The obstacle problem for conformal metrics on compact Riemannian manifolds

Sijia Bao ${ }^{1 *}$ and Yuming Xing ${ }^{1}$
"Correspondence:
Baosj11@163.com
${ }^{1}$ Department of Mathematics, Harbin Institute of Technology, Harbin, China

Abstract

We prove a priori estimates up to their second order derivatives for solutions to the obstacle problem of curvature equations on Riemannian manifolds $\left(M^{n}, g\right)$ arising from conformal deformation. With the a priori estimates the existence of a $C^{1,1}$ solution to the obstacle problem with Dirichlet boundary value is obtained by approximation.

Keywords: Obstacle problem; A priori estimates; Hessian equations; Viscosity solutions; Riemannian manifolds

1 Introduction

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold of dimension $n \geq 3$ with smooth boundary $\partial M, \bar{M}:=M \cup \partial M$. In conformal geometry, it is interesting to find a complete metric $\tilde{g} \in$ $[g]$, the conformal class of g, with which the manifold has prescribed curvature. In general, such conformal deformation can be interpreted by certain partial differential equations. See [8, 13, 22, 25, 26] for more details.

In [8], Guan studied the existence of a complete conformal metric \tilde{g} of negative Ricci curvature on M satisfying

$$
\begin{equation*}
f\left(-\lambda\left(\tilde{g}^{-1} \operatorname{Ric}_{\tilde{g}}\right)\right)=\psi \quad \text { in } M \tag{1.1}
\end{equation*}
$$

where $\operatorname{Ric}_{\tilde{g}}$ is the Ricci tensor of \tilde{g}, and $\lambda\left(\tilde{g}^{-1} \operatorname{Ric}_{\tilde{g}}\right)=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are the eigenvalues of $\tilde{g}^{-1} \operatorname{Ric}_{\tilde{g}}$. The transformation formula for the Ricci tensor under conformal deformation $\tilde{g}=e^{2 u} g$ is given by

$$
\frac{1}{n-2} \operatorname{Ric}_{\tilde{g}}=\frac{1}{n-2} \operatorname{Ric}_{g}-\nabla^{2} u-\left(\frac{\Delta u}{n-2}+|\nabla u|^{2}\right) g+d u \otimes d u
$$

where $\nabla u, \nabla^{2} u$, and Δu denote the gradient, Hessian, and Laplacian of u with respect to the metric g, respectively. When f is homogenous of degree one, it is easy to verify that equation (1.1) is equivalent to the following form:

$$
\begin{equation*}
f\left(\lambda\left(g^{-1}\left[\nabla^{2} u+\frac{\Delta u}{n-2} g+|\nabla u|^{2} g-d u \otimes d u-\frac{\operatorname{Ric}_{g}}{n-2}\right]\right)\right)=\frac{\psi(x)}{n-2} e^{2 u} \tag{1.2}
\end{equation*}
$$

In this paper, we study the obstacle problem of equation (1.2). More generally, let

$$
T[u]:=\nabla^{2} u+s d u \otimes d u+\left(\gamma \Delta u-\frac{t}{2}|\nabla u|^{2}\right) g+\chi
$$

where χ is a smooth $(0,2)$ tensor, $\gamma>0$ is a constant, and $s, t \in \mathbb{R}$. We consider the following equation:

$$
\begin{equation*}
\max \left\{u-h,-\left(f\left(\lambda\left(g^{-1} T[u]\right)\right)-\psi[u]\right)\right\}=0 \quad \text { in } M \tag{1.3}
\end{equation*}
$$

with the Dirichlet boundary condition

$$
\begin{equation*}
u=\varphi \quad \text { on } \partial M, \tag{1.4}
\end{equation*}
$$

where $h \in C^{3}(\bar{M}), \varphi \in C^{4}(\partial M), h>\varphi$ on $\partial M, \psi[u]=\psi(x, u)$ is a positive function in $C^{3}(\bar{M} \times \mathbb{R})$.

Equations as (1.1) and (1.3) are the Hessian equations, which were well studied by many authors such as $[2,7,9-12,23,24]$. Generally, $f \in C^{2}(\Gamma) \cap C^{0}(\bar{\Gamma})$ is a symmetric function of $\lambda \in \mathbb{R}^{n}$, defined in an open, convex, and symmetric cone $\Gamma \varsubsetneqq \mathbb{R}^{n}$, with vertex at the origin, which contains the positive cone: $\Gamma_{n}^{+}:=\left\{\lambda \in \mathbb{R}^{n}\right.$: each component $\left.\lambda_{i}>0\right\}$ and satisfies the following fundamental structure conditions:

$$
\begin{equation*}
f_{i} \equiv \frac{\partial f}{\partial \lambda_{i}}>0 \quad \text { in } \Gamma, 1 \leq i \leq n, \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is a concave function, } \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f>0 \quad \text { in } \Gamma, \quad f=0 \quad \text { on } \partial \Gamma . \tag{1.7}
\end{equation*}
$$

Here, for convenience, we also assume that
f is homogeneous of degree one.

We observe that by the concavity and homogeneity of f,

$$
\begin{equation*}
\sum f_{i}(\lambda)=f(\lambda)+\sum f_{i}(\lambda)\left(1-\lambda_{i}\right) \geq f(1, \ldots, 1)>0 \quad \text { in } \Gamma . \tag{1.9}
\end{equation*}
$$

Important classes of f are the elementary symmetric functions and their quotients, i.e.,

$$
f(\lambda)=\left(\sigma_{k}\right)^{\frac{1}{k}}(\lambda):=\left(\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}}\right)^{\frac{1}{k}}, \quad 1 \leq k \leq n,
$$

and

$$
f(\lambda)=\left(\frac{\sigma_{k}}{\sigma_{l}}\right)^{\frac{1}{k-l}}, \quad 0 \leq l<k \leq n
$$

Let F be defined by $F(r)=f(\lambda(r))$ for $r=\left\{r_{i j}\right\} \in \mathcal{S}^{n \times n}$ with $\lambda(r) \in \Gamma$, where $\mathcal{S}^{n \times n}$ is the set of $n \times n$ symmetric matrices. It is shown in [2] that (1.5) implies F is an elliptic operator and (1.6) ensures that F is concave.

A function $u \in C^{2}(M)$ is called admissible at $x \in M$ if $\lambda\left(g^{-1} T[u]\right)(x) \in \Gamma$, and we call it admissible in M when it is admissible at each x in M. In this paper, we prove the existence of an admissible viscosity solution of (1.3) and (1.4) in $C^{1,1}(\bar{M})$ (see [1,3] for the definition of viscosity solutions).
Many authors have studied various obstacle problems. In [6], Gerhardt considered a hypersurface bounded from below by an obstacle with prescribed mean curvature in \mathbb{R}^{n}. Lee [17] considered the obstacle problem for the Monge-Ampère equation (i.e., $f=\left(\sigma_{n}\right)^{\frac{1}{n}}$) for the case that $T[u]=D^{2} u, \psi \equiv 1$, and $\varphi \equiv 0$, and proved the $C^{1,1}$ regularity of the viscosity solution in a strictly convex domain in \mathbb{R}^{n}. Xiong and Bao [27] extended the work of Lee to a nonconvex domain in \mathbb{R}^{n} with general ψ and φ under additional assumptions. Bao, Dong, and Jiao treated a class of obstacle problems in [1] assuming that $T[u]=\nabla^{2} u+A(x, u, \nabla u)$, under a certain technical assumption. Because of the term $\gamma \Delta u(\gamma>0)$, here we only need a minimal amount of assumptions. For other works, see $[4,14,15,18-21]$.
Our main result is the following theorem.

Theorem 1.1 Assume that (1.5)-(1.8) and either the following condition

$$
\begin{equation*}
\lim _{z \rightarrow+\infty} \psi(x, z)=+\infty, \quad \forall x \in \bar{M} \tag{1.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{2 s-n t}{1+n \gamma}<2 \lambda_{1} \tag{1.11}
\end{equation*}
$$

hold, where λ_{1} is the first eigenvalue of the problem

$$
\begin{cases}\Delta u+\lambda(\operatorname{tr} \chi)^{+} u=0 & \text { on } \bar{M} \tag{1.12}\\ u=0 & \text { on } \partial M\end{cases}
$$

$\left(\lambda_{1}=+\infty\right.$ if $\left.\operatorname{tr} \chi \leq 0\right)$. Then there exists a viscosity solution $u \in C^{1,1}(\bar{M})$ to (1.3) and (1.4), if there exists a subsolution $\underline{u} \in C^{0}(\bar{M}) \cap C^{1}\left(\bar{M}_{\delta}\right)$ for some $\delta>0$ such that

$$
\begin{cases}f\left(\lambda\left(g^{-1} T[\underline{u}]\right)\right) \geq \psi[\underline{u}], & \text { in } M, \tag{1.13}\\ \underline{u}=\varphi, & \text { on } \partial M, \\ \underline{u} \leq h, & \text { in } M,\end{cases}
$$

where $M_{\delta}=\{x \in M: \operatorname{dist}(x, \partial M) \leq \delta\}$. Moreover, we have that $u \in C^{3, \alpha}(E)$ for any $\alpha \in(0,1)$, and $f\left(\lambda\left(g^{-1} T[u]\right)\right)=\psi[u]$ in E, where $E:=\{x \in M: u(x)<h(x)\}$.

Remark 1.2 (1.10), as well as (1.11), is used in Lemma 3.2 to derive an upper bound for u. Assumption (1.13) is just applied to derive a lower bound for u on M and $\nabla_{v} u$ on ∂M, where v is the interior unit normal to ∂M.

Remark 1.3 We can construct some subsolutions of (1.2) satisfying (1.13) as in [15] following ideas from [2] and [7] since

$$
|\nabla u|^{2} g-d u \otimes d u
$$

is positive definite and that we can obtain a priori upper bound of any admissible function (Lemma 3.2) under additional conditions that there exists a sufficiently large number $R>0$ such that at each point $x \in \partial M$,

$$
\begin{equation*}
\left(\kappa_{1}, \ldots, \kappa_{n-1}, R\right) \in \Gamma \tag{1.14}
\end{equation*}
$$

where $\kappa_{1}, \ldots, \kappa_{n-1}$ are the principal curvatures of ∂M with respect to the interior normal, and that for every $C>0$ and every compact set K in Γ there is a number $R=R(C, K)$ such that

$$
\begin{equation*}
f(R \lambda) \geq C \quad \text { for all } \lambda \in K \tag{1.15}
\end{equation*}
$$

We use a penalization technique to prove the existence of viscosity solutions to (1.3) and (1.4). We shall consider the following singular perturbation problem:

$$
\begin{cases}f\left(\lambda\left(g^{-1} T[u]\right)\right)=\psi[u]+\beta_{\varepsilon}(u-h) & \text { in } M \tag{1.16}\\ u=\varphi & \text { on } \partial M\end{cases}
$$

where the penalty function $\beta_{\varepsilon} \in C^{2}(\mathbb{R})$ satisfies

$$
\begin{align*}
& \beta_{\varepsilon}, \beta_{\varepsilon}^{\prime}, \beta_{\varepsilon}^{\prime \prime} \geq 0 \quad \text { on } \mathbb{R}, \beta_{\varepsilon}(z)=0, \text { whenever } z \leq 0 ; \\
& \beta_{\varepsilon}(z) \rightarrow \infty \quad \text { as } \varepsilon \rightarrow 0^{+}, \text {whenever } z>0 . \tag{1.17}
\end{align*}
$$

An example given in [27] is

$$
\beta_{\varepsilon}(z)= \begin{cases}0, & z \leq 0 \tag{1.18}\\ z^{3} / \varepsilon, & z>0\end{cases}
$$

for $\varepsilon \in(0,1)$. Observe that \underline{u} is also a subsolution to (1.16).
Let

$$
\mathcal{U}=\left\{u_{\varepsilon} \mid u_{\varepsilon} \in C^{4}(\bar{M}) \text { is an admissible solution of (1.16) with } u_{\varepsilon} \geq \underline{u} \text { on } \bar{M}\right\} .
$$

We aim to derive the uniform bound

$$
\begin{equation*}
\left|u_{\varepsilon}\right|_{C^{2}(\bar{M})} \leq C \tag{1.19}
\end{equation*}
$$

for $u_{\varepsilon} \in U$, where C is independent of ε. After establishing (1.19), the equation (1.16) becomes uniformly elliptic by (1.7). By Evans-Krylov [5], [16] theorem, we can derive the $C^{2, \alpha}$ estimates (which may depend on ε) of u_{ε}. Higher estimates can be derived by

Schauder theory. Following the proof as in [8] or [1], we can prove there exists an admissible solution u_{ε} to (1.16). Then we can conclude by (1.19) that there exists a viscosity solution $u \in C^{1,1}(\bar{M})$ to (1.3) and (1.4), see [1, 27].

Thus, our main work is focused on the a priori estimates for admissible solutions up to their second order derivatives. In Sect. 2, we achieve the estimates for second order derivatives. Finally, we end this paper with gradient and C^{0} estimates in Sect. 3.

2 Estimates for second order derivatives

In this section, we prove a priori estimates of second order derivatives for admissible solutions. From now on, we drop the subscript ε when there is no possible confusion.

Theorem 2.1 Assume that f satisfies (1.5)-(1.8) and $u \in C^{4}(\bar{M})$ is an admissible solution to (1.16). Then

$$
\begin{equation*}
\sup _{M}\left|\nabla^{2} u\right| \leq C\left(1+\sup _{\partial M}\left|\nabla^{2} u\right|\right), \tag{2.1}
\end{equation*}
$$

where C depends on $|u|_{C^{1}(\bar{M})}$ and other known data.
Proof Set

$$
W(x)=\max _{\xi \in T_{x} M,|\xi|=1}\left(\nabla_{\xi \xi} u+s\left|\nabla_{\xi} u\right|^{2}\right) e^{\phi}, \quad x \in \bar{M},
$$

where ϕ is a function to be determined. Assume that W is achieved at an interior point $x_{0} \in M$ and a unit direction $\xi \in T_{x_{0}} M$. Choose a smooth orthonormal local frame e_{1}, \ldots, e_{n} about x_{0} such that $\xi=e_{1}, \nabla_{i} e_{j}\left(x_{0}\right)=0$ and that $T_{i j}\left(x_{0}\right)$ is diagonal. We write $G=\nabla_{11} u+$ $s\left|\nabla_{1} u\right|^{2}$. Assume $G\left(x_{0}\right)>0$ (otherwise we are done).

At the point x_{0}, where the function $\log G+\phi$ (defined near x_{0}) attains its maximum, we have

$$
\begin{equation*}
\frac{\nabla_{i} G}{G}+\nabla_{i} \phi=0, \quad i=1, \ldots, n \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\nabla_{i i} G}{G}-\left(\frac{\nabla_{i} G}{G}\right)^{2}+\nabla_{i i} \phi \leq 0 . \tag{2.3}
\end{equation*}
$$

By (2.3) we have

$$
\begin{equation*}
F^{i i}\left(\nabla_{i i} G+G \nabla_{i i} \phi-G\left|\nabla_{i} \phi\right|^{2}\right) \leq 0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta G+G \Delta \phi-G|\nabla \phi|^{2} \leq 0 . \tag{2.5}
\end{equation*}
$$

Since $\gamma>0$, we obtain

$$
\begin{equation*}
F^{i i}\left(\nabla_{i i} G+\gamma \Delta G+G \nabla_{i i} \phi+\gamma G \Delta \phi-G\left|\nabla_{i} \phi\right|^{2}-\gamma G|\nabla \phi|^{2}\right) \leq 0 . \tag{2.6}
\end{equation*}
$$

By calculation, we get

$$
\begin{equation*}
\nabla_{i} G=\nabla_{i 11} u+2 s \nabla_{1} u \nabla_{i 1} u, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{i i} G=\nabla_{i i 11} u+2 s\left(\left|\nabla_{i 1} u\right|^{2}+\nabla_{1} u \nabla_{i i 1} u\right) . \tag{2.8}
\end{equation*}
$$

Recall the formula for interchanging order of covariant derivatives

$$
\begin{equation*}
\nabla_{i j k} v-\nabla_{k i j} v=R_{k i j}^{l} \nabla_{l} v, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla_{i j k l} v-\nabla_{k l i j} v= & R_{l j k}^{m} \nabla_{i m} v+\nabla_{i} R_{l j k}^{m} \nabla_{m} v+R_{l i k}^{m} \nabla_{j m} v \\
& +R_{j i k}^{m} \nabla_{l m} v+R_{j i l}^{m} \nabla_{k m} v+\nabla_{k} R_{j i l}^{m} \nabla_{m} v . \tag{2.10}
\end{align*}
$$

It follows from (2.10)

$$
\begin{equation*}
\nabla_{i i} G \geq \nabla_{11 i i} u+2 s\left(\left|\nabla_{i 1} u\right|^{2}+\nabla_{1} u \nabla_{1 i i} u\right)-C(1+G), \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
\nabla_{i i} G+\gamma \Delta G \geq & \nabla_{11 i i} u+2 s\left(\left|\nabla_{i 1} u\right|^{2}+\nabla_{1} u \nabla_{1 i i} u\right)+\gamma \nabla_{11}(\Delta u) \\
& +2 s \gamma\left(\left|\nabla_{i 1} u\right|^{2}+\nabla_{1} u \nabla_{1}(\Delta u)\right)-C(1+G) . \tag{2.12}
\end{align*}
$$

Differentiating equation (1.16) once at x_{0}, we obtain for $1 \leq k \leq n$,

$$
\begin{equation*}
\nabla_{k} F=F^{i i} \nabla_{k} T_{i i}=\psi_{x_{k}}+\psi_{z} \nabla_{k} u+\nabla_{k} \beta_{\varepsilon}(u-h) . \tag{2.13}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
F^{i i} \nabla_{1}\left(\nabla_{i i} u+\gamma \Delta u\right) & =F^{i i} \nabla_{1}\left(T_{i i}[u]-s\left|\nabla_{i} u\right|^{2}+\frac{t}{2}|\nabla u|^{2}-\chi_{i i}\right) \\
& \geq \nabla_{1} F-2 s F^{i i} \nabla_{i} u \nabla_{1 i} u+t \nabla_{k} u \nabla_{1 k} u \sum_{i} F^{i i}-\sum_{i} F^{i i} \tag{2.14}
\end{align*}
$$

and that

$$
\begin{align*}
F^{i i} \nabla_{11}\left(\nabla_{i i} u+\gamma \Delta u\right)= & F^{i i} \nabla_{11}\left(T_{i i}[u]-s\left|\nabla_{i} u\right|^{2}+\frac{t}{2}|\nabla u|^{2}-\chi_{i i}\right) \\
\geq & F^{i i} \nabla_{11} T_{i i}[u]-2 s F^{i i}\left(\nabla_{i} u \nabla_{11 i} u+\left|\nabla_{1 i} u\right|^{2}\right) \\
& +t \sum_{k}\left(\nabla_{k} u \nabla_{11 k} u+\left|\nabla_{1 k} u\right|^{2}\right) \sum_{i} F^{i i}-C \sum_{i} F^{i i} . \tag{2.15}
\end{align*}
$$

With (2.9) we see

$$
\begin{align*}
2 s \nabla_{i} u \nabla_{11 i} u & \leq 2 s \nabla_{i} u\left(\nabla_{i} G-2 s \nabla_{1} u \nabla_{i 1} u\right)+C \\
& \leq-4 s^{2} \nabla_{i} u \nabla_{1} u \nabla_{i 1} u+C(1+G|\nabla \phi|), \tag{2.16}
\end{align*}
$$

and similarly

$$
\begin{equation*}
t \nabla_{k} u \nabla_{11 k} u \geq-2 s t \nabla_{k} u \nabla_{1} u \nabla_{k 1} u-C(1+G|\nabla \phi|) . \tag{2.17}
\end{equation*}
$$

With (2.12), (2.14)-(2.17), and the concavity of F, we derive

$$
\begin{align*}
F^{i i}\left(\nabla_{i i} G+\gamma \Delta G\right) \geq & \nabla_{11} F+2 s \nabla_{1} u \nabla_{1} F+(2 s \gamma+t) \sum_{k}\left|\nabla_{1 k} u\right|^{2} \sum F^{i i} \\
& -C\left(G+G|\nabla \phi|+\sum_{j, k}\left|\nabla_{j k} u\right|\right) \tag{2.18}\\
\geq & \nabla_{11} F+2 s \nabla_{1} u \nabla_{1} F-C\left(G^{2}+G|\nabla \phi|\right) .
\end{align*}
$$

By (1.9) and $\beta_{\varepsilon}^{\prime \prime}>0$ it follows from (2.6) and (2.18) that

$$
\begin{align*}
& F^{i i}\left(\nabla_{i i} \phi-\left|\nabla_{i} \phi\right|^{2}\right)+\gamma\left(\Delta \phi-|\nabla \phi|^{2}\right) \sum F^{i i} \\
& \quad \leq C(G+|\nabla \phi|) \sum F^{i i}+\left(\frac{C}{G}-1\right) \beta_{\varepsilon}^{\prime}(u-h) . \tag{2.19}
\end{align*}
$$

Let

$$
\phi:=\eta(w)=\left(1-\frac{w}{2 a}\right)^{-1 / 2}, \quad w=\frac{|\nabla u|^{2}}{2}
$$

where $a>\sup _{M} w$ is a constant to be determined. We have

$$
1 \leq \eta<\sqrt{2}, \quad \eta^{\prime}=\frac{\eta^{3}}{4 a}, \quad \eta^{\prime \prime}=\frac{3 \eta^{\prime 2}}{\eta}
$$

and

$$
\begin{equation*}
\nabla_{i i} \phi-\left|\nabla_{i} \phi\right|^{2}=\eta^{\prime} \nabla_{i i} w+\left(\eta^{\prime \prime}-\eta^{\prime 2}\right)\left|\nabla_{i} w\right|^{2} \geq \eta^{\prime} \nabla_{i i} w . \tag{2.20}
\end{equation*}
$$

Next, by (2.14)

$$
\begin{align*}
& F^{i i}\left(\nabla_{i i} w+\gamma \Delta w\right) \\
&=F^{i i}\left(\sum_{l}\left|\nabla_{i l} u\right|^{2}+\gamma \sum_{k, l}\left|\nabla_{k l} u\right|^{2}\right)+F^{i i} \nabla_{l} u\left(\nabla_{i i l} u+\gamma \Delta\left(\nabla_{l} u\right)\right) \\
& \geq F^{i i} \nabla_{l} u\left(\nabla_{l i i} u+\gamma \sum_{k} \nabla_{l k k} u\right)+\left(\gamma G^{2}-C G\right) \sum F^{i i} \\
& \geq-C \beta_{\varepsilon}^{\prime}(u-h)+\left(\gamma G^{2}-C G\right) \sum F^{i i} . \tag{2.21}
\end{align*}
$$

Combining (2.19), (2.20), (2.21), and $|\nabla \phi| \leq C \eta^{\prime} G$, we have

$$
\begin{equation*}
\eta^{\prime}\left(\gamma G^{2}-C G\right) \sum F^{i i} \leq C\left(G+\eta^{\prime} G\right) \sum F^{i i}+\left(\frac{C}{G}-1+C \eta^{\prime}\right) \beta_{\varepsilon}^{\prime}(u-h) \tag{2.22}
\end{equation*}
$$

We could assume that $G \geq 2 C$. When $a>2 C$, the coefficient of $\beta_{\varepsilon}^{\prime}(u-h)$ is negative. Then we can derive $G \leq \frac{4 a C}{\gamma}$.

To derive the boundary estimates for $\nabla^{2} u$, we note that $\operatorname{tr}\left(s d u \otimes d u-\frac{t}{2}|\nabla u|^{2} g+\chi\right) \leq C$ on \bar{M}, where C is independent of ε, though it may depend on $|u|_{C^{1}(\bar{M})}$. As in [1, 4], let H be the solution to

$$
\begin{cases}(1+n \gamma) \Delta H+C=0 & \text { in } M \\ H=\varphi & \text { on } \partial M\end{cases}
$$

Then we have $u \leq H$ in M by the maximum principle and $\beta_{\varepsilon}(u-h) \equiv 0$ in $M_{\delta}=\{x \in M$: $\operatorname{dist}(x, \partial M) \leq \delta\}$, where δ is sufficiently small. Thus,

$$
\begin{cases}f\left(\lambda\left(g^{-1} T[u]\right)\right)=\psi[u] & \text { in } M_{\delta} \tag{2.23}\\ u=\varphi & \text { on } \partial M\end{cases}
$$

By the same arguments of Sect. 4 in [8], we obtain that

$$
\begin{equation*}
\sup _{\partial M}\left|\nabla^{2} u\right| \leq C, \tag{2.24}
\end{equation*}
$$

where C depends on $|u|_{C^{1}(\bar{M})}$ and other known data.
Combining (2.1) and (2.24), we therefore get the full estimates for second order derivatives.

3 Gradient estimates, maximum principle, and existence

For the gradient estimates, we have the following theorem.

Theorem 3.1 Assume that (1.5)-(1.8) hold. Let $u \in C^{3}(\bar{M})$ be an admissible solution to (1.16). Then

$$
\begin{equation*}
\sup _{M}|\nabla u| \leq C\left(1+\sup _{\partial M}|\nabla u|\right), \tag{3.1}
\end{equation*}
$$

where C depends on $|u|_{C^{0}(\bar{M})}$ and other known data.

Proof Suppose that $w e^{\phi}$, where $w=\frac{|\nabla u|^{2}}{2}$ and $\phi=\phi(u)$ to be determined satisfying that $\phi^{\prime}(u)>0$, achieves a maximum at an interior point $x_{0} \in M$. As before, we choose a smooth orthonormal local frame e_{1}, \ldots, e_{n} about x_{0} such that $\nabla_{e_{i}} e_{j}=0$ at x_{0} and $\left\{T_{i j}\left(x_{0}\right)\right\}$ is diagonal. Differentiating $w e^{\phi}$ at x_{0} twice, we have

$$
\begin{equation*}
\nabla_{i} w+w \nabla_{i} \phi=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{i i} w-w\left(\nabla_{i} \phi\right)^{2}+w \nabla_{i i} \phi \leq 0 . \tag{3.3}
\end{equation*}
$$

Differentiating w, we see

$$
\nabla_{i} w=\sum_{k} \nabla_{k} u \nabla_{i k} u, \quad \nabla_{i i} w=\sum_{k}\left(\nabla_{i k} u\right)^{2}+\sum_{k} \nabla_{k} u \nabla_{i i k} u .
$$

Using (3.2) it follows from (3.3) that

$$
\begin{equation*}
F^{i i}\left(\delta_{k l}-\frac{\nabla_{k} u \nabla_{l} u}{2 w}\right) \nabla_{i k} u \nabla_{i l} u+F^{i i} \nabla_{k} u \nabla_{i i k} u-w F^{i i}\left(\frac{\left(\nabla_{i} \phi\right)^{2}}{2}-\nabla_{i i} \phi\right) \leq 0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, k, l}\left(\delta_{k l}-\frac{\nabla_{k} u \nabla_{l} u}{2 w}\right) \nabla_{i k} u \nabla_{i l} u+\nabla_{k} u \Delta\left(\nabla_{k} u\right)-\frac{w}{2}|\nabla \phi|^{2}+w \Delta \phi \leq 0 . \tag{3.5}
\end{equation*}
$$

Note that the first term in (3.4) and (3.5) is nonnegative. Multiply $\gamma \sum F^{i i}$ to (3.5) and add what we got to (3.4). Thus, by (2.9) we obtain

$$
\begin{align*}
& F^{i i} \nabla_{k} u\left(\nabla_{k i i} u+\gamma \nabla_{k} \Delta u\right)-\frac{w}{2} F^{i i}\left(\left|\nabla_{i} \phi\right|^{2}+\gamma|\nabla \phi|^{2}\right) \\
& \quad+w F^{i i}\left(\nabla_{i i} \phi+\gamma \Delta \phi\right) \leq C|\nabla u|^{2} \sum F^{i i} . \tag{3.6}
\end{align*}
$$

Now we compute the first term in (3.6). Firstly, we have

$$
\nabla_{i} \phi=\phi^{\prime} \nabla_{i} u, \quad \nabla_{i i} \phi=\phi^{\prime} \nabla_{i i} u+\phi^{\prime \prime}\left(\nabla_{i} u\right)^{2} .
$$

Using (3.2), we easily get that

$$
\begin{align*}
& F^{i i} \nabla_{k} u\left(\nabla_{k i i} u+\gamma \nabla_{k} \Delta u\right) \\
& \quad=F^{i i} \nabla_{k} u \nabla_{k}\left(T_{i i}-s\left|\nabla_{i} u\right|^{2}+\frac{t}{2}|\nabla u|^{2}-\chi_{i i}\right) \\
& \quad=\nabla_{k} u \nabla_{k}\left(\psi+\beta_{\varepsilon}\right)+w \phi^{\prime} F^{i i}\left(2 s\left|\nabla_{i} u\right|^{2}-t|\nabla u|^{2}\right)-F^{i i} \nabla_{k} u \nabla_{k} \chi_{i i} . \tag{3.7}
\end{align*}
$$

By the homogeneity of F, we also get

$$
\begin{align*}
& F^{i i}\left(\nabla_{i i} \phi+\gamma \Delta \phi\right) \\
& \quad=\phi^{\prime \prime} F^{i i}\left(\left|\nabla_{i} u\right|^{2}+\gamma|\nabla u|^{2}\right)+\phi^{\prime} F^{i i}\left(T_{i i}-s\left|\nabla_{i} u\right|^{2}+\frac{t}{2}|\nabla u|^{2}-\chi_{i i}\right) \\
& \quad=\phi^{\prime \prime} F^{i i}\left(\left|\nabla_{i} u\right|^{2}+\gamma|\nabla u|^{2}\right)+\phi^{\prime}\left(F-s F^{i i}\left|\nabla_{i} u\right|^{2}+\frac{t}{2} F^{i i}|\nabla u|^{2}-F^{i i} \chi_{i i}\right) . \tag{3.8}
\end{align*}
$$

According to (3.7) and (3.8), it follows from (3.6)

$$
\begin{align*}
& \gamma|\nabla u|^{2}\left(\phi^{\prime \prime}-\frac{1}{2}\left(\phi^{\prime}\right)^{2}-\frac{t}{2 \gamma} \phi^{\prime}\right) \sum F^{i i}+\left(\phi^{\prime \prime}-\frac{1}{2}\left(\phi^{\prime}\right)^{2}+s \phi^{\prime}\right) F^{i i}\left(\nabla_{i} u\right)^{2} \\
& \leq-\phi^{\prime}\left(\psi+\beta_{\varepsilon}-F^{i i} \chi_{i i}\right)+C \sum F^{i i}-\frac{\nabla_{k} u \nabla_{k}\left(\psi+\beta_{\varepsilon}\right)}{w} \\
& \leq-\left(\phi^{\prime} \beta_{\varepsilon}+\frac{\nabla_{k} u \nabla_{k}(u-h) \beta_{\varepsilon}^{\prime}}{w}\right)+C \sum F^{i i}+C . \tag{3.9}
\end{align*}
$$

Let

$$
\phi(u)=v^{-a}, \quad v=1-u+\sup _{M} u .
$$

We have

$$
\phi^{\prime}(u)=a v^{-a-1}, \quad \phi^{\prime \prime}(u)=\frac{(a+1) \phi^{\prime}}{v}
$$

and

$$
\phi^{\prime \prime}-\frac{1}{2}\left(\phi^{\prime}\right)^{2}=\phi^{\prime}\left(\frac{a+1}{v}-\frac{a v^{-a}}{2 v}\right) \geq \frac{\phi^{\prime} a}{2 v}>0
$$

since $v^{-a} \leq 1$. When $\left|\nabla u\left(x_{0}\right)\right|$ is sufficiently large, we see $\nabla_{k} u \nabla_{k}(u-h)>0$. Hence we have that the first term on the right-hand side of (3.9) is negative as $\beta_{\varepsilon}, \beta_{\varepsilon}^{\prime}>0$. From (3.9) and (1.9) when a is sufficiently large, we then obtain that

$$
\begin{equation*}
\frac{\phi^{\prime} a \gamma|\nabla u|^{2}}{4 v} \leq C \text {, } \tag{3.10}
\end{equation*}
$$

from which we conclude that (3.1) holds.

In order to prove (1.19), it remains to bound $\sup _{M}|u|+\sup _{\partial M}|\nabla u|$. We quote two lemmas in [8], the ingredients of whose proofs are the maximum principle.

Lemma 3.2 If either (1.10) or (1.11) holds, then any admissible solution u of (1.16) admits the a priori bound

$$
\begin{equation*}
\sup _{M} u \leq c_{0} . \tag{3.11}
\end{equation*}
$$

Lemma 3.3 If u is admissible such that $\operatorname{tr} T[u] \geq 0$ and $|u|_{C^{0}(M)} \leq \mu$, then

$$
\begin{equation*}
\sup _{\partial M} \nabla_{\nu} u \leq c_{1}(\mu), \tag{3.12}
\end{equation*}
$$

where v is the interior unit normal to ∂M.

Now with the above two lemmas and the fact $\nabla_{\nu} u \geq \nabla_{\nu} \underline{u}$ on ∂M when $u \in \mathcal{U}$, we then have the following.

Theorem 3.4 Suppose that (1.5)-(1.8), and either (1.10) or (1.11) hold. Then, for $u \in \mathcal{U}$, (1.19) holds.

Therefore, the uniform estimates (1.19) ensure that there exist a subsequence $\left\{u_{\varepsilon_{k}}\right\}$ of $\left\{u_{\varepsilon}\right\}$ and a function $u \in C^{1,1}(\bar{M})$ such that $u_{\varepsilon_{k}} \rightarrow u$ in M as $\varepsilon_{k} \rightarrow 0$. It is easy to verify that u satisfies (1.3) and (1.4) and $u \in C^{3, \alpha}(E)$ for any $\alpha \in(0,1)$. Consequently, Theorem 1.1 is established.

Funding

The research was supported by the National Natural Science Foundation of China (No. 11771107).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 16 April 2018 Accepted: 25 August 2018 Published online: 12 September 2018

References

1. Bao, G.-J., Dong, W.-S., Jiao, H.-M.: Regularity for an obstacle problem of Hessian equations on Riemannian manifolds. J. Differ. Equ. 258, 696-716 (2015)
2. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations III, functions of the eigenvalues of the Hessian. Acta Math. 155, 261-301 (1985)
3. Crandall, M., Ishii, H., Lions, P.: User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1-67 (1992)
4. Dong, W.-S., Wang, T.-T., Bao, G.-J.: A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Commun. Pure Appl. Anal. 15, 1769-1780 (2016)
5. Evans, L.C.: Classical solutions of fully nonlinear, convex, second order elliptic equations. Commun. Pure Appl. Math. 35, 333-363 (1982)
6. Gerhardt, C.: Hypersurfaces of prescribed mean curvature over obstacles. Math. Z. 133, 169-185 (1973)
7. Guan, B.: The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 8, 45-69 (1999)
8. Guan, B.: Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary. Int. Math. Res. Not. 2008, rnn105 (2008) Addendum, IMRN 2009 (2009), 4354-4355, rnp166.
9. Guan, B.: Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163, 1491-1524 (2014)
10. Guan, B.: The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds. arXiv: 1403.2133
11. Guan, B., Jiao, H.-M.: Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 54, 2693-2712 (2015)
12. Guan, B., Jiao, H.-M.: The Dirichlet problem for Hessian type fully nonlinear elliptic equations on Riemannian manifolds. Discrete Contin. Dyn. Syst. 36, 701-714 (2016)
13. Guan, P.-F., Wang, G.-F.: Local estimates for a class of fully nonlinear equations arising from conformal geometry. Int. Math. Res. Not. 26, 1413-1532 (2003)
14. Jiao, H.-M.: C ${ }^{1,1}$ regularity for an obstacle problem of Hessian equations on Riemannian manifolds. Proc. Am. Math. Soc. 144, 3441-3453 (2016)
15. Jiao, H.-M., Wang, Y.: The obstacle problem for Hessian equations on Riemannian manifolds. Nonlinear Anal. TMA 95, 543-552 (2014)
16. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izvestia Math. Ser. 47, 75-108 (1983)
17. Lee, K.:. The obstacle problem for Monge-Ampère equation. Commun. Partial Differ. Equ. 26, 33-42 (2001)
18. Liu, J.-K., Zhou, B.: An obstacle problem for a class of Monge-Ampère type functionals. J. Differ. Equ. 254, 1306-1325 (2013)
19. Oberman, A.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135, 1689-1694 (2007)
20. Oberman, A., Silvestre, L.: The Dirichlet problem for the convex envelope. Trans. Am. Math. Soc. 363, 5871-5886 (2011)
21. Savin, O.: The obstacle problem for Monge-Ampere equation. Calc. Var. Partial Differ. Equ. 22, 303-320 (2005)
22. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479-495 (1984)
23. Trudinger, N.S.: On the Dirichlet problem for Hessian equations. Acta Math. 175, 151-164 (1995)
24. Urbas, J.: Hessian equations on compact Riemannian manifolds. In: Nonlinear Problems in Mathematical Physics and Related Topics, II, pp. 367-377. Kluwer/Plenum, New York (2002)
25. Viaclovsky, J.A.: Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101, 283-316 (2000)
26. Viaclovsky, J.A.: Conformal Geometry and Fully Nonlinear Equations. Nankai Tracts in Mathematics, vol. 11, pp. 435-460. World Scientific, Hackensack (2006)
27. Xiong, J.-G., Bao, J.-G.: The obstacle problem for Monge-Ampère type equations in non-convex domains. Commun. Pure Appl. Anal. 10, 59-68 (2011)

Submit your manuscript to a SpringerOpen ${ }^{\circ}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]
[^0]: Submit your next manuscript at springeropen.com

