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Abstract
In this paper, we mainly consider the stochastic second-order cone complementarity
problem (SSOCCP). Due to the existence of stochastic variable, the SSOCCP may have
no solutions. In order to deal with this problem, we first regard the merit function of
the stochastic second-order cone complementarity problem as the loss function and
then present a low-risk deterministic model that is a conditional value-at-risk (CVaR)
model. However, there may be two difficulties for solving the CVaR model directly:
One is that the objective function is a non-smoothing function. The other is that the
objective function contains expectation. (In general, the value of expectation is not
easy to be calculated.) In view of these two problems, we present the approximation
problems of the model by using a smoothing method and a sample average
approximation technique. Furthermore, we give the convergence results of global
optimal solutions and the convergence results of stationary points of the
approximation problems, respectively.
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1 Introduction
The second-order cone in Rn is defined as

Kn =
{

(x1, x2) ∈ R × Rn–1|‖x2‖ ≤ x1
}

,

where ‖ · ‖ denotes the Euclid norm.
Second-order cone complementarity problem (SOCCP) is as follows: Find a vector x ∈

Rn satisfying

x ∈K, f (x) ∈K, xT f (x) = 0,

where

K = Kn1 × · · · ×Knm , (1.1)

and n1 + · · · + nm = n.
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The KKT condition of second-order cone programming (SOCP) problem can be equiva-
lent to a second-order cone complementarity problem. So, many researchers pay attention
to considering SOCCP.

Recently, the researchers have obtained many good achievements about SOCCP. Many
researchers have proposed some methods for solving SOCCP. For example, Alizadeh et al.
and Andersen et al. gave the interior point method [1, 2]. Fukushima et al. gave the smooth-
ing method [10]. Chen et al. gave the nonsmoothing method [3, 5]. Especially, Fukushima
et al. [10] proved that the min function and the FB function in NCP can be spread to
SOCCP by using Jordan algebra. They constructed a smoothing function of natural resid-
ual function and gave some properties of the smoothing function’s Jacobian matrix. In
fact, many practical problems can be transformed into SOCCP. For example, Kanno et al.
gave three-dimensional quasi-frictional contact by using second-order cone linear com-
plementarity [12] and Hayashi et al. gave robust Nash equilibria [11]. However, there are
many stochastic factors such as price, supply, and demand in practice. So, in this paper,
we mainly consider SOCCP with stochastic factors, that is, stochastic second-order cone
complementarity problem (SSOCCP). SSOCCP is to find a vector x ∈ Rn such that

x ∈K, f (x,ω) ∈K, xT f (x,ω) = 0, ω ∈ �, a.s., (1.2)

where K is given by (1.1). ω ∈ � is a stochastic variable which is defined in the probability
space (�,F ,P), f : Rn × � → Rn is a continuously differentiable function about x. “a.s.” is
the abbreviation of “almost surely”. Because of the existence of stochastic factor ω, gener-
ally there is no vector x satisfying (1.2) for all ω ∈ �. In order to give reasonable solutions
of (1.2), we present a low risk deterministic model and regard the solutions of this model
as the solutions of SSOCCP.

For simplicity, we assume that K = Kn. This assumption has not lost generality, the re-
sults of this research can be easily extended to the general situation. In this paper, we
assume that � ⊂ Rm is a nonempty and compact set. f (x,ω) is a twice continuously dif-
ferentiable function with respect to x, and f (x,ω) is a continuously differentiable function
with respect to ω ∈ �. ρ(·) is a continuity probability density function. For convenience,
we use x = (x1, x2) to denote (xT

1 , xT
2 )T , ∇g(x) to denote gradient of g : Rn → R with respect

to x. And R+ := {x ∈ R | x ≥ 0}. A ∈ Rm×n is a matrix, while ‖A‖ denotes the spectral norm.
‖A‖F denotes the Frobenius norm, which is defined as

‖A‖F :=

√√√√
n∑

i=1

n∑

j=1

|aij|2.

The rest of our paper is organized as follows. In Sect. 2, we give some preliminaries, in-
cluding second-order cone complementarity function, τ -R0 function, and stochastic τ -R0

function. In Sect. 3, based on CVaR, we give a deterministic model for solving SSOCCP.
Then we use the sample average approximation and smoothing method to solve this
model. In Sect. 4, when f (x,ω) is a stochastic τ -R0 function, we consider the bounded-
ness of the level set. In Sect. 5, we consider the convergence of a global optimal solutions
sequence and a stationary points sequence of the model which is referred to in Sect. 3.
Conclusions are given in Sect. 6.
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2 Preliminaries
In this section, we first describe some concepts and properties from Euclidean Jordan
algebras that are needed in this paper. All these can be found in the book [8].

An Euclidean Jordan algebra is a triple (V,◦, (·, ·)), where (V, (·, ·)) is a finite dimensional
inner product space over R and (x, y) : V × V → V is a bilinear mapping satisfying the
following conditions:

(1) x ◦ y = y ◦ x for all x, y ∈ V,

(2) x ◦ (
x2 ◦ y

)
= x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 := x ◦ x,

(3) (x ◦ y, z) = (y, x ◦ z) for all x, y, z ∈ V.

In addition, there is an element e ∈ V (called the unit element) such that x ◦ e = x for all
x ∈ V. More specifically, for any x = (x1, x2) ∈ R × Rn–1, y = (y1, y2) ∈ R × Rn–1, their Jordan
product associated with Kn is defined as

x ◦ y =
(
xT y, y1x2 + x1y2

)
.

Usually, we use x + y to denote the sum of the corresponding components, that is, x +
y = (x1 + y1, x2 + y2). Moreover, x2 denotes x ◦ x and

√
x denotes a vector, which satisfies√

x ◦ √
x = x.

Theorem 2.1 ([8], The spectral decomposition theorem) Let V be an Euclidean Jordan
algebra. Then there is a number r such that, for every x ∈ V, there exist a Jordan frame
{e1, e2, . . . , er} and real numbers λ1,λ2, . . . ,λr with x = λ1e1 + · · ·λrer . Here, ei ◦ ej = 0 if i �= j
and

∑r
i=1 ei = e, the numbers λi (i = 1, 2, . . . , r) are the eigenvalues of x and the expression

λ1e1 + · · ·λrer is the spectral decomposition of x.

Let λi(x) (i = 1, 2, . . . , r) denote the eigenvalues of x. In the rest of this paper, we write

τ (x) := max
1≤i≤r

λi(x).

Secondly, we give some definitions about a second-order cone complementarity func-
tion.

Definition 2.1 ([4]) If the mapping φ : Rn × Rn → Rn such that

〈x, y〉 = 0, x ∈Kn, y ∈Kn ⇔ φ(x, y) = 0,

we say that the mapping φ is a second-order cone complementarity function on Kn.

There are two well-known second-order cone complementarity functions. One is a
Fischer–Burimister (FB) second-order cone complementarity function, that is, φFB : Rn ×
Rn → Rn,

φFB(x, y) := x + y –
√

x2 + y2.
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Another is a natural residual function φNR : Rn × Rn → Rn,

φNR(x, y) := x – (x – y)+,

where [x]+ denotes the metric projection of x onto K. And by [14],

(2 –
√

2)
∥∥φNR(x, y)

∥∥ ≤ ∥∥φFB(x, y)
∥∥ ≤ (2 +

√
2)

∥∥φNR(x, y)
∥∥. (2.1)

In this paper, we consider a Fischer–Burimister(FB) second-order cone complementar-
ity function, taking advantage of the knowledge about Jordan algebra, φFB(x, y) can be also
written as

φFB(x, y) = x + y –
(√

λ1u1 +
√

λ2u2).

Here, {λ1,λ2} and {u1, u2} such that

λi := ‖x‖2 + ‖y‖2 + 2(–1)i‖x1x2 + y1y2‖, i = 1, 2,

ui :=

⎧
⎨

⎩

1
2 (1, (–1)i x1x2+y1y2

‖x1x2+y1y2‖ ) if x1x2 + y1y2 �= 0,
1
2 (1, (–1)i� ) if x1x2 + y1y2 = 0, i = 1, 2,

where � ∈ Rn–1 is a vector satisfying ‖�‖ = 1.

Definition 2.2 ([4]) If the mapping 	 : Rn × Rn → R+ such that

〈x, y〉 = 0, x ∈Kn, y ∈Kn ⇔ 	(x, y) = 0,

we call that the mapping 	 is a second-order cone merit function on Kn.

In fact, we have 	(x, y) = ‖φ(x, y)‖2 is a second-order cone merit function.
Let 	FB(x, y) := ‖φFB(x, y)‖2 represent a second-order cone merit function. Note that the

second-order cone function φFB is only semi-smooth, not continuously differentiable. But
its corresponding second-order cone merit function is continuously differentiable.

Based on the definition of Rω
0 -function in [14], we present the definition of stochastic

τ -R0 function, which will be used in the proof of boundedness of level sets.

Definition 2.3 ([20]) A function F : Rn → Rn is called a τ -R0 function if for every infinite
sequence {xk} ⊆ Rn that satisfies

lim
k→∞

∥∥xk∥∥ = ∞, lim sup
k→∞

τ
((

–xk)
+

)
< ∞, lim sup

k→∞
τ
((

–F
(
xk))

+

)
< ∞,

then lim supk→∞ τ (xk � f (xk)) = ∞. Here, xk � f (xk) = xk – (xk – f (xk))+, which is equivalent
to φNR(xk , f (xk)).
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Definition 2.4 A function G : Rn × � → Rn is called a stochastic τ -R0 function on Rn if
for every infinite sequence {xk} ⊆ Rn that satisfies

lim
k→∞

∥∥xk∥∥ = ∞, lim sup
k→∞

τ
((

–xk)
+

)
< ∞, lim sup

k→∞
τ
((

–G
(
xk ,ω

))
+

)
< ∞ a.e.,

then P(ω : lim supk→∞ τ (xk � G(xk ,ω)) = ∞) > 0.

Similar to the definition of equi-coerciveness in [20] , we give the definition of τ -equi-
coerciveness.

Definition 2.5 A function H : Rn × � → Rn is called τ -equi-coercive on Rn if, for any
{xk} ⊆ Rn satisfying ‖xk‖ → ∞, the existence of {ωk} ⊆ supp� with limk→∞ λi(H(xk ,ωk)) =
∞ (limk→∞ λi((–H(xk ,ωk))+) = ∞) for some i ∈ (1, . . . , n) implies that

P
(
ω : lim

k→∞
λi

(
H

(
xk ,ω

))
= ∞

)
> 0

(
P

(
ω : lim

k→∞
λi

((
–H

(
xk ,ω

))
+

)
= ∞

)
> 0

)
.

3 CVaR model and its approximation problems
Before giving a CVaR model, we give the definition of Value-at-Risk (VaR). For a variable
x and a parameter u ∈ R+, the risk value less than level u, its probability is defined as

P
(
g(x,ω) ≤ u

)
=

∫

g(x,ω)≤u
ρ(ω) dω,

where ρ(ω) denotes the probability density function of ω. For a given confidence level α,
the definition of VaRα(x) about x is given as follows:

VaRα(x) := min
{

u ∈ R|P(
g(x,ω) ≤ u

) ≥ α
}

.

Here, g(x,ω) : Rn ×� → R denotes the loss function. Note that VaR is a popular risk mea-
sure, but it has undesirable properties such as a lack of subadditivity, convexity and fails
to be coherent in the sense. However, CVaR can cover the shortage of VaR, that is, CVaR
satisfies coherence and convexity. Besides, in references [17, 18], Rockafellar and Urya-
sev indicate that when minimizing CVaR, VaR can be obtained as the result of CVaR’s
auxiliary.

For a given confidence level α, CVaR is defined as the conditional expectation of the loss
associated with x relative to that loss being VaRα or greater, that is,

CVaRα(x) := (1 – α)–1
∫

g(x,ω)≥VaRα (x)
g(x,ω)ρ(ω) dω.

So, the model of minimizing the condition Value-at-Risk can be denoted by

min CVaRα(x). (3.1)

Set Gα(x, u) : Rn × R → R is given by

Gα(x, u) = u +
1

1 – α

∫ [
g(x,ω) – u

]
+ρ(ω) dω

= u + (1 – α)–1E
[[

g(x,ω) – u
]

+

]
,
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where E denotes mathematics expectation. From references [17, 18], we can obtain min-
imizing CVaRα(x) is equivalent to the minimizing function Gα(x, u). Therefore, CVaR
model (3.1) is equivalent to the following optimization problem:

min
(x,u)∈(Rn×R+)

Gα(x, u). (3.2)

In this paper, we employ the second-order cone merit function 	FB(x, f (x,ω)) to define
the loss function in (3.2), and give the CVaR model for solving SSOCCP as follows:

min
(x,u)∈(Rn×R+)

�(x, u) := u + (1 – α)–1E
[[

	FB
(
x, f (x,ω)

)
– u

]
+

]
. (3.3)

Here, α ∈ (0, 1) denotes a given confidence level.
One main difficulty in dealing with (3.3) is that the model contains an expectation, which

is difficult to calculate in general. So, in this paper, we employ the sample average approx-
imation method to approximate the expectation.

The sample average approximation method uses the sample average value approx-
imates the expected [16]. That is, for an integrable function ψ : � → R, E[ψ(ω)] ≈

1
Nk

∑
ωi∈�k

ψ(ωi), where �k := {ω1, . . . ,ωNk } ⊆ � and ωi (i = 1, 2, . . . , Nk) is an indepen-
dently and identically distributed sample. We assume that {Nk} tends to infinity as k in-
creases. The strong law of large numbers guarantees that this procedure converges with
probability one (abbreviated by “w.p.1.”), that is,

lim
k→∞

1
Nk

∑

ωi∈�k

ψ
(
ωi) = E

[
ψ(ω)

]
, w.p.1. (3.4)

By employing the sample average approximate method, we can obtain the approximates
problem of CVaR model as follows:

min
(x,u)∈(Rn×R+)

�k(x, u) := u + (1 – α)–1 1
Nk

∑

ωi∈�k

[
	FB

(
x, f (x,ω)

)
– u

]
+,

where �k = {ω1, . . . ,ωNk }. And Nk satisfies Nk → ∞ as k → ∞.
The other difficulty is that [·]+ is not differentiable everywhere. So the objective func-

tion of CVaR model is nonsmooth, which makes us apply general optimization algorithm
unable to solve this problem. Therefore, we use the smoothing function presented by Li
in [13] to smooth [·]+. The smoothing form of the function [t]+ is given as follows:

hμ(t) = μ ln
(
exp

t
μ +1

)
.

In reference [13], Li et al. prove that the following formulations hold:

lim
μ→0

hμ(t) = [t]+ and 0 ≤ hμ(t) – [t]+ ≤ μ ln 2. (3.5)

For simplicity, let

h(x, u,ω) :=
[
	FB

(
x, f (x,ω)

)
– u

]
+.
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Then, for any μ > 0, we use

hμ(x, u,ω) := μ ln
(
exp

	FB(x,f (x,ω))–u
μ +1

)

to denote the smoothing function of h(x, u,ω). It is easy to get that

lim
μ→0

hμ(x, u,ω) = h(x, u,ω).

Especially, following from (3.5), the smoothing function hμ(x, u,ω) satisfies

0 ≤ hμ(x, u,ω) – h(x, u,ω) ≤ μ ln 2. (3.6)

We then combine the sample average approximation method and the smoothing method
together, to construct a smoothing sample average approximation problem of the CVaR
model as follows:

min
(x,u)∈(Rn×R+)

�k
μ(x, u) := u + (1 – α)–1 1

Nk
·

∑

ωi∈�k

μ ln
(
exp

	FB(x,f (x,ω))–u
μ +1

)
. (3.7)

4 The boundedness of level set
The boundedness of level set is important since it ensures that the solutions of the opti-
mization problem (3.3) are bounded. So, we consider that when f (x,ω) is a stochastic τ -R0

function and τ -equi-coercive, the level set of �(x, u) is bounded.

Theorem 4.1 Suppose that there exists ω ∈ supp� such that f (x,ω) is a τ -R0 function on
Rn, and f (x,ω) is τ -equi-coercive on Rn. Then f (x,ω) is a stochastic τ -R0 function for every
ω ∈ �.

Proof Suppose that {xk} ⊆ Rn satisfies

lim
k→∞

∥∥xk∥∥ = ∞, lim sup
k→∞

τ
((

–xk)
+

)
< ∞, lim sup

k→∞
τ
((

–f
(
xk ,ω

))
+

)
< ∞ a.e.

If lim supk→∞ τ ((–f (xk ,ω))+) = ∞, then at least there exists one i ∈ (1, . . . , n) and {xki} ⊆
{xk} such that limki→∞ λi((–fi(xki ,ω))+) = ∞. Since f (x,ω) is τ -equi-coercive, then we have

P
(
ω : lim

ki→∞
λi

((
–f

(
xki ,ω

))
+

)
= ∞

)
> 0,

which contradicts

lim sup
k→∞

τ
((

–f
(
xk ,ω

))
+

)
< ∞ a.e.

Hence, we must have

lim sup
k→∞

τ
((

–f
(
xk ,ω

))
+

)
< ∞.
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Since f (x,ω) is a τ -R0 function, lim supk→∞ τ (xk � f (xk ,ω)) = ∞. Using f (x,ω) is τ -equi-
coercive again, we have

P
(
ω : lim sup

k→∞
τ
(
xk � f

(
xk ,ω

))
= ∞

)
> 0.

Therefore, f (x,ω) is a stochastic τ -R0 function on Rn. �

Theorem 4.2 Suppose that there exists ω ∈ supp� such that ρ(ω) > 0 and f (x,ω) is a τ -R0

function, f (x,ω) is τ -equi-coercive. Then L�
γ (x, u) = {(x, u)|�(x, u) ≤ γ } is bounded.

Proof Suppose that L�
γ (x, u) is unbounded, there exists a sequence {(xk , uk)} ⊂ L�

γ (x, u)
such that limk→∞ ‖xk‖ = ∞ or limk→∞ |uk| = ∞. By (3.3) and the boundedness of L�

γ (x, u),
we can get that limk→∞ |uk| = ∞ cannot hold. So, there exists a sequence {xk} satisfying
limk→∞ ‖xk‖ = ∞.

Firstly, we prove

lim
k→∞

	FB
(
xk , f

(
xk ,ω

))
= ∞. (4.1)

On the contrary, for an unbounded sequence {xk}, there exists δ > 0 such that ω ∈
B := {ω ∈ �|‖ω – ω‖ ≤ δ}, by Theorem 4.1, f (x,ω) is a stochastic τ -R0 function. If
lim supk→∞ τ ((–xk)+) = ∞, then (through a subsequence) ‖(–xk)+‖ → ∞. Note that

	FB
(
xk , f

(
xk ,ω

))

=
∥∥φFB

(
xk , f

(
xk ,ω

))∥∥2

≥ ∥∥[
φFB

(
xk , f

(
xk ,ω

))]
+

∥∥2

≥ 1
2
(∥∥(

–xk)
+

∥∥2 +
∥∥(

–f
(
xk ,ω

))
+

∥∥2), (4.2)

where the first inequality is due to the nonexpansiveness of the projection and [0]+ = 0, the
second inequality follows from Lemma 5.2 in [15]. By (4.2), we have limk→∞ 	FB(xk , f (xk ,
ω)) = ∞. This contradicts the boundedness of 	FB(xk , f (xk ,ω)). If lim supk→∞ τ ((–f (xk ,
ω))+) = ∞, by (4.2), we get the same contradiction. So, we have

lim sup
k→∞

τ
((

–xk)
+

)
< ∞ and lim sup

k→∞
τ
((

–f
(
xk ,ω

))
+

)
< ∞.

That is, the unbounded sequence {xk} satisfies the conditions in Definition 2.4. By Defi-
nition 2.4, we have P(ω ∈ � : lim supk→∞ τ (xk � f (xk ,ω)) = ∞) > 0. So, xk � f (xk ,ω) → ∞,
that is, φNR(xk , f (xk ,ω)) → ∞. Taking formulation (2.1) into account, we have ‖φFB(xk ,
f (xk ,ω))‖ → ∞. This contradicts the boundedness of 	FB(xk , f (xk ,ω)). So limk→∞ 	FB(xk ,
f (xk ,ω)) = ∞.

Secondly, because of the continuity of ρ , there exists a constant ρ > 0, and ρ(ω) ≥ ρ . So,
for every k, there exists ωk ∈ B such that

∥∥	FB
(
xk , f

(
xk ,ωk))∥∥ = min

ω∈B

∥∥	FB
(
xk , f

(
xk ,ω

))∥∥. (4.3)
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By the fact that
∫

B dω > 0 and formulation (4.1), we have that

�
(
xk , u

) ≥
∫

B
u + (1 – α)–1((	FB

(
xk , f

(
xk ,ω

))
– u

)
+

)
ρ(ω) dω

≥ u + (1 – α)–1((	FB
(
xk , f

(
xk ,ωk)) – u

)
+

)
ρ

∫

B
dω

→ ∞ (k → ∞).

This contradicts the boundedness of L�
γ (x, u). So we can get L�

γ (x, u) = {(x, u)|�(x, u) ≤ γ }
is bounded. �

We denote S∗ and S∗
k as the sets of optimal solutions of problems (3.3) and (3.7), respec-

tively.

Theorem 4.3 Suppose that there exists ω ∈ supp� such that f (x,ω) is a τ -R0 function,
and f (x,ω) is τ -equi-coercive on Rn. Then limx→∞ �k

μ(x, u) = +∞ when k is large enough.
In particular, S∗

k is nonempty and bounded for every k sufficiently large.

Proof By Theorem 4.1, for any ω ∈ �, f (x,ω) is a stochastic τ -R0 function. Thus, in the
similar way to the proof of Theorem 4.2, we can get limx→∞ �k

μ(x, u) = +∞. �

5 Analysis convergence
We next study the convergence of the smoothing sample average approximation problem.

Theorem 5.1 Suppose that for any k, (xk , uk) is a global optimal solution of problem (3.7),
(x̄, ū) is an accumulation point of sequence {(xk , uk)}. Then (x̄, ū) is a globally optimal solu-
tion of CVaR model (3.3) which holds with probability one.

Proof Without loss of generality, we assume that limk→∞(xk , uk) = (x̄, ū). Let B be a com-
pact set including the whole sequence {(xk , uk)}. Z ⊆ R+ is a compact set including {μk}.
Because hμ(x, u,ω) is a continuously differentiable function on the compact set B×�×Z,
we can obtain that there exists a constant C > 0 such that, for any (x, u,ω) ∈ B × � and
μ ∈ Z, the following formulation holds:

∥∥∇hμ(x, u,ω)
∥∥ ≤ C. (5.1)

Besides, from mean value theorem, for each xk , uk , ωi, and μk , there exists αki ∈ (0, 1) such
that (xki, uki) = αki(xk , uk) + (1 – αki)(x̄, ū) ∈ B, we then have

hμk
(
xk , uk ,ωi) – hμk

(
x̄, ū,ωi)

= ∇hμk
(
xki, uki,ωi)T((

xk , uk) – (x̄, ū)
)
. (5.2)
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Therefore, from (5.1) and (5.2), we have

∣∣�k
μk

(
xk , uk) – �k

μk (x̄, ū)
∣∣

≤ ∣∣uk – ū
∣∣ + (1 – α)–1 1

Nk

∑

ωi∈�k

∣∣hμk
(
xk , uk ,ωi) – hμk

(
x̄, ū,ωi)∣∣

≤ ∣∣uk – ū
∣∣ + (1 – α)–1 1

Nk

∑

ωi∈�k

∥∥∇hμk
(
xki, uki,ωi)∥∥

· ∥∥(
xk , uk) – (x̄, ū)

∥∥

≤ ∣∣uk – ū
∣∣ +

C
(1 – α)

· 1
Nk

∑

ωi∈�k

∥∥(
xk , uk) – (x̄, ū)

∥∥

k→∞−−−→ 0, w.p.1. (5.3)

On the other hand, from (3.4) and (3.6), we have

∣∣�k
μk (x̄, ū) – �(x̄, ū)

∣∣

≤ (1 – α)–1
∣∣∣∣

1
Nk

∑

ωi∈�k

hμk
(
x̄, ū,ωi) – E

[
h(x̄, ū,ω)

]
∣∣∣∣

≤ (1 – α)–1
[

1
Nk

∑

ωi∈�k

∣∣hμk
(
x̄, ū,ωi) – h

(
x̄, ū,ωi)∣∣

+
∣∣∣∣

1
Nk

∑

ωi∈�k

h
(
x̄, ū,ωi) – E

[
h(x̄, ū,ω)

]
∣∣∣∣

]

≤ (1 – α)–1
[

1
Nk

∑

ωi∈�k

μk ln 2

+
∣∣∣∣

1
Nk

∑

ωi∈�k

h
(
x̄, ū,ωi) – E

[
h(x̄, ū,ω)

]
∣∣∣∣

]

k→∞−−−→ 0, w.p.1. (5.4)

Similarly, we obtain

lim
k→∞

�k
μk (x, u) = �(x, u), w.p.1. (5.5)

Since

∣∣�k
μk

(
xk , uk) – �(x̄, ū)

∣∣

≤ ∣∣�k
μk

(
xk , uk) – �k

μk (x̄, ū)
∣∣ +

∣∣�k
μk (x̄, ū) – �(x̄, ū)

∣∣,

from (5.3) and (5.4) we have

lim
k→∞

�k
μk

(
xk , uk) = �(x̄, ū), w.p.1. (5.6)
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In fact, for each k, due to (xk , uk) being a global optimal solution of problem (3.7), we have

�k
μk

(
xk , uk) ≤ �k

μk (x, u), ∀(x, u) ∈ Rn × R+. (5.7)

Taking limits to (5.7), by (5.5) and (5.6), we have

�(x̄, ū) ≤ �(x, u), w.p.1,∀(x, u) ∈ Rn × R+. �

Note that approximation problem (3.7) is a nonconvex programming problem, so when
we solve this problem, we will obtain stationary points rather than global optimal solu-
tions. Therefore, we will analyze the convergence of problem (3.3)’s and (3.7)’s stationary
points. Firstly, we give the definition of stationary points of (3.3) and (3.7), respectively.

Definition 5.1 ([7]) The Clarke generalized gradient of f (x) with respect to x is defined
as

∂xf (x) := conv
{

lim
y→x,y∈Df (·)

∇xf (y)
}

,

where Df (·) denotes the set of points near x where the function f : Rn → R near x is Frechét
differentiable, ∇xf (y) denotes f (y) general gradient with respect to x, and conv denotes
convex hull of a set.

Definition 5.2 Let dki
μk (xk , uk ,ωi) := exp

	FB(xk ,f (xk ,ωi))–uk

μk , for each fixed k, if (xk , uk) satisfies

(1 – α)–1 1
Nk

∑

ωi∈�k

dki
μk (xk , uk ,ωi)

1 + dki
μk (xk , uk ,ωi)

· (∇	FB
(
xk , f

(
xk ,ωi)), 0

)
= 0,

1 – (1 – α)–1 1
Nk

∑

ωi∈�k

dki
μk (xk , uk ,ωi)

1 + dki
μk (xk , uk ,ωi)

= 0, (5.8)

where 0 ∈ Rl is zero vector, we call (xk , zk , uk) a stationary point of (3.7).

Definition 5.3 If (x̄, ū) satisfies

0 ∈ ∂(x,u)�(x̄, ū), (5.9)

we call (x̄, ū) a stationary point of (3.3).

Theorem 5.2 Suppose that for any k, (xk , uk) is a stationary point of problem (3.7), (x̄, ū) is
an accumulation point of the sequence {(xk , uk)}. Then (x̄, ū) is a stationary point of CVaR
model (3.3) which holds with probability one.

Proof Without loss of generality, we assume that

lim
k→∞

(
xk , uk) = (x̄, ū).
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Let B := {x|||x – x|| ≤ 1}, C := {u||u – u| ≤ 1}. Because 	FB(x, f (x,ω)) is a continuously
differentiable function on the compact set B×�, we can obtain that there exists a constant
D > 0 such that, for any (x,ω) ∈ B × �, the following formulation holds:

∥∥∇	FB
(
x, f (x,ω)

)∥∥ ≤ D. (5.10)

From mean value theorem (Theorem 2.19 in [9]), we obtain that there exists β ∈ (0, 1)
such that (x̃, ỹ) = β(x′, y′) + (1 – β)(x′, y′) ∈ B and

∣∣	FB
(
x′, y′) – 	FB

(
x′′, y′′)∣∣

=
∣∣∇	FB(x̃, ỹ)T((

x′, y′) –
(
x′′, y′′))∣∣

≤ D
∥∥(

x′, y′) –
(
x′′, y′′)∥∥. (5.11)

Let

ϑ(x, u,ω) := u + (1 – α)–1[	FB
(
x, f (x,ω)

)
– u

]
+, (5.12)

we obtain �(x, u) = E[ϑ(x, u,ω)]. From (5.10), (5.11), and the inequality |[x]+ – [y]+| ≤ |x –
y|, we obtain that

∣∣ϑ
(
x′, u′,ω

)
– ϑ

(
x′′, u′′,ω

)∣∣

≤ ∣∣u′ – u′′∣∣ +
1

1 – α

[
	FB

(
x′, f

(
x′,ω

))
– 	FB

(
x′′, f

(
x′′,ω

))
+

∣∣u′ – u′′∣∣]

≤ ∣∣u′ – u′′∣∣ +
1

1 – α

[
D

∥∥(
x′, y′) –

(
x′′, y′′)∥∥ +

∣∣u′ – u′′∣∣].

Therefore, we get

E
[
∂(x,u)ϑ(x̄, ū,ω)

] ⊆ ∂(x,u)�(x̄, ū,ω),

by Theorem 9 in [19]. Therefore, in order to prove 0 ∈ ∂(x,u)�(x̄, ū,ω), we only prove the
following formulation holds:

0 ∈ E
[
∂(x,u)ϑ(x̄, ū,ω)

]

= E

[(
0
1

)

+ (1 – α)–1 · r ·
(

(∇	FB(x̄, f (x̄,ω), 0))
–1

)∣∣∣∣∣

r ∈ ∂(x,u)
[
	FB

(
x̄, f (x̄,ω)

)
– ū

]
+

]

, (5.13)

where 0 ∈ Rl is a zero vector and

∂(x,u)
[
	FB

(
x̄, f (x,ω)

)
– ū

]
+ :=

⎧
⎪⎪⎨

⎪⎪⎩

1, 	FB(x̄, f (x̄,ω)) – ū > 0,

[0, 1], 	FB(x̄, f (x̄,ω)) – ū = 0,

0, 	FB(x̄, f (x̄,ω)) – ū < 0.



Luo and Zhang Journal of Inequalities and Applications  (2018) 2018:223 Page 13 of 14

Next, we prove (5.13) holds. Let dμ(x, u,ω) := exp[ 	FB(x,f (x,ω))–u
μ

] and

ζμ(x, u,ω)

=

⎧
⎪⎨

⎪⎩

( (1–α)–1 dμ(x,u,ω)
1+dμ(x,u,ω) ((∇	FB(x,f (x,ω)),0))

1–(1–α)–1 dμ(x,u,ω)
1+dμ(x,u,ω)

)
, μ �= 0,

{( 0
1

)
+ (1 – α)–1 · r · ( (∇	FB(x,f (x,ω)),0)

–1

)}
, μ = 0,

(5.14)

where r ∈ ∂(x,u)[	FB(x, f (x,ω)) – u]+.
Next, we will prove that ζμ̄(x, u,ω) is upper semicontinuous on (x̄, ū). When μ �= 0,

by (5.14), we know that ζμ̄(x, u,ω) is a monotropic function near (x̄, ū). So, because
	FB(x, f (x,ω)) is continuously differentiable about x, we get that ζμ̄(x, u,ω) is continuous
on (x̄, ū). When μ = 0, it is easy to find that ζ0(x, u,ω) is closed on (x̄, ū). Taking (5.10) into
account, we have ζ0(x, u,ω) is uniform compact near (x̄, ū). Therefore, from Lemma 3.5 of
[6], we know that ζ0(x, u,ω) is upper semicontinuous on (x̄, ū). Based on the above argu-
ment, ζμ̄(x, u,ω) is upper semicontinuous on (x̄, ū).

Noting that � is a compact set and 	FB(x, f (x,ω)) is continuously differentiable about x,
we obtain that ζμ(x, u,ω) is a bounded and compact set value function in B × C × �. So,
the conditions in Lemma 3.4 [6] hold for the function ζμ(x, u,ω) since the formulation of
Definition 5.2 is equivalent to

0 ∈ 1
Nk

∑

ωi∈�k

ζμk
(
xk , yk , zk , uk ,ω

)
.

From Lemma 3.4 of [6], we get that formulation (5.9) holds. �

6 Conclusions
In this paper, we consider a stochastic second-order cone complementarity problem. The
boundedness of level sets of �(x, u) is important since it ensures that the solutions of the
optimization problem (3.2) are bounded. Then, because for all ω ∈ �, SSOCCP (1.2) may
have no solutions, we construct a reasonable deterministic model that is a conditional
value-at-risk model and regard the solutions of this model as the solutions of SSOCCP.
About the CVaR model, there may be two difficulties for solving the model. One is that
the objective function is a non-smoothing function. The other is approximation of the ex-
pectation. We use the sample average approximate method and the smoothing method
to solve these two difficulties. Moreover, we give convergence analysis of a global opti-
mal solutions sequence and a stationary points sequence of smoothing sample average
approximation problems.
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