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Abstract
In this paper, we have established appropriate duality relations for a general nonlinear
optimization problem under fuzzy environment, taking exponential membership
functions and using the aspiration level approach. A numerical example has also
been shown to justify the results presented in the paper.
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1 Introduction
Zadeh in 1965 introduced fuzzy set theory by publishing the first article in this area. He
generalized the classical notion of a set and a proposition to accommodate fuzzyness. This
has been applied in diverse fields such as machine learning, multi-attribute decision mak-
ing, supply chain problems, management sciences, etc. Fuzzy control, which directly uses
fuzzy rules, is the important application in fuzzy theory. Fuzzy set theory is also applicable
in the real life case like controlling smart traffic light. The controller is designed in such
a way that it changes the cycle time depending upon the densities of cars behind red and
green lights.

The fuzzy set theory provides various logical operators that allow the aggregation of
several criteria to just one criterion. These operators can be evaluated with respect to
axiomatic requirements, numeric efficiency robustness, degree of compensation among
the criteria, and ability to model expert behavior.

Bellman and Zadeh [1] proposed the idea of decision making in fuzzy environment. Af-
ter the pioneering work on fuzzy linear programming problems (FLPP) in Tanaka et al. [2]
and Zimmermann [3], several kinds of (FLPP) along with the different solution method-
ologies have been discussed in the literature. Many researchers, including Lai and Hwang
[4], Shaochang [5], Buckley [6, 7], and Negi [8], have considered the problems where all
parameters are fuzzy. Lai and Hwang [4] assumed that the parameters have a triangular
possibility distribution. Using multiobjective linear programming methods, they provided
an auxiliary model related to it.
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Rodder and Zimmermann [9] were the first who studied the duality of (FLPP), con-
sidering the economic interpretation of the dual variables. After that, many interesting
results regarding the duality of (FLPP) have been investigated by several researchers [10–
18]. Zhang et al. [19] investigated the duality theory in fuzzy mathematical programming
problems with fuzzy coefficients. Ovchinnikov [20] characterized Zadeh’s extension prin-
ciple in terms of the duality principle. Introducing the concept of convex fuzzy variables
for fuzzy constrained programming, Yang [21] proved a convexity theorem with convex
fuzzy parameters and a duality theorem for fuzzy linear constrained programming. Later
on, Farhadinia and Kamyad [22] extended the duality theorems for the crisp conic opti-
mization problems to the fuzzy conic programming problems based on the convexity-like
concept of fuzzy mappings and the parameterized representation of fuzzy numbers.

The paper is organized as follows. In Sect. 2, we construct a general fuzzy nonlinear
programming problem and formulate its Mangasarian type dual. Further, we prove duality
theorems using exponential membership functions under convexity assumptions. In the
next section, we illustrate a numerical example.

2 Definitions and preliminaries
In the crisp sense, a general nonlinear primal-dual pair can be expressed as follows:

Primal Problem (MP)

Minimize f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

x ∈ X.

Dual Problem (MD)

Maximize L(w, u) = f (w) + uT g(w)

s.t. ∇f (w) + uT∇g(w) = 0,

u ≥ 0,

where X ⊆ Rn, x, w ∈R
n, u ∈R

m, f : Rn → R, gi : Rn → R, i = 1, 2, . . . , m.
Let the aspiration levels corresponding to the objective function of primal (MP) and

dual (MD) be denoted by z0 and w0, respectively.
Now, the above crisp pair (MP) and (MD) can be described in the fuzzy sense as the

following pair (˜MP) and (˜DD):

Primal Problem

(˜MP) Find x ∈R
n such that

f (x) � z0,

gi(x) � 0, i = 1, 2, . . . , m,

x ∈ X.
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Dual Problem

(˜DD) Find (w, u) ∈ R
n×R

m such that

L(w, u) = f (w) + uT g(w) � w0,

∇f (w) + uT∇g(w) = 0,

u ≥ 0,

where “�” and “�” are the representations of inequalities “≥” and “≤” in the fuzzy sense,
respectively, and have interpretation of “essentially greater than” and “essentially less than”
in the sense of Zimmermann.

The exponential membership functions associated with the objective function and the
ith constraint, i = 1, 2, . . . , m, are as follows:

μ0(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if f (x) – z0 ≤ 0,
e–F –e–α

1–e–α if 0 < f (x) – z0 < p0,

0 if f (x) – z0 ≥ p0

and

μi(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if gi(x) ≤ 0,
e–Gi –e–αi

1–e–αi if 0 < gi(x) < pi,

0 if gi(x) ≥ pi,

where F = α((f (x) – z0)/p0), Gi = αi(gi(x)/pi), and α, αi, 0 < α,αi < ∞ are fuzzy parame-
ters, also called shape parameters as they measure the degree of vagueness. The constants
p0, pi (i = 1, 2, . . . , m) are the allowed change or violations corresponding to the objective
function and the constraints of (MP), respectively.

The set of feasible solutions of the fuzzy nonlinear programming problem (˜MP) is de-
noted and defined as follows:

˜D =
{

x ∈R
n : f (x) � z0, gi(x) � 0, i = 1, 2, . . . , m

}

.

It represents the decision space with respect to the fuzzy constraints of (˜MP). Its mem-
bership function μ

˜D : R → [0, 1] can be determined from the membership functions of
individual fuzzy sets as follows:

μ
˜D(x) = min

{

μ0
(

f (x)
)

,μ1
(

g1(x)
)

, . . . ,μm
(

gm(x)
)}

.

For every μ̂0, μ̂i lying between 0 and 1, there exist unique p̂0, 0 < p̂0 < p0 and p̂i, 0 < p̂i < pi

such that

μ0(z0 + p̂0) = μ̂0 and μi(p̂i) = μ̂i.

Denote

FR(p̂0, p̂) =
{

x ∈R
n : f (x) � z0 + p̂0, g(x) � p̂

}

.
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Let X be the universe, whose generic elements are the sets FR(p̂0, p̂). Then we define a
membership function μ

˜FR : X → [0, 1] by μ
˜FR(FR(p̂0, p̂)) = min{μ̂0, μ̂1, . . . , μ̂m}. Therefore,

the set ˜D can also be written as

˜D =
⋃

(p̂0,p̂)

(

FR(p̂0, p̂),μ
˜FR

(

FR(p̂0, p̂)
))

: FR(p̂0, p̂) ∈ X.

Here, ˜D is a fuzzy set whose elements are the set of points in Rn which are generated with
the unique aspiration level z0 + p̂0 and p̂i.

Now, following Bellman–Zadeh’s maximization principle and using the fuzzy member-
ship functions defined above, the crisp equivalent of (˜MP) can be formulated as follows:

(PP) Maximize ξ

s.t. ξ ≤ e–F – e–α

1 – e–α
,

ξ ≤ e–Gi – e–αi

1 – e–αi
(i = 1, 2, . . . , m),

0 ≤ ξ ≤ 1,

where F = α((f (x) – z0)/p0) and Gi = αi(gi(x)/pi), i = 1, 2, . . . , m.
The above problem can be equivalently expressed as follows:

(PP-1) Maximize ξ

s.t. p0 log
(

ξ + e–α(1 – ξ )
) ≤ α

(

z0 – f (x)
)

, (1)

pi log
(

ξ + e–αi (1 – ξ )
) ≤ –αigi(x) (i = 1, 2, . . . , m), (2)

0 ≤ ξ ≤ 1. (3)

Similarly, if the constant q0 denotes admissible violations of the objective function of the
problem (DD), then the crisp equivalent of (˜DD) can be obtained as follows:

(DP) Minimize – ψ

s.t. ψ ≤ e–H – e–β

1 – e–β
,

∇f (w) + uT∇g(w) = 0,

ψ ∈ [0, 1], u ≥ 0,

where H = β((w0 – L(w, u))/q0).
This can be further re-written as

(DP-1) Minimize – ψ

s.t. q0 log
(

ψ + e–β (1 – ψ)
) ≤ β

(

L(w, u) – w0
)

, (4)

∇f (w) + uT∇g(w) = 0, (5)

ψ ∈ [0, 1], u ≥ 0, (6)
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where β is a shape parameter that measures the degree of vagueness of the objective func-
tion of (˜DD).

Theorem 2.1 For each feasible point of the problem (˜MP) there exists ξ , 0 ≤ ξ ≤ 1 such
that (x, ξ ) satisfies the constraints (1)–(3) of (PP-1).

Proof Let x ∈ ˜D. Then there exist some p̂0, 0 ≤ p̂0 ≤ p0, p̂i, 0 ≤ p̂i ≤ pi, i = 1, 2, . . . , m, such
that x ∈ FR(p̂0, p̂) and its membership value is given by μ

˜FR(FR(p̂0, p̂)) = min{μ̂0, . . . , μ̂m}.
Now, since x ∈ FR(p̂0, p̂), therefore we have

f (x) ≤ z0 + p̂0, g(x) ≤ p̂. (7)

For some ξ0, ξi ∈ [0, 1], let

p̂0 = p0
log(ξ0 + e–α(1 – ξ0))

α
and

p̂i = pi
log(ξi + e–αi (1 – ξi))

αi
, i = 1, 2, . . . , m.

Hence, inequality (7) becomes

p0 log
(

ξ + e–α(1 – ξ )
) ≤ α

(

z0 – f (x)
)

,

pi log
(

ξ + e–αi (1 – ξ )
) ≤ –αigi(x), i = 1, 2, . . . , m,

0 ≤ ξ ≤ 1,

where ξ = min(ξ0, ξ1, . . . , ξm). Therefore, (x, ξ ) is feasible for (PP-1). Hence the result. �

Theorem 2.2 Suppose x0 and (x0, u0) are the feasible solutions of (MP) and (MD), respec-
tively. If the corresponding objective value of (MP) fully (partially) satisfies the goal z0, then
the weak duality theorem between (˜MP) and (˜DD) holds (partially holds). That is, z0 ≥ w0

(z0 + p0 ≥ w0 – q0).

Proof By the weak duality result between (MP) and (MD), we have

f (x0) ≥ L(x0, u0). (8)

Since x0 is a feasible solution of (MP), therefore we get

gi(x0) ≤ 0 for all i.

Hence μi(gi(x0)) = 1, ∀i.
If f (x0) fully satisfies the goal z0, then f (x0) ≤ z0. Therefore

μ0
(

f (x0)
)

= 1.
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Also, the membership value of L(x0, u0),

ν
(

L(x0, u0)
)

= ν
(

f (x0) + uT
0 g(x0)

)

= min
{

μ0
(

f (x0)
)

,μ1
(

g1(x0)
)

, . . . ,μm
(

gm(x0)
)}

= 1.

So, L(x0, u0) ≥ w0.
Combining this with (8) yields

z0 ≥ f (x0) ≥ L(x0, u0) ≥ w0.

Now, if f (x0) partially satisfies the goal z0, then z0 ≤ f (x0) ≤ z0 + p0. Then

μ0
(

f (x0)
) ∈ [0, 1].

That is,

ν
(

L(x0, u0)
)

= ν
(

f (x0) + uT
0 g(x0)

)

= min
{

μ0
(

f (x0)
)

,μ1
(

g1(x0)
)

, . . . ,μm
(

gm(x0)
)} ∈ [0, 1].

Hence

w0 – q0 ≤ L(x0, u0) ≤ w0.

This yields

z0 + p0 ≥ f (x0) ≥ L(x0, u0) ≥ w0 – q0 or z0 + p0 ≥ w0 – q0.

This completes the proof. �

Theorem 2.3 (Modified weak duality) Let (x, ξ ) and (w, u,ψ) be feasible solutions for (PP-
1) and (DP-1), respectively. Further, assume that the functions f and g are convex at w.
Then

m
∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui ≤ f (x) – f (w) – uT g(w).

Proof Multiplying the constraint (2) of (PP-1) by ui ≥ 0 and further adding all the ‘m′

inequalities, we obtain

m
∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui ≤ –uT g(x). (9)

By the convexity of f and g at w, we have

f (x) – f (w) ≥ (x – w)T∇f (w) (10)
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and

g(x) – g(w) ≥ (x – w)T∇g(w). (11)

Employing u ≥ 0 in (11) and then adding with inequality (10), we get

(x – w)T(∇f (w) + uT∇g(w)
) ≤ f (x) – f (w) – uT g(w). (12)

Finally, using (5) in the addition of (9) and (12), we have

m
∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui ≤ f (x) – f (w) – uT g(w).

Hence the result. �

Theorem 2.4 Let (x̄, ξ̄ ) and (w̄, ū, ψ̄) be feasible solutions for (PP-1) and (DP-1), respec-
tively. Assume that the following conditions hold:

(i)
m

∑

i=1

log(ξ̄ + e–αi (1 – ξ̄ ))
αi

piūi = f (x̄) – f (w̄) – ūT g(w̄),

(ii)
log(ξ̄ + e–α(1 – ξ̄ ))

α
p0 +

log(ψ̄ + e–β (1 – ψ̄))
β

q0 =
{

G(w̄, ū) – f (x̄)
}

+ {z0 – w0},

(iii) w0 – z0 ≤ 0.

Then (x̄, ξ̄ ) and (w̄, ū, ψ̄) are the optimal solutions to (PP-1) and (DP-1), respectively.

Proof Let (x, ξ ) and (w, u,ψ) be feasible solutions for (PP-1) and (DP-1), respectively. Then

m
∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui + f (w) + uT g(w) – f (x) ≤ 0.

Using hypothesis (i) gives

m
∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui + f (w) + uT g(w) – f (x)

≤
m

∑

i=1

log(ξ̄ + e–αi (1 – ξ̄ ))
αi

piūi – f (x̄) + f (w̄) + ūT g(w̄) = 0.

It follows that (x̄, ξ̄ , w̄, ū, ψ̄) is the optimal solution to the following optimization problem
whose maximum value is zero:

(

MP∗) Maximize
m

∑

i=1

log(ξ + e–αi (1 – ξ ))
αi

piui + f (w) + uT g(w) – f (x)

s.t.
log(ξ + e–α(1 – ξ ))

α
p0 ≤ z0 – f (x),
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log(ψ + e–β (1 – ψ))
β

q0 ≤ L(w, u) – w0,

log(ξ + e–αi (1 – ξ ))
αi

pi ≤ –gi(x) (i = 1, 2, . . . , m),

∇f (w) +
m

∑

i=1

ui∇gi(w) = 0,

0 ≤ ξ ≤ 1, 0 ≤ ψ ≤ 1, u ≥ 0.

Further, hypotheses (i) and (ii) yield

m
∑

i=1

log(ξ̄ + e–αi (1 – ξ̄ ))
αi

piūi +
log(ξ̄ + e–α(1 – ξ̄ ))

α
p0

+
log(ψ̄ + e–β (1 – ψ̄))

β
q0 + {w0 – z0} = 0.

Since ξ̄ , ψ̄ ≤ 1, therefore each term in the above expression is nonpositive, which sums up
to zero. Hence

m
∑

i=1

log(ξ̄ + e–αi (1 – ξ̄ ))
αi

piūi = 0,

log(ξ̄ + e–α(1 – ξ̄ ))
α

p0 = 0, and

log(ψ̄ + e–β (1 – ψ̄))
β

q0 = 0.

Since

log(ξ + e–α(1 – ξ ))
α

p0 ≤ 0 =
log(ξ̄ + e–α(1 – ξ̄ ))

α
p0,

therefore

log
(

ξ + e–α(1 – ξ )
) ≤ log

(

ξ̄ + e–α(1 – ξ̄ )
)

,

which implies ξ ≤ ξ̄ . Similarly, we obtain –ψ ≥ –ψ̄ . This proves the result. �

3 Numerical illustration
Consider the following primal-dual pair:

(P) Minimize h(x, y) = x + 2x2 + y2

s.t. 2x + 2y ≥ 1.

and

(D) Maximize H(w, z, u) = w + 2w2 + z2 + u(1 – 2w – 2z)

s.t. 4w – 2u + 1 = 0,
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u – z = 0,

u ≥ 0.

Taking an exponential membership function in the primal problem (P) and the dual prob-
lem (D), the corresponding problems (PP-1) and (DP-1) become:

(FP) Maximize ξ

s.t. log
(

ξ + e–2(1 – ξ )
) ≤ (

1 – x – 2x2 – y2),

2 log
(

ξ + e–1(1 – ξ )
) ≤ (2x + 2y – 1),

ξ ∈ [0, 1],

and

(FD) Minimize – ψ

s.t. log
(

ψ + e–2(1 – ψ)
) ≤ 2

(

w + 2w2 + z2 + u – 2uw – 2uz – 1
)

,

4w – 2u + 1 = 0,

u – z = 0,

ψ ∈ [0, 1], u ≥ 0,

where p0 = p1 = 2, z0 = 1, α = 2, α1 = 1 and q0 = 1, β = 2, w0 = 1. Using a software MAPLE
12, the optimal solutions of (FP) and (FD) are x∗ = 0.3190, y∗ = 0.6910, ξ ∗ = 1 and ψ∗ =
0.1016, u∗ = z∗ = 0.50, w∗ = 0, respectively. Since all the assumptions of Theorems 2.3 and
2.4 are satisfied for the above problems, hence at these points the results of the theorems
can easily be verified.
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