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1 Introduction
Assuming that 0 < fooo f?(x)dx < 0o and 0 < fooo g2(y) dy < 0o, we have the following well-
known Hilbert’s integral inequality with the best possible constant factor 7 [1]:

/Ooofooofic)f;y)dd< (/ fzx)dx/ g(y)dy). (1)

In 1925, Hardy gave an extension of (1) as follows [2]: If p > 1, }7 + é =1, f(x) > 0, satisfying
0< [;°fP(x)dx < 00, and g(y) > 0, satisfying 0 < [;~ g7(y) dy < oo, then we have

/Ooofoooj%gywdxdy< sm? )(/ fP(x) dx> (f gq(y)dy)l, 2)

I
p

where the constant factor 7/ sin(%) is still the best possible. We call (2) Hardy—Hilbert’s
integral inequality, which with (1) is important in analysis and its applications (cf. [1, 3]). In
1934, Hardy et al. gave an extension of (2) with the general homogeneous kernel of degree
—1 (see [1], Theorem 319). Meanwhile, a Hilbert-type integral inequality with the general
nonhomogeneous kernel is provided (see [1], Theorem 350): If h(x) > 0, fooo h(x)x* L dx =
¢(s) € R, = (0,00), then

[ [ Honsoemasar<o(2)( [ dx)l(fomgq(yw)‘l’. )
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By introducing an independent parameter A € (0,00) and the beta function, in 1998,

Yang [4] gave an extension of (1) as follows:

1

f®)gly) A A )
/ / (x + y)* dxdy B<2 2)(/ x! Af2(x)dx/0 1= 2()/)dy) , (4)

where the constant factor B(%, %) is the best possible, and

00 tv—l
B(u,v) := —_ :
(u,v) /(; v dt  (u,v>0)

is the beta function (cf. [5]).

In 2007, Li [6] gave an extension of (4) and Yang [7] provided the following Hilbert-type

integral inequality with the nonhomogeneous kernel:

[ f@)g() T i )%( ® b )é
/o 0 1+(xy)’\dxdy<)\(/o # frx)dx /qu g'0dy) . (5)

Since then, a lot of authors have continued to discuss this topic (cf. [8—14]).

In this paper, by introducing independent parameters and interval variables, applying
the weight functions and the technique of real analysis, a Hilbert-type integral inequal-

ity in the whole plane with parameters and a best possible constant factor is provided as

follows:
/ / SWe0)
oo (] + |)’|)*
< 2B(M:U)|:/Oo PP () dx]p |:/Oo (20141 (y) dy]q ©)

(,0 >0, u + o = 1), which is an extension of (4). The more general form of (6) with
parameters, the equivalent inequalities, the reverses, and the related homogeneous form
with the particular parameter are considered. Meanwhile, an extended Hilbert’s integral
operator in the whole plane is defined, and the operator expressions for the equivalent

inequalities are obtained.

2 Weight functions and an initial inequality
Definition 1 Suppose that § € {-1,1}, -1 <«®,8 <1, u,0 >0, u + o = L. Define the fol-
lowing weight functions:

(J] + o)

1+ (I + ax)’(Iyl + By)I*

os(@y) = (] + By)° / : dx (yeR=(-c0,00),  (7)

‘_ so [ (Iyl + By
o) = et van)” | P e e, ®
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We find

ws(0,)

_ of [° (—x + ax)’dx 0 (x + ax)® L dx
= (bl + ) {/oo [1+(-x+ax>8<|y|+ﬁy>]“/o [1+(x+ax>6(|y|+ﬁy)1k}

_ of [ (v — ax)’* 1 dx o (x + )" dx
_(|y|+ﬂy) {A [1+(x—ax)5(|y|+ﬂy)]k+/0 [1+(x+otx)5(|y|+/3y)]A}‘

For fixed y (# 0), setting u = (x — ax)’(|y| + By) in the above first integral, we obtain that
1 1

_ gy s 1 _ W3 1
X = o —ud,dx= ) U° du, and

/oo (x_ax)éa—ldx :/oo u’"s u%—l
o [L+G—axlyl+BN1 o @+ u(yl+ 8375 L-a)(yl + By)}

1 ] ua—l
= du.
(L=a)(lyl + By)° /o vy

In the same way, setting u = (x + ax)’(]y| + By) in the above second integral, it follows that

/w (x+ax)’ldx ~ 1 /‘°° u1 "
o [L+@+axp(yl+pn)  Q+a)lyl+By)° Jo Q+u)

Hence, we have

1 1 o yol 2
ws(0,y) = (m + 1 +a),/0 mdu =K,(0) := 5 B(w, ). 9)

By (8), we find

ws(o,x)

_ s (O (y+By)dy X OBy
= (lxl+ax) {/m Ry g [1+(|x|+ax)5(y+ﬂy>l*}

. o[ [ =By dy X BTy }
= (Il o) {/o [1+<|x|+ax)5(y—/5y>]“/o [+ (ol + an) G+ B |

For fixed x (# 0), setting u = (|x| + ax)’(1 — B)y in the above first integral, we obtain y =

U
TP eray 204

* =By dy [ u! du
/0 [1+ (%] + ax)’(y - By ./0 (1 + (x| + ax)®©@=D (1 - B)(|x| + ax)?

1 o0 ua—l
" (- )l + ax) /o P

In the same way, setting u = (Jx| + ax)’(1 + B)y in the above second integral, we find

/m (y+,8y)”’1dy _ 1 /oo Mcr—l e
o [T+ (xl+ax)’(y+ Nt 1+ B)(Ixl +ax)e Jo (1+u)
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and then
1 1 © yot 2
X)=| —— ——du=K, = —B(u,0). 10
o) = (1054 1) [ ey K)o B) (10
Theorem 1 Supposethatp>0(p7’1),i+$=1,8€{—1,1},—1<a,,3<1,u,a >0, u+0 =
A, and
2B(,0)

K(o):= 1<§’ (a)Kf (o) = (11)

1- '32)1/;7(1 _ 052)1/‘7 :
Iff(x) > 0 (x € R), satisfying 0 < [ (|| + ax)P13)"LfP(x) dix < 00, then
(i) for p > 1, we have the following inequality:

1

e o[ [ £ Bt
/= {/_w('y' +£9) [/m [T+ (%l + @ (] + BT d’“} dy}

1

Sa-pra-eri ),

(ii) for 0<p <1, we have the reverse of (12).

Proof (i) For p > 1, by Holder’s inequality with weight [15] and (7), when y # 0, we find

o £
d.
/_oo [+ (al + ax)p (] + )T

_ 00 1 (x| + le)(l_'s”)/q (|y| + ﬂy)(l_g)/p
= /,oo (1 + (lx] + ax)3(|y| + By)]* [ Iyl + ﬁy)(l—g)/pf(x):| [(le N ax)(1—5")/q] dx

<{ /°° (Il + )15 fr(x)dx }
= e T Gl el (o + BT (T + B3

o0 (1-0)(g-1) i
8 {/ (Iyl + By) " dx }

oo [1+ (1] +ax)*(Iy + By)I* (%] + ax)!=0

: 1o o (1-80)(p-1) d
- (anto ) o1+ ) [ fo)d

’7. 3
—oo [1 4 (|2] + ax)?(|y] + By)]* (Iyl +ﬂy)1‘”} 13

We prove that (13) takes the form of strict inequality. Otherwise, there exists y # 0 such
that (13) takes the form of equality. Then there exist constants A and B such that they are
not all zero, and [15]

(%] + o) 17800 -1) SP(x)
(1 + (x| + ax)’(lyl + BYI* Iyl + By)t—
(Iyl + py)=)aD) 1

a.e.in R.

S+ (el + )’ (ly] + BY)IE (] + )15
If A =0, then B = 0, which is impossible. We suppose that A # 0, namely

_ B(yl + )

(Ixl + “x)p(l_sa)_lfp(x) © A(lx] + o) ae.inR,

which contradicts the fact that 0 < [ (|x] + ax)?! )17 (x) dx < c0.



He et al. Journal of Inequalities and Applications (2018) 2018:216 Page 5 of 11

Then by (11) and Fubini’s theorem [16], we find

1

|x|+ax (1 8o)(p-1) 1 }p
g dxd
J <K (0){/ /oo (1 + (x| + ax)’(lyl + BT Iyl + By)L~ /() dxdy

1

Kkl (a){ / " () (1] + ) dx}p. (14)

In view of (10) and (11), we have (12).
(ii) For 0 < p < 1, by the reverse Holder’s inequality [15], (7), and (9), we have the reverses

of (13) and (14). Then, by (10) and (11), we obtain the reverse of (12).
The theorem is proved. d

3 Main results
Theorem 2 Suppose that p > 1, }7 + 611 =1,8e{-1,1},-1<a,B<1, 0 >0, u+0 = A If
f(x),g(y) = 0, satisfying

0</ (|x|+ax) p-b0)- fp(x)dx<oo and 0</ (|y|+ﬂy)q(1‘”)‘1gq(y)dy<oo,

(o¢] —00

then we have the following inequality equivalent to (12):
1

R fxg()
= dxd
! /_oo f_w [+ (] + axp (] + BT

2B(u, o0 5o} 7
) (1- ,32)1/(;210_)0[2)1/q [/_m(m + O‘x)p(l " 1fp(x) dxi|

1
00 o) 7
x [ f Iyl + By) ™" g7 dy] : (15)
where the constant K(o) = % in (15) and (12) is the best possible.

In particular, for § = 1, we have the following equivalent inequalities with the nonhomo-

geneous kernel and the best possible constant factor K(o) = %

S o[ [ 1) P o\F
{/w('y [+ $7) [/oo [+ (1l + ax) (7] + BT d"} Y }

2B(L, co o ;
< a1 —ﬂ2)1/(}ftla_)a2)1/q [/ (|x| +otx).”(1 ) lfp(x)dx] ) (16)

2o oo @)
dxd
/,oo /,oo [+ (il + ax)(ly] + Byl

2B(u,0) [/N(le . ax)p(l_a)—lfp(x) dx]ﬁ

< (1 _ ,32)1/}7(1 _ a2)1/q

1

x [ /_ (Il + By) ™" g4(y) dy]q' (17)

o]
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Proof By Holder’s inequality, we find

-/
<[

and then by (12) we have (15).
On the other hand, suppose that (15) is valid. We set

/°° f(x)
oo [1+ (Ix] + ax)(lyl + By)I*

{(m +By)

(Il + By) ™" g4() dy} "

o0

fx)

. po-1
g0 = (Iy1+ By) {/oo (1 + (J%| + ax)’(|y| + By)]*

Page 6 of 11

dx}[(lyl +89)7 7 g0)] dy

(18)

p-1
dx} (y €R).

By (14) and the assumptions, we find J < co. If ] = 0, then (12) is trivially valid; if / > 0, then

by (15) we obtain

o0
0</
—00

<K(o) [ / N (Il + )7 7 () dx] ’

iR

<00,

I
2ol

Hence, we have (12), which is equivalent to (15).

(191 + By) "~ gty dy =7 = 1

1

(1 +By) ™" g1(y) dy} !

(Iyl + By) ™ gi(y) dy} ’

J
1

(|| + ax)p(l_aa)_lfp(x) dx:| p.

Forne N={1,2,...}, n> L, we define the sets Es := {x € R; |x|° > 1},

qu

Ef:={xeR;x’ =1}, E; :={-x eR,;(—x)’ > 1},
and the following functions:
1
. (x| + ax)’C" )L x e E5,
Sx):=
0, x € R\E;,

orL_
Iyl +By) ™", yel-1,1],
0, y € (—00,-1) U (1, 00).

g0) = [
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Then we obtain that

/ (|x| + ax)_%_l dx
Es

8
(x+ax) 7 Vdx+ | (c+ax) 7 ldx
E; Ef
S 8

= 1— 7%71 1 *%71 7%71d
[(1-a) +(1+a) ]/ng X
ot e ] [ e (=)
] (e e (P / T = [(A—a) " +(1+a) " ]n,
1
1 1
/ l(lyl +By)" ' dy
0 ) 1 X
=/ (—y+ﬂy)i‘1dy+/ (y+5y)r1dy
,1 0

1 1 1 1 1 1
“[a-prt e [y [a-pEt e e

[ (1] + )7 e )dx}p[ / (Iyl+ﬁy)q(1_“)_1§q(y)dy}q

o¢]

5 5T [ 1, i
|: |x|+otx A dx:| [/ (Iyl+ By)" dy:|
-1
[(1—a) i+ (L4 )5 P [(1- B3 4 (14 g0,

In the same way, we still find that

1
/ (] + ) ) [(1-a) S0t 7)1 (1+a)_8w+%)_1] T
Ej Mts
(L 1
/ (Iyl+By) 7 dy = [(1— By 7 (14 py A —
R\[-L1] -

Hence, we obtain

Fx)z»)
/ / T (ol + axP (51 5 BT 2

_ / [ ! (Jxl + o)™ (y) + )t
EsLJ-1 (1 + (|%] + ax)S(ly| + By)]*

= / (Il +ax)_7571w,; (o + i,x) dx
Es nq
(1] + ax)’ w7 |y + ﬂy)"+ }
- d d
/Ea Umm [+ (al + ax)5(|yl Y

=5 _ 1
Zf (|x|+ax)” 1w3<0+—,x>dx
Es nq

dyi| dx
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S(o—

(12 + )’ ) (ly| + By)7 7! ]
- dyld
/Eé[/R\[_m [(|x|+ax> (|y|+ﬂy>]k i
:I(ﬂ<a+%]>/ (|x|+ax) " dx
Es

—/ (Il +owc)75(’“$)f1 dx/ (Iyl +By)~ (=)~ " dy
Es R\[-1,1]

=Ky <a + i)[u —a) T+ (4 a) T - 0Q1).
nq

If there exists a constant k < K(o') such that (15) is valid when replacing K (o) by k, then

in particular, we have

. f@®)30) k.
I / -/oo [1+ (Jx| + ax)?(|y| + By)]* dydx < nL‘

In view of the above results, it follows that

Kg (a + %)[(1 —a) T (1 ra) ] - %o
<K[(L—a)y 5+ (L a) 5] [ B+ (14 B)A )4 (19)

For n — oo, we find

4B(11, o) <2k( 1 )é( 1 )%
(1-e?)(1-p) = "\1-a?/ \1-p2) "’

namely K (o) < k. Hence, k = K(o) is the best possible constant factor of (15).
The constant factor K (o) in (12) is also the best possible. Otherwise, we can conclude a

contradiction by (18) that the constant factor in (17) is not the best possible.
The theorem is proved. d

Theorem 3 With regards to the assumptions of Theorem 2, replacingp >1by0<p <1, we
have the equivalent reverses of (12) and (15) with the best possible constant factor K(o).

Proof We only prove that the constant factor K(o) in the reverse of (15) is the best possible,
and omit the others. If there exists a constant k > K(o) such that the reverse of (15) is valid

L we have

when replacing K (o) by k, then in particular, forn e N={1,2,...}, n> T

S

[(1—p)it+ (14 p)i1]e

F®)zv)
- - dyd
L< / / +(al + anp (p = BT 2

1 =5 1
<= (sl +ax)" ws| 0+ —,x ) dx
n Es ngq

= Ky <<7 " %)[(1 —a) ()T

k[(l - Ol)_%_l +(1+ a)_%_l]
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For n — o0, we obtain that k < K(o'). Hence, k = K (o) is the best possible constant factor
of the reverse of (15).
The theorem is proved. O

4 Operator expressions and a remark
Forp>1, }7 + 611 =1,8e{-1,1}, -1<a,B<1, u,0 >0, u+ 0o = A, we set the following

functions: @(x) := (x| + ax)?1 =91 4 (y) := (|y| + By)?1-)-1, where from

i) = (Il + ,By)‘m_1 (x,y €R).

Define the following real normed linear spaces:

Lyy(R) = {f; 1l = ( / N w(xmx)m)” < oo},

oo

L, y1-»(R) = {h; (A ( f wl"’(y)lh(y)l"dy)p < oo},

Lgy(R):= {g; gllgy := (/ 1//(y)|g(y)|qdy)q < oo}.

In view of Theorem 1, for any f € L, ,(R), we set

o0 1
ho):= /_oo [+ (el = axp (5]« By O O ER):
By (12) we have
172l 10 = ( / P ) |h)| dy)p < K(0)||fllpp < 0. (20)

Definition 2 Define an extended Hilbert’s integral operator in the whole plane
T:L,,(R)— L, y1» (R)
as follows: For any f € L, ,(R), there exists Tf = h € L, ;,1-»(R).

In view of (20), the operator T is bounded with

T 1-
I g _

17N = <
FeLpe®  fllpe

K(o).

Since by Theorem 2 the constant factor in (20) is the best possible, we have

2B(u,0)

IT| =K(o) = 1= (1 — a2y’

(21)

If we define the normal inner product of Tf and g as follows:

o0 o0 1
(If.8):= /_oo {/_oo (1 + (x| + ax)’(|y| + ﬁy)]kf(x) dx}g(y) @,
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then we can rewrite (15) and (12) as the following equivalent operator expressions:

(T, < ITN - Wfllpg lgllgr  NWTFllpyrp <UTI - 1 llpg- (22)

Remark 1 (i) In Theorem 2, for § = —1, replacing (|x| + ax)*f(x) by f(x), we have

o0
0< f (Jocl + ax)p(lfmflf’”(x) dx < oo,

o0

and the following equivalent inequalities with the homogeneous kernel and the best pos-
2B(11,0) .
(1- /32)1/11(1 —a )l/q

o po—1 ° f(x) P %
{/_oo(m +5) [/_oo (I%] + ax + |y| + By)* dx] dy}

B(u, o - »
< a —53)1/(;216_)“2)1@ I:/_ (Il +ax)1’(1 1) L2 (x) dx:| , (23)

x)gy)
dxd
/ /oo<|x|+ax+|y|+ﬂy)* v

2B(u, © e »
) (1- 52)1/(;216_)052)1/01 I:/_Oo(le + O‘x)p(l " 1fp(x) dx:|

sible constant factor K(o’) =

—_

=

1

x [ f (vl + By)™ " g1(9) dy] " (24)

o0

(ii) For o = B = 0, inequality (24) reduces to (6), and (17) reduces to

[ 40 gy

(1 + |y

< 2B(u,o>[ / " P dx] ’ [ / " yirto-gag) dy] " (25)

(iii) Forp=q=2,u=0 = %,f(—x) =f(x), g(-y) = g() (x,y > 0), inequality (6) reduces to
(4). Hence, inequality (6) is an extended Hilbert’s integral inequality in the whole plane,

and inequality (15) is a more general form of (6) with parameters.

5 Conclusions

In this paper, by introducing independent parameters and interval variables, applying the
weight functions and the technique of real analysis, an extended Hilbert’s integral inequal-
ity in the whole plane with parameters and a best possible constant factor is provided in
Theorem 2. The equivalent forms, the reverses, and the related homogeneous forms with
particular parameters are considered. An extended Hilbert’s integral operator in the whole
plane is defined, and the operator expressions for the equivalent inequalities are obtained.
The method of weight functions is very important, which helps us to prove the equivalent
inequalities with the best possible constant factor. The lemmas and theorems provide an

extensive account of this type of inequalities.
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