∇k(u – h)β ′

ε

w

)
+ C

∑
Fii + C. (3.9)

Let

φ(u) = v–a, v = 1 – u + sup
M

u.

We have

φ′(u) = av–a–1, φ′′(u) =
(a + 1)φ′

v
,

and

φ′′ –
1
2
(
φ′)2 = φ′

(
a + 1

v
–

av–a

2v

)
≥ φ′a

2v
> 0

since v–a ≤ 1. When |∇u(x0)| is sufficiently large, we see ∇ku∇k(u – h) > 0. Hence we have
that the first term on the right-hand side of (3.9) is negative as βε ,β ′

ε > 0. From (3.9) and
(1.9) when a is sufficiently large, we then obtain that

φ′aγ |∇u|2
4v

≤ C, (3.10)

from which we conclude that (3.1) holds. �

In order to prove (1.19), it remains to bound supM |u| + sup∂M |∇u|. We quote two lem-
mas in [8], the ingredients of whose proofs are the maximum principle.

Lemma 3.2 If either (1.10) or (1.11) holds, then any admissible solution u of (1.16) admits
the a priori bound

sup
M

u ≤ c0. (3.11)

Lemma 3.3 If u is admissible such that tr T[u] ≥ 0 and |u|C0(M) ≤ μ, then

sup
∂M

∇νu ≤ c1(μ), (3.12)

where ν is the interior unit normal to ∂M.

Now with the above two lemmas and the fact ∇νu ≥ ∇νu on ∂M when u ∈ U, we then
have the following.
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Theorem 3.4 Suppose that (1.5)–(1.8), and either (1.10) or (1.11) hold. Then, for u ∈ U,
(1.19) holds.

Therefore, the uniform estimates (1.19) ensure that there exist a subsequence {uεk } of
{uε} and a function u ∈ C1,1(M̄) such that uεk → u in M as εk → 0. It is easy to verify that
u satisfies (1.3) and (1.4) and u ∈ C3,α(E) for any α ∈ (0, 1). Consequently, Theorem 1.1 is
established.
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