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1 Introduction

As is well known, the Triebel-Lizorkin spaces and Besov spaces contain many important
function spaces, such as Lebesgue spaces, Hardy spaces, Sobolev spaces and so on. Dur-
ing the last several years, a considerable amount of attention has been given to investigate
the boundedness for several integral operators on the Triebel-Lizorkin spaces and Besov
spaces. For examples, see [1-6] for singular integrals, [7-13] for Marcinkiewicz integrals,
[14] for the Littlewood—Paley functions, [15—-18] for maximal functions. In this paper we
continue to focus on this topic. More precisely, we aim to establish the boundedness and
continuity of parametric Marcinkiewicz integral operators associated to polynomial com-
pound mappings with rough kernels in Hardy spaces H'(S"!) on the Triebel-Lizorkin
spaces and Besov spaces.

We now recall the definitions of Triebel-Lizorkin spaces and Besov spaces.

Definition 1.1 Let d > 2 and S'(R?) be the tempered distribution class on R?. For « € R
and 0 < p, g < 00 (p # o0), the homogeneous Triebel-Lizorkin spaces F5/(R?) and Besov
spaces By (R?) are defined by

et | (Srwr)

=

< oo}; (1.1)
LP(R4)
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1/q
ijq(Rd) = {f € S'(Rd) : ”f”Bﬁ’q(Rd) = (Z 21 |\, *f||ZP(Rd)) < OO}, (1.2)
i€l
where W;(£) = $(2/€) for i € Z and ¢ € C*°(RY) satisfies the conditions: 0 < ¢(x) < 1;
supp(¢p) C {x:1/2 < |x| < 2}; ¢(x) > ¢ > 0 if 3/5 < |x|] < 5/3. The inhomogeneous ver-
sions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by F2Y(RY) and
BYY(R?), respectively, are obtained by adding the term ||® * f|| 1r(rd) to the right hand
side of (1.1) or (1.2) with ) _,_, replaced by Zizl, where © € S(R?) (the Schwartz class),
supp(©) C {£: 16| <2}, O(x) > ¢ > 0if |« < 5/3.

The following properties of the above spaces are well known (see [19-21] for more de-

tails):
E*(RY) =1P(R?) for1l<p<oo; (1.3)
F2P(RY) = B2P(RY)  fora e Rand 1 <p < oc; (1.4)
F21(RY) ~ F29(R?) N LP(R?)  and s
W Nl ppaggay ~ Wl o ay + IV Nl ey for o> 0;
BYA(RY) ~ B (R N 17 (RY)  and 16

”_f”Bg‘q(]Rd) ~ ”f’”Bqu(]Rd) + ”f”l}’(Rd) forot > 0.

Let n > 2 and S"! be the unit sphere in R” equipped with the normalized Lebesgue
measure do. Assume that Q € L}(S"!) is a function of homogeneous of degree zero and
satisfies the cancelation condition

/ Q(u)do (u) = 0. (1.7)
gn-1

We denote by A, (R,) (y > 1) the set of all measurable functions / defined on R, := (0, 00)
satisfying

R 1/y
Al ®,) = SuP<R1/ |h(e)|” dt) < 00.
R>0 0

In 1986, Stein [22] first introduced the singular Radon transforms 7j,o p by

Thopf(x) = p.v./ f(x _ P@))M .

(1.8)
R# [y|"

where P = (Py, Py, ..., P;) is a polynomial mapping from R” into R% and & € A1(R,). Later
on, the bounds of T}, on L? spaces and other function spaces have been studied by a
large number of scholars (see [4, 23, 24] for example). In particular, Chen et al. [4] estab-
lished the bounds for T}, o » on Triebel-Lizorkin spaces and Besov spaces under the con-
dition that 2 € H'(S"™') and & € A, (R, ) for some y > 1. It should be pointed out that the
class of singular Radon transforms T}, p is closely related to the class of Marcinkiewicz
integral operators

It QN
ME o of () = ( /0 (A

L /| I =)
yl<t

£ i

2 1/2
?) , (1.9)
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where /1, Q, P are given as in (1.8) and p =0 + it (0,7 € R and ¢ > 0). The operators de-
fined in (1.9) have their roots in the classical Marcinkiewicz integral operator Mg, which
corresponds to the case p =1, h(t) =1, n = d and P(y) = y. In their fundamental work
on the theory of Marcinkiewicz integrals, Stein [25] proved that Mg, is of type (p, p) for
1 < p <2 and of weak type (1,1) if Q € Lip,(S"1) (0 < @ < 1). Subsequently, the study of
Mg, and its extensions has attracted the attention of many authors. In 2002, Ding et al.
[26] observed that Mﬁ,mp with p = 1 is bounded on L?(R?) for 1 < p < 00 if Q € H'(S"1)
and 4 € L*(R,). In 2009, Al-Qassem and Pan [27] proved that MZ’Q,P is of type (p, p) for
|1/p - 1/2| < min{1/2,1/y'} if @ € L(log* L)*/?(S"!) and h € A, (R,) for some y > 1. It is
well known that L(log* L)?(S"-!) and H'(S""!) do not contain each other. We also note
that L°(R,) = A(R,) and A,,(R,) € A, (R,) for y» > y1 > 0.

On the other hand, the investigation on the boundedness of Marcinkiewicz integral op-
erators on Triebel-Lizorkin spaces and Besov spaces has attracted the attention of many
authors. In 2009, Zhang and Chen [12] observed that M}, , is bounded on F£(R9) for
O<a<landl<p,g<ocifp=1k=1and Qe H'(S"!). Subsequently, Zhang and Chen

(13] further proved that M}, is bounded on FPARY for0<a<1land 1+ n+”2+_11/r <p,
qg<2+ 1;71{’ if p =1, h e L°(R,) and Q € L"(S"!) with r > 1. Recently, Yabuta [10] im-

proved and extended the above results to the case Q € H(S""!) and & € A, (R,) for some
y > 1. For other interesting work on this topic we refer the reader to [1, 7, 8, 28-33].

Based on the above, a natural question, which arises from the above results, is the fol-
lowing.

Question A 1s the operator MZ,Q,P bounded on Triebel-Lizorkin spaces and Besov spaces
under the condition that @ € H'(S* ') and h € A, (R,)?

Question A is the main motivation for this work. The main purpose of this paper will
not only be to address the above question by treating a more general class of operators
but also to establish the corresponding continuity of Marcinkiewicz integral operators on
Triebel-Lizorkin spaces and Besov spaces. More precisely, let 4, 2, p, P be given asin (1.9)
and ¢ : R, — R be a suitable function, we define the parametric Marcinkiewicz integral
operator MZ}Q,W on R? by

P f(x—P(w(b/l)y')) dy

Zdt 1/2
o> —) - (1.10)

| 1 Qi
AﬁﬁpJMh<A _1Lm W)

Our main result can be listed as follows.

Theorem 1.1 Let P = (Py,Ps,...,P,;) be a polynomial mapping from R" into R? and ¢ € §,
where § is the set of all functions ¢ satisfying the following conditions:

(a) ¢ is a positive increasing C*(R,) function;

(b) there exist Cy, ¢y > 0 such that t¢'(t) = Cyp(t) and ¢(2t) < cgp(t) for all t > 0.

Suppose that Q@ € H'(S"') satisfies (1.7) and h € A, (R,) for some y > 1. Let §, =
max{2,y’}. Then

(i) for a € (0,1) and (1/p,1/q) € R, U{(1/p,1/p) : |11/p — 1/2| < 1/8,}, there exists a

constant C > 0 such that

M5 6.0 o | 20 gy < ClBILa, @ Q151 I | 24 gay,
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where R, is the set of all interiors of the convex hull of three squares
(1/2,1/2 +1/8,)?, (1/2 - 1/8,,1/2)* and (1/(2y), 1 - 1/(2y))*. Moreover, the operator
MZ,Q,W is continuous from FL/(R?) to FL(RY).

(ii) fora €(0,1), [1/p—1/2| < 1/8, and q € (1, 00), there exists a constant C > 0 such that

| Mp o p o |29y < Clllay ) 19205015 I N ey

Moreover, the operator MZ,Q,P,(p is continuous from By (R?) to BU(RY).
The constants C may depend on a, p, p, q, n, d, ¢ and deg(P) = maxi ;g deg(P)), but
they are independent of the coefficients of {P;}.

Remark 1.1 Itwas proved in [34] that the operator MZ,Q,P,¢ isof type (p,p) for |[1/p—1/2| <
min{1/2,1/y’} under the same conditions of Theorem 1.1. We observe that

|MZ,Q,7>,J‘MZ,Q,P,¢<€| = |MZ,Q,P,¢(f_g)’ (1.11)

for arbitrary functions f, g defined on R¥. Combining (1.11) with the L” bounds for
MZ,Q,P,w shows that MZ'Q,W is continuous on L?(R%) for |1/p — 1/2| < min{1/2,1/y'} un-
der the same conditions of Theorem 1.1.

Remark 1.2 We remark that the set R,, was originally given by Yabuta [10] in the study of
the boundedness for Marcinkiewicz integrals associated to surfaces {¢(|y|)y’ : y € R”} with
¢ € § on Triebel-Lizorkin spaces. Actually, Theorem 1.1 extends the partial result of [10,
Theorem 1.1], which corresponds to the case n = d, p > 0 and P(y) = y. Clearly, R,, CR,,
forany 1 < y1 <y, <00 and Reo = (0,1) x (0,1). There are some model examples for the
class §, such as t* (a > 0), £’ In(1 + £) (8 > 1), tInIn(e + £), real-valued polynomials P on R
with positive coefficients and P(0) = 0 and so on. Note that there exists B, > 1 such that
¢(2t) = Byo(t) for any ¢ € § (see [7]).

By the Properties (1.5) and (1.6), Remark 1.1 and Theorem 1.1, we can get the following

result immediately.

Theorem 1.2 Under the same conditions of Theorem 1.1, the operator MZ,QP, o Is bounded
and continuous on F5(R%) and BL(R?), respectively.

Remark 1.3 Since L*(R,) C A, (R,) for any 1 <y < 0o and L"(S""!) C H(S"!) for any
r > 1, the boundedness part in Theorem 1.2 improves and generalizes greatly the results
of [12, 13]. It should be pointed out that our main results are new even in the special case:
p=1Ln=d, h(t)=1and p(t) = t.

The paper is organized as follows. Section 2 contains two vector-valued inequalities on
maximal functions, which are the main ingredients of our proofs. Section 3 is devoted to
presenting some preliminary lemmas. The proof of Theorem 1.2 will be given in Sect. 4.
We would like to remark that some ideas in our proofs are taken from [7, 10, 17, 23, 34]
and the main novelty in this paper is to give the continuity for Marcinkiewicz integral

operators on Triebel-Lizorkin spaces and Besov spaces.
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Throughout this note, we denote by p’ the conjugate index of p, i.e. 1/p + 1/p’ = 1. The
letter C or ¢, sometimes with certain parameters, will stand for positive constants not
necessarily the same one at each occurrence, but are independent of the essential variables.
If f < Cg, we then write f S gor g 2 f; and if f < g < f, we then write f ~ g. In what
follows, we denote by J! and J¢ the inverse transform and the transpose of the linear
transformation /, respectively. We also denote the Dirac delta function on R? by 8pa. For
m < d,we denote the projection operator from R” to R? by 7%. We set R, = {£ e R%;1/2 <
|€| < 1}. We also use the conventions } ", ,a; =0and [[;.,a: = 1.

Comments on conclusions and methods. This aim of this paper is to investigate the
boundedness and continuity for the parametric Marcinkiewicz integral operators sup-
ported by polynomial compound mappings MZ,Q,P, , on the Triebel-Lizorkin spaces and
Besov spaces. This is motivated by some recent results (see [4, 10, 11, 25, 31]). In [4],
the authors established the bounds for the singular integral operators supported by poly-
nomial mappings on the Triebel-Lizorkin spaces and Besov spaces; In [10, 11] the au-
thors proved the boundedness for Marcinkiewicz integral operators MZQ on the Triebel-
Lizorkin spaces; In [25, 31] the authors gave the L? bounds for the Marcinkiewicz integral
operators supported by polynomial mappings M, q . The main purpose of this paper
will not only address the residual problems with respect to exponents [25, 31] but also
establish the corresponding continuity of Marcinkiewicz integral operators on Triebel—
Lizorkin spaces and Besov spaces. Although the methods and idea used in proofs of main
results are motivated by some previous work [7, 10, 16, 22, 31], the methods and tech-
niques are more delicate and difficult than those in the above references. Moreover, the
main results are new and the proofs are highly non-trivial. On the other hand, the main

results greatly extended and generalized some previous work [10-12].

2 Two vector-valued inequalities on maximal functions
The following lemma can be seen as a general case of [10, Lemma 6.1], which can be proved
by [20, Theorem 4.6.1] and [20, Proposition 4.6.4]. We omit the details.

Lemma 2.1 Let 31, B, be two Banach spaces and p(-) denote the corresponding norm of
R?. Let T be a bounded linear operator from L°(By, R?) to L7 (B,, RY) with norm A > 0 for
some 1 < py < 00, for which there exists a kernel K defined on R4\ {0} that takes values in
the space L(By, By) such that

7)) = /R Ka-pFO)dy

is well-defined as an element of B, for all L*(B,,R?) functions F with compact supported
provided x lies outside the support of F. Assume that the kernel K satisfies Hormander
condition

sup / ”f((x—y)—Iﬁ((x)”Bl_>32dx:B<oo.
yeRA\{0} Y p(x)=2p(y)

Then, for any 1 < p, q < 00 and all B-valued functions F;, there exists C > 0, such that

. 1/q 1/q
(Zirwls) | zaes|(Sim,)
)

JEL JEL

LP(R LP(R4)
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We now establish the following vector-valued inequality of a Hardy-Littlewood maxi-
mal function, which is of interest in its own right.

Lemma 2.2 Let My be the Hardy-Littlewood maximal operator defined on R?. Then

s 1/s)1q 1/q
(Z|(TMoeeor) | )
ke L7(Rq)

jeL
1/sy19 1/q
jez (%)

keZ

LP(R4)

g

LP(RY)

foralll1<p,q,r,s<o0.

Proof Let ® be a positive radial symmetrically decreasing Schwartz function on R such

that ®(x) > 1 when |x| < 1. Let ®;(x) = t‘dd>(’—;) for all £ > 0 and M (f) = sup;y |f * Doxl.
As in [20, p. 336] we have

M@ () < 2M%(If1)(x) S M@ ()x) VxeR (2.1)

—
Let By = L"(¢5,R,) and B, = L"(£%°(£°%),R,) with 1 < r, s < 00. Define the operator Mg, by
—_ N
M4 (F)(x) = K % F(x) = {®y * F(x)},_, with F e L"(By,R).

(2.1) together with the L’(£*,R%)-boundedness of the Hardy-Littlewood maximal func-
tions and Fubini’s theorem shows that

1/s\ r
= su D« fir(x) dc dx
R4 /Rd /%d<leg<§| 2 * Jig )|> ) e

rls
s

—_
[IMS (e D s,

JEZ
rls
< . ) dxd
<[ o)
S s, L@y

—
which implies that Mé is bounded from L"(B1,R%) to L’ (B85, R%). On the other hand, for
any x,y € R?,

| (K= - K@) ({ic @D 5,

Us\r Ur
:<‘/ <sup<2‘(<bzl(x_y)_q’zl(x))ﬁ,c(x)‘s> )df)
Ry \IeZ

JEL

1/s\ r 1/r
- (f (oplosten -otal (Zwr) ) )

JEL
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< slugicbzz (x—y)— Dy (x)| H {ﬁ,; (x)} || By (2.2)
From [20, (4.6.19)] we have

sup / sup| @, (x — y) — Py (x)|dx < C4 < 0.
yeR4\{0} J |x|>2ly] l€Z

This together with (2.2) yields

sup / ||Iﬁ<(x—y)—f((x)”Bl_)B2 dx < Cy < 0.
yeRA\{0} ¥ [x1>2]y|

Applying Lemma 2.1 with p(-) = | - |, we obtain

(ZMieentz,)”

kel

1/q
(Tl
LP(RY)

LP(RY) keZ

for any 1 < p, g < co. This proves Lemma 2.2. O

We end this section by presenting the following lemma, which plays a key role in the
proof of Theorem 1.1.

Lemma 2.3 ([17]) Let P = (Py, Py, ..., P,;) be a polynomial mapping from R" into R? and
Mp denote the Hardy—Littlewood maximal operator associated to P defined by

Mp(f)(x) = sup in [f(x - P(y)) ‘ dy.

r>0 1" lyl<r

Then, for any 1 < p,q,r < 00, there exists a constant C > 0 independent of the coefficients of
{P;} such that

1/q
L= (St

(R?) jez

(Sietottin,) |

JEZ

LP(Rd)‘
3 Preliminary notations and lemmas

Let S(S™!) be the Schwartz space of smooth functions on S"~! and &'(S"!) denote its
dual. For f € §’, we define the radial maximal function P*f by

1-— 2
/ Q) —— — do(9)].
gn-1 |7'W—6|n

The Hardy space H'(S""!) is defined by

Pf(w) = sup

0<r<«1

HU(S) = [ €88 : sy = [PFl gy <o0)-

Let us recall the definition of atoms.
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Definition 3.1 A function a(-) on S"! isa regular atom if there exist ¢ € S"! and ¢ € (0,2]

such that
supp(a) C S" 1 NB(e,0), where B(¢,0) = {y eR":|ly—¢|< Q}; (3.1)
llalloosn-1y < 07" (3.2)
/ a(y)do (y) = 0. (3.3)

Sn—l

The following lemma is the well-known atomic decomposition of Hardy space (see [35,
36]).

Lemma 3.1 For any Q € H'(S"™) satisfying (1.1), there are complex numbers {c;} and
regular atoms {2} such that Q = Z/’ i and || 2|1 (gn-1) ~ Zj lcjl.

Let /1, Q, p be given as in (1.3). For ¢ > 0 and a mapping I : R” — R?, we define the
measures {07,0,r,,p}1>0 ON R4 by

[famare =5 [ sro)TRa
R t/2<|y|=<t

tr |y

We also define oy, - , on RY by

GZQ,r,p(f)()’) = SU(I))| lonareel *f ()
>

’

where |oj,0r | is defined in the same way as oy, ,,,, but with 4 and 2 replaced by ||
and |€2|, respectively.

Lemma 3.2 Let I'(y) = P(o(lyl)y') with ¢ € § and P = (P1, P, ..., P,) being a polynomial
mapping from R" into R?. Suppose that h € A, (R, ) for some y > 1 and Q € L' (S"!). Then,
Sfor (1/p,1/q,1/r) € Q,, there exists a constant C > 0 independent of the coefficients of {P;}
such that

2 de\ V2 qN 1/q
(D[ (5 [t we) "))
JEZ d

(Slge)”

jez ' Nkez

LP(R4)

q l/q
L’(md)>

holds for functions {gj; r}j.c.x € LP(09(L7(£2)),R%), where Q, is the set of all interiors of the

11 1 1 11 1 1
convex hull of three cubes (3, 5 + max{z,y’})g’ (3 = mmxizy 3)%, and (31— 5)3'

< Cllhlla, @)1l L1 1)

(3.4)
LP(RY)

Proof To prove (3.4), it suffices to show that there exists a constant C > 0 independent of

the coefficients of {P;} such that
q )l/q
L"(Ry4)

2 2dt 1/2
Z Z . ||th,s2,r,t,p|*gj,§,k| 7
keZ

JEL

LP(R4)
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= Cliallay @Il 1 (sm-1) (3.5)

1/2
(Z |g,¢,k|2>

keZ

(Z

JEZ

q >1/q
L' (Ry)

holds for functions {gj;«}cx € LP(09(L7 (02, R,)), RY) with (1/p,1/g,1/r) € Q,. By the
change of variables and Holder’s inequality,

LP(R4)

G;Q,F,p (f) (%)
[h(ly)S2(y)]
- ———d
= Stl:(r)) /t/2<y<t Lf(x ()/))| [yl

¢ d
:sup/ / If (x - T(r0))| |20)| do (0) | ()| =
t/2 Jsn-1 r

t>0

1y’
<2||h||AyR+>||sz||;§Vs“(/ sup fo r(re))ly—}9(9|da(e))
S

n-1 ¢>0

1/y
< Clihlla, @121 g1y

ds

() o y 1y
x (fsl ng/w(t/z f(x-T(¢7(5)6))| W!sz(e | do( 9))

1/y
C@nl ay @l xiga,

1 ’ 17y’
* (fs Y /S,StV(x—F(W(SW))V ds|9(9)|do<e)) ,

which together with Lemma 2.3 and Minkowski’s inequality shows that

1/q
L"(Ry) )

|(Sloiar 6l

JEL LP(RY)
1/q
< Cllllay @) 121151y (Z i ||zr(%d)) (3.6)
JEL LP(RY)

for any y’ < p,q,r < 00. Here C > 0 is independent of /1, Q and the coefficients of {P;}.

We now prove (3.5) by considering the following three cases:

Case 1 (1 < y < 00). By the duality argument, Holder’s inequality, Fubini’s theorem and
(3.6), we have, for any 1 < p,q,r < y, there exist functions ({f.};; with

||{}5’,§}||Lp’ €7 (1" (R )R = 1 such that
) 1/q
L'(Ry)

/||amw|*g,;k<x>| Ve @) dedx

Z/ ||GhQFtp| *g}{k’

kel

jez LP(R4)

Z/ /f;‘d keZ

<Z// Z|gfck(x)|/ldhmtpl*[f;|( x)— d{dx

Ra rez,

<Z// Z|g1<:k(x)|‘7h9rp(lf£|)—x)dé'dx

Rd rez,
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q 1/q , 1/q
TN |14
(Z Z |g})§’k| ) (Z “GZQ,F,p (lf/"f |) )i (md)> ,
jez kez L'(Rg) r®HI Nz ¥ (®4)
q /q
Slhlla, @) 1@ sy (Z D 1gexl ) , (3.7)
jez ke L'(Rg) LP(R4)
where ﬁN; (%) =f;¢ (—=x). On the other hand, it follows from (3.6) that
1/q
(Slepsgart-acl )
keZ te[1,2] L'(Mq) 1P(R)
=|(z
HOhQI‘p<5up|g1§k|> . )
jez L (9‘{ ) LP(Rd)
q 1/q
< Cllla, ) 1920 1o ( Jsup g1 ) (38)
v ( ) ]EZZ keZ / L"(Ry) Ui(Rd)

for any y' < p,q,r < 0. Interpolating between (3.7) and (3.8) shows that (3.5) holds for
(1/p,1/g,1/r) belonging to the interior of the cube ( 11— L)3
Case 2 (1 < y <2). By Holder’s inequality, we have

llonareel * gex®)|

' ~ |h()Q)]
S-/t/2<y<t|g]7§‘k(x ro)l [y|" b

Ih(») 7 120)] )”2< ()" 120)] )”2
n(r-T) | —— g g
= (-/t;2<|y|§t|<g]’CYk(x (y))| [yl” 4 /t/2<y|§z [y” 4

2 1/2
= C”h”A (Ry) ”Q”Ll(sn 1 (|G|h\2—V,Q,F,t,p| * |kl (x))

It follows that
o(k+1)v S dt 1/2 1q 1/q
H( (Z] ||Uhszl"tp|*g;;k| ) )
jez " “keZ 2k L"(Ry) L2 (R4)
< 1Al a, @ 120 g,
1/q
< Z/ |Oy2- VQI‘t|*|g/§k| — > . (3.9
jez " ke L'(Ry) LP(R9)
Observe that |||/|> V||Ay/2 (R, = Cllhll o, ®,)- By (3.9) and (3.7) with y, p, g, r replacing

r g

y2—y’ 27

27
cube (% - i,

,1)3. By duality, (3.5) also holds for (1/p, 1/¢,1/r) belonging to the interior of
the cube =, = —)3 Interpolating these two cases, we see that (3 5) holds for (l/p, 1/gq,1/r)

g, respectively we have (3.5) for (1/p, 1/g, 1/r) belonging to the interior of the
5

belongmg to the interior of the convex hull of two cubes (5 — —/, 5 3 and yl )3, We

notice that the interior of the cubes (2V ,1- 5) contains in the interior of the convex hull
of two cubes (3 — %, Pand 3,1+ L)
Case 3 (y > 2). Clearly, ||hl|ay®,) < Ikl a, @, for y > 2. Interpolating between cases 1

when 1<y <2.

and 2 we obtain (3.5) for (1/p, 1/g, 1/r) belonging to the interior of the convex hull of three
cubes (%, - %)3, (0,3)* and (3,1). This completes the proof of Lemma 3.2. O
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Let {by} be a lacunary sequence such that 1 < §; < b’;zl <8, for all k € Z. Let {Ai}rez be

a collection of C§°(R,) with the following properties: supp(Ax) C [b", bit,], 0 < Ax(f) <1
and ), Ak(t) = 1. We have the following result.

Lemma 3.3 For m < d, let H:R" — R"” and H : R? — R? be two nonsingular linear

transformations. Define the multiplier operator Sy on R? by

S (&) = i (|Hrd GE|)f 8).

Then, for 1 < p,q,r < 0o, there exists a constant C > 0 depending only on 8, and d such that

) 1/2 )19 1/q . 1/q
() ) ()
L"(Ryq) )

JEZ keZ JEZ
Proof Define the operator Tf = { Dy * frez with @(S) = Ak(€]). We first prove that

) 1/2 9 1/q . 1/q
S oes) ) ()
L'(Ry)

JEZ keZ JEZ
for any 1 < p,q,r < 00. One can easily check that ) ,_, |®(€)2 < 1 for all & #0. By
Plancherel’s theorem we see that 7" is bounded from L2(R?) to L2(¢2, R). Next we shall
prove that

LP(RY LP(RY)

(3.10)

LP(RY) LP(R4)

1/2
/ , l(Z|¢'k(x—y)—d>k(x)|2) dx < C. (3.11)
x| >2|y

keZ

It is clear that
(—2mix)* dy(x) = / 3*M(|€])e*™ ™5 d&  for any multi-index o
R4

Taking || = d + 1, we obtain

lloxea 5 |
b1

k

108D de < Cabiyp

<I§1=by_,

This together with the fact |x|4*! < C, > \pi=ds1 147 | implies

| e )] S b b ™ (3.12)
On the other hand, we have, for any multi-index & and anyj = 1,2,...,d,

(27 ix)” O P () = /R ) 3 (2migiai (1€])) e ™ dE.
Consequently,

g el < [ (i) de.

bl <ls|<bil,
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From this inequality and the definition of A, we have

N |V (x)| < Cy / (1+1&) " de < Cunbbp%' VN eN.

bl <lg|<bil,

It follows that
|6 x| |V Or(x)| < Canbi®y! VN eN.
Consequently,
V()| < Cabe (1 + [bx]) ™7 (3.13)

By (3.12) and the fact that |x — y| > |x|/2 for any |x| > 2|y|,

Z / | @i (x — y) — Pi()| dx < Z Cdb,fzbz*l/ x|~ dx
[x|=2ly|

br=lyl be<lyl x[=2lyl
<G8y Y bilyl™
b=yl
< Cags,. (3.14)

Since |x — 0y| > |x|/2 for any |x| > 2|y| and 0 € [0, 1], we see from (3.13), for any |x| > 2|y|,
that there exists § € [0, 1] such that

| Dl = y) — Pu()| < 1yl |V Di(x - 0y)|

< Calylb5 (2 + ‘b;lx})_d_l.
This shows that

/ |®ix ) — D) dx
[x|>2[y]

br>yl
= 3" Cabit (2+ |be'x]) ™ dx
be>lyl [o|>2]y]
—d— —d-1
<> Cdbkf21|y|bZ/d(2+ lx[) ™ dx
b>1yl R
2(d+1) -1
< Ca8 0 Y bty
bi>lyl
< Cus,- (3.15)

Equation (3.15) together with (3.14) yields (3.11). Invoking [20, Theorem 4.6.1] we see that
T is bounded from L'(R%) to L"(¢%,R?) forany 1 < r < 00. Forany 1 < r < oo, let B; = L"(R,)
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and B, = L"(¢%,R,). By Fubini’s theorem and the L (R%) — L"(¢%, R%) boundedness for T,

r/2 1/r
TG0l b= ([, [ (Elonsiool’)  acas)
R4 SRy keZ
- 1/r 1/r
= (/ ” T,f{ ”Z’"(EZ,R‘Z) d() 5 (/ ”_f{ ||2r(]Rd) d;)
Ry Ry
5 H ”fé‘ ”Bl L'(]Rd)' (316)
Note that
N N ) rl2 1/r
(&6 - K, = ([ (Sl(nta--euls’) )
d “keZ
1/2
=(Z|q>k<x—y>—q>k(x>|2) .
keZ
which together with (3.11) implies
sup/ ||IA((x—y)—Iq((x)||B_)B dx < C < o0. (3.17)
770 Jixz2ly] e
Applying (3.16)—(3.17) and Lemma 2.1 with p(-) = | - |, we get (3.10).

We now define / by J = Gl H'® Spd-m). Observe that J is a nonsingular linear trans-
formation on R?. Denote y = (y', %), where ¥ = (y1,¥2,- .+, ¥m) and ¥* = Je1s Yims2s -+ -» Val)-
One can easily check that

Sif (x) = @k ® Sga-m xf (Jx), (3.18)

where f/(£) = |J|7f((J*)1€). By the change of variables, (3.10) and (3.18),

(I war) )"

JEZ keZ

p

LP(RY)

; ) 1/2 19 plq
L (El(gvereseea) T, )
JEZ keZ d
5 1/2 19 plq
=|]|”‘1/ (Z <Z|®k®8]1§dm £ )] ) ) dy
R4 jEZ keZ L"(Rq)
) 1/2 19 prlq
= Ill’“/ / (Z <Z|[d>k «f ()07 ) ) dy" dy*
Ré-m JRm jezZ " “NkeZ r®a)
1 J q v
S |]|p7 / <Z| ,,;(J’) Lr(mﬂﬂ) dy
RNz
1/q\p
5 H (Z ”};,{ ”21r(md)> .
JEL LP(RY)

This completes the proof of Lemma 3.3. d
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To prove Theorem 1.1, we need the following characterizations of the Triebel-Lizorkin
spaces and Besov spaces.

Lemma 3.4 ([10]) Let 0 < o < 0o and M be an integer such that M > a. Let A?/[f be the
Mth difference of f for an arbitrary function f defined on R?.
(i) Ifl<p<oo,1<qg<ooandl <r<min{p,q}, then

. qlr\ 1/q
Wl za e = H (Z 2 (/% |85/ O)] dC) )
d

keZ LP(RM)
is an equivalent norm in Fg’q(R”).
(i) fl<p<oo,l1<g<oocandl<r<p,then
1/r 19 1/q
.
Wl me) = (Z 2l (/ |85 SO dg) )
keZ Ra LP(RY)

is an equivalent norm in By (R%).

4 Proof of Theorem 1.1
Let i1, Q, R, be given as in Theorem 1.1 and A, be the difference of f, i.e., A f(x) =f(x +
¢) — f(x). We split the proof of Theorem 1.1 in two parts.

Step 1. Proof of (ii) of Theorem 1.1. Let a € (0,1), |1/p — 1/2| < min{1/2,1/y'} and q €
(1, 00). Observe that

A(M) o p J)®) < Mpgp (Df)&) Vx, ¢ € RY (4.1)

By (4.1), Fubini’s theorem, Remark 1.1 and (ii) of Lemma 3.4, we have
”MZ,Q,P,J”BQ"(W)

1/p
S (Z 2t (/md |A2-15 (MZQPJ) |p d;)

q ) l/q
leZ. LP(RY)

qlp\ 1/q
S (ZW ( /m ) fR dlM;’,ﬂ,p,w(Azl{f)(x)|"dxdg> )

leZ

qlp\ llq
S ||h||Ay<R+>||sz||H1<sn-1)(Z 2% < / ) f |8t f )| de dx) )
RY SR,

leZ

S Malla, @olS20 a1 1l 524 ra)-

This proves the boundedness part of (ii) of Theorem 1.1. By (1.11), (4.1), Remark 1.1 and
[17, Proposition 1], we can get the continuity part of (ii) of Theorem 1.1.
Step 2. Proof of (i) of Theorem 1.1. By (ii) of Theorem 1.1 and (1.6), we have

||MZ,Q,73,J||F§“’(]R0’) S Al a, @l a1 I | 24 ga) (4.2)

for (1/p,1/q) € {(1/p,1/p) : |1/p—1/2| < min{1/2,1/y’}}. Moreover, MZ,Q,P,w is continuous
from F2Y(R%) to FL/(R%) for (1/p,1/q) € {(1/p,1/p) : |1/p — 1/2| < min{1/2,1/y'}}. There-
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fore, it suffices to prove (4.2) for (1/p,1/q) € R, and M} o, 1, , is continuous from FP(RD)
to FY'(R?) for (1/p,1/q) € R, .
By Lemma 3.1, to prove (4.2) for (1/p,1/q) € R,, it suffices to show that

| Mi oo | 29500y S Wl sy @ I N2 gy (4.3)

for (1/p,1/q) € R, when Q is a regular atom satisfying (3.1)—(3.3). Without loss of
generality we may assume ¢ = (0,...,0,1) € R". We also only consider the case 0 <
0 < 1/4 and omit the easier case o > 1/4. Let M(m), {A, },7 1 , {r, }n -0 ) and {L, }M(m
be given as in [23]. Let oy, be defined as in Sect. 3 and o}, = 0.1, (p)2k,p With
T, (@) (x) = Ty (p(lx)x"). For n € {1,..., M(m)}, let s(n) = rank(L,). By [23, Lemma 6.1], there
are two nonsingular linear transformations H, : R — R and G, : R? — R? such
that

\Hy7 ) GoE| < [Ly(&)| < Ay |H,ml, GiE| VE eRY (4.4)

Let ¢ € C$°(R) such that ¢ =1 for [¢| < 1/2 and ¢ = 0 for |£| > 1 and ¥ (£) = ¢(£2). Define
the family of measures {‘L']Z 0 by

7€) = 0l (E)W(n + Lk ,6) — o), (€)W (1K, 1,6) (4.5)

for k € Z,t e R*,£ e R? and 1 < 5 < M(m), where {8(17)} ") and {I(n )} ) are given as

in [23] and
M(m) m ’
\Ij(n;k’ t)é) = 1_[ w(i(p(zkilt) v QSO)]_[j”;iU)Gf§|)'
j=n

As in [34, (3.3)] we have

’;1:]:(5)‘ =< ||h||AV(R+) (min{l, (p(zk—lt)l(n)ga(n) )

(270" L)) ) @.6)

forkeZ,teR,, £ e R?and 1 < n < M(m), where {y(r])} ) are given as in [23]. Let B,

be given as in Remark 1.2 and set ay,, = ¢(2%)/ " g% A,] . \X/e note that B’(p < “ZJ < cf}”)
il

for any k € Z. This together with (4.6) shows that

2 dt 1/2
(/ <tk",t<s>|27)

< Nlhlla, @, (minf1, (@ | Ly@©))) )" (4.7)

forany k € Z, £ € R? and 1 < n < M(m). By the argument similar to those used in deriving
[34, (3.9)], we obtain

M(m) /2

M op J® <C, Z(Z/ | % f()] —) : (4.8)

keZ
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Equation (4.8) together with (4.1), (i) of Lemma 3.4 and Minkowski’s inequality im-
plies

” MZ,Q,P,J ” F29(RY)

<|(z2 ([ teretiamatac))

leZ LP(RY)
a\ g
I
< H <Zz o ( / (M} o p o (Boief)] d;) >
le7Z, R4 1P(R4)
M(m) 1 S dt a\ Vg
<2 (f (3 [ Tetr 22 ) ) @9)
n=1 leZ keZ LP(RY)
forO<w <1and1<p, g <oo. Thus, to prove (4.3), it suffices to show that
dt 7\ V1
(B (LE o))
lez. keZ. LP(RY)
S alla, @ollf Nl 24 gay (4.10)

forany 1 <n <M(m),a €(0,1) and (1/p,1/q) e R, .
We now prove (4.10). Let {u , }kez be a collection of C*°(R,) with the following proper-

ties:

supp(ug,,) C [a,:il‘n,alﬂl,n]; 0<uy(t) <1; Z Uk (8) = 1.
keZ

Define the sequence of multiplier operators { Y% ,}xez on R? by
Yinf (€) = vk, (|H, ﬂs(,, G €|

By Minkowski’s inequality,

H(Z;Z””(/ <Z/ |’kt*Azl;f|2dt) dt)q)uq

keZ

LP(RY)

1/2 1/
H (Zzlqa( (Z/ Tkt*ZT]’rk'I Z;f ) df)q> !
ez keZ. jez 1r(RY)
q\ 1/q
= Z (Zzlqa(/ (Z/ ’tkt*Tl’fkﬂAz 1;f|2dt) dé') ) . (4.11)
LP(R4)

JEZ leZ kel

Define the mixed norm || - || o for measurable functions on R? x Ry x Z x Z x R, by

ez = H (ZW( (Z/ lg(x, £, ¢,4,k)| —)1 dg) )”q

leZ keZ

LP(RY)
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For anyj € Z, let

Vin (O, 8,8, 0, k) := T, s Wk gt f () X1,21(8).

Then (4.11) reduces to the following:

(2 (L (2 o) )

leZ kel U’(]Rd)
=) 17001 e (4.12)
JjEL

Thus, to prove (4.10), it suffices to show that for any « € (0,1) and (1/p,1/q) € R, there
exists § > 0 such that

[Vin ()] g

S lla, @By I 4 ey (4.13)

By (4.7), Holder’s inequality, Minkowski’s inequality, Fubini’s theorem, Plancherel’s theo-

rem and (ii) of Lemma 3.4,

[ Vil 222

172 2
/Zzzla(/ (Z/ |Tkt +k,nA2’§f(x)|2%> d§> dx

leZ keZ
52221"‘/ / Z/ |rkt>x<T}+k,7A2 z{fx)’ dx—d{
leZ keZ
sy [ v ) / T L | Ey @ e

leZ R keZ /+1<+1 ns §)l=Ana; k=1,

< Iklla, @) B, ufn;g,z(w)
Combining this inequality with (1.4) implies that
[V 22 S Wall oy ) B2 P IF 1l 22 - (4.14)
Thus, we shall prove
[Vin )l pa S Wl s, e 1 U2 g (4.15)
for any o € (0,1) and (1/p,1/g) € R, . Indeed, (4.13) follows easily from the interpolation

between (4.14) and (4.15).
For 1 <t < M(m), let ®* be a radial function in S(R*"). Define J, and X, by

Jf ) :=f (G/(H ® idga-s»)x) and Xf(x)=sup sup !Xk,t;f(x)|

keZ te[1,2]
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where
Xt @) =TT (Pree @ Sacsiv) * Jf ) (%),
and
Bp (2°) = (0(251)0%0) "Vt (p (2411) Vo 0x0),  #0 e RV
One can easily check that
[Xf@)| < QU o M) ® idga-so) 0] () (). (4.16)

Inequation (4.16) together with Lemma 2.2 shows that

1/219 1/q
H( (Z |thk,/}{|2> )
jez ' Nkez L"(Ryg) L2 (R9)
1/2 g9 1/q
(| (Zwer) | ) @17)
jez ! Nkez L"(Ra) LP(R9)

for any 1 <¢ < M(m) and 1 < p, g,r < 0co. For any 1 < n < M(m), we define X"f = X,, o
Xy+1 0 -+ 0 Xppmf - Then (4.17) shows that

) 1/2)19 1/q
jez ' Nkez L'(Ry) L2 (R4)
1/2 19 1/q
<Z ng,j@IZ) >
L"(Ry)

<|(z
keZ
for any 1 <« < M(m) and 1 < p,q,r < 0co. On the other hand, we get from (4.5) that

(4.18)

JEL LP(Rd)

rlj,z *f = UI?; * (Xk,t;r]+1 0 Xiye2 02+ 0 Xk,t;M(m)f)
_akt (thr] Othn+1 o OXk,t;M(m)f)o
It follows that

d
/ ek % < / ot = x07 @2 4.19)

/ |‘L’kt*f(x)| —<2</ Ho-]z7 |*X77+1f( )|2dt
(4.20)
/Hokt [ Xf (x ‘—) for 2 < n < M(m).

Combining (4.18)—(4.20) with Lemma 3.2 shows that

H<§Z:</%<Z/ |0, % gk _>1/2d§>q>1/q

keZ

LP(RY)
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1/219 1/q
Slalla, @) <Z (Z |gl,§,k|2> ) (4.21)
ez " Nkez L' (Ry) LP(R4)
for {g;; x} € LP(9(L7(£2,9R,)), R%) with (1/p,1/q,1/r) belonging to the interior of the con-
vex hull of three cubes (%,% + m)i (% - m, 2) and ( ,1— —) Let o € (0,1)
and (1/p,1/q) € R,. We can choose 1 < r < min{p, q} such that (1/p, 1/q,1/r) belongs to
the interior of the convex hull of three cubes (3,1 + W)S’ (3 - max{12,y’}’ 1), and
Zi, - Zi)?’. By (4.21) and Lemmas 3.3 and 3.4, we obtain
¥ ¥
12 g 1/q
[ Vi) pa S Whlla, e, (Z 2l (Z |T,+k,nAzz;f|2) )
leZ keZ L' (Ry) LP(R4)
1/q
Skl ay @) (Z 21"“||A2—Z;fllzr(md))
IeZ LP(RY)

S alla, @l Nl 24 gay-

This yields (4.15) and completes the proof of the boundedness part of (i).
We now prove the continuity part of (i). By Lemma 3.1, Minkowski’s inequality and
(4.9)—(4.10), we have

q\ Vq
(2o () ptantcrna))
leZ, LP(RY)
q\ 1/q
<Z|C| <Zzlqa</m |MZ,Q;,P,w(A21;f)|dC>>

leZ
SR 1) U1l 2 gy (4.22)

1P (RA)

for o € (0,1) and (1/p,1/q) € R,. Let « € (0,1), (1/p,1/q) € R, and f; — f in FY/(RY) as
j — 00. We want to show that M} ¢, fi = M} o p f in FLY(R?) as j — oo. We shall
prove this claim by contradiction. Without loss of generality we may assume that there

exists ¢ > 0 such that

||MZ,Q,7>,¢J§ -Miopf ”[v{;’q(Rd) >¢

for every j.

By (1.5) we see that f; — f in F;(R%) and in LP(R?) as j — oo. It follows from (1.11)
that M}, o, J = MZQPJ in I7(R?) as j — oo. Then by extracting a subsequence we
may assume that |M£]9'leﬁ(x) - Mﬁlﬂ'lef(xH — 0 as j — oo for almost every x € R?, It
follows that Azfzg(MZ,Q'p,(ﬂﬁ - szg,p(&f)(x) — 0 asj— oo for every ([,{) € Z x R, and
almost every x € R?. We get from (4.1) and (1.11) that

|A2*1; (MZQPqﬁ - MZQow) (x)|
< 2Miigp o (Lot /)®) + M o p (Dot (ff = £)) (%)
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for (x,4,¢) € R x Z x R,. For convenience, we set

q\ 1/q
lgllpga = H (Z 2l ( /m g, 1,¢)| d;) )
d

leZ

LP(RD)

for @ € R and (p,q) € (1,00)2. It follows from (i) of Lemma 3.4 that ”f”j:qu(Rd) ~
| 89-1f llpg for @ € (0,1) and (p, ) € (1,00)>. By (4.22) we obtain

q\ g
[ME o (Bicf)] q“”H (Z2"’“( /ﬁ |M;;Q,7,,¢(A2,:f)|d<:> )
d

leZ

LP(RA)

S Wil e gay-

It follows that ||Mh97,¢(A2 1t = pge S Wf=f Nl ppaga) = 0asj — 0o. One can extract
a subsequence such that Z o IIMh Q,p,(p(Azfzg (fi=fNlp,ga < 00. Define a function G : R? x
7 x Ry — Rby

G, 1,7) = ZMh o (Borte (i =) @) + 2M g 5 (Dot f) ().

j=1

One can easily check that || G| 4« < 00 and

’Az-’z (Mﬁmwﬁ - MZ,Q,P,J ) (x)|
<G(x,1,¢) foralmostevery (x,,¢) € R? x Z x Ry. (4.23)

Since || G| p,4« < 00, we have f%d G(x, k, &) d¢ < oo for every k € 7 and almost every x € R?,
Inequation (4.23) together with the dominated convergence theorem leads to

./m |A2*’c (MZ'Q,P&}; - MZ,Q,P,J)(")| dt—>0 asj— o0 (4.24)
d

for every [ € Z and almost every x € R?. By the fact || G||,« < 00 again,

1/
(Zzl‘f”(/ x,l{)d{)q> q<oo (4.25)

leZ

for almost every x € R?. Using (4.23) we obtain
f |8t (M) g p ofi = Mip o p o ) )| dE < / G, L,¢)dt (4.26)
Ry R4

for almost every x € R? and [ € Z. It follows from (4.24)—(4.26) and the dominated con-

vergence theorem that

q\ l/q
(S ([ 1600 f - My N de) ) =0 asj o0 @2
d

leZ
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for almost every x € R?. By (4.23) again, we have

a\ 1a
(Z2( [ 180c(Mian - Mg, 0]t ) )

leZ

q\ Vq
< (Zz’q“ ( /m d|G(x,l,;)}d;> ) (4.28)

leZ

for almost every x € R?. By (4.27)—(4.28), the fact ||G|| pae < 00 and the dominated con-
vergence theorem, we get

”Azfl{ (Mz,Q,P,wf/ - MZ,Q,P,J) “p,q,a -0 asj — 0.

This leads to | M}, p fi = M}, o p f | 4 gay — 0 as j — oo, which is a contradiction. [
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