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Abstract
Poisson inequality for the Radon transform is a key tool in signal analysis and
processing. An analogue of the Hardy–Littlewood–Poisson inequality for the Radon
transform of infinitely differentiable functions is proved. The result is related to a
paper of Luan and Vieira (J. Inequal. Appl. 2017:12, 2017) and to a previous paper by
Yang and Ren (Proc. Indian Acad. Sci. Math. Sci. 124(2):175-178, 2014).
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1 Introduction
The Radon transform PI, which is defined as the Cauchy principal value of the following
singular integral

(PIh)(x) := p.v.
1
π

∫
R

h(y)
x – y

dy = lim
ε→0

∫
|y–x|≥ε

h(y)
x – y

dy

for any x ∈R, has been widely used in physics, engineering, and mathematics. The follow-
ing Poisson inequality

PI(hg) ≤ hPIg (1.1)

was first studied in [1–3, 5]. It was proved that (1.1) holds if h, g ∈ L2(R) satisfy that
supp f̂ ⊆R+ (R+ = [0,∞)) and supp ĝ ⊆R+ in [21].

In 2014, Yang and Ren also obtained more general sufficient conditions by weakening
the above condition in [24]. Recently, Luan and Vieria established the first necessary and
sufficient condition in the time domain and a parallel result in the frequency domain for
the Poisson inequality in [16].

It is natural that there have been attempts to define the complex signal and prove the
Poisson inequality in a multidimensional case.

Definition 1.1 The partial Radon transform PIj of a function h ∈ Lp(Rn) (1 ≤ p < ∞) is
given by

(PIjh)(x) := p.v.
1
π

∫
R

h(y)
xj – yj

dyj.
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The total Radon transformPI of a function h ∈ Lp(Rn) (1 ≤ p < ∞) is defined as follows:

(PIh)(x) := p.v.
1
πn

∫
Rn

h(y)
�n

j=1(xj – yj)
dy

= lim
maxεj→0

∫
|yj–xj|≥εj>0,j=1,2,...,n

h(y)
�n

j=1(xj – yj)
dy.

The existence of the singular integral above and its boundedness property

‖PIh‖Lp(Rn) ≤ Cn
p‖h‖Lp(Rn)

were proved in [10, 19]. The iterative nature of the Radon transform in Lp(Rn) (p > 1) was
shown in [6]. It was shown that

PI =
n∏

j=1

PIj.

The operations PIi and PIj commute with each other, where i, j = 1, 2, . . . , n.
It is known that the Fourier transform ĥ of h ∈ L1(Rn) is defined as follows (see [7]):

ĥ(x) =
∫
Rn

h(t)e–ix.t dt,

where x ∈ R
n.

LetD(Rn) be the space of infinitely differentiable functions inR
n with a compact support

and D′(Rn) be the space of distributions, that is, the dual of D(Rn) (see [15, 23]). This
definition is consistent with the ordinary one when T is a continuous function.

Put

D+ =

{
x : x ∈R

n, sgn(–x) =
n∏

j=1

sgn(–xj) = 1

}
,

D– =

{
x : x ∈ R

n, sgn(–x) =
n∏

j=1

sgn(–xj) = –1

}
,

and

D0 =

{
x : x ∈ R

n, sgn(–x) =
n∏

j=1

sgn(–xj) = 0

}
.

We denote by DD+ (Rn), DD– (Rn) and DD0 (Rn) the set of functions in D(Rn) that are
supported on D+, D–, and D0, respectively.

The Schwartz class S(Rn) consists of all infinitely differentiable functions ϕ on R
n sat-

isfying

sup
x∈Rn

∣∣xαDβϕ(x)
∣∣ < ∞
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for all α,β ∈ Z
n
+, where α = (α1,α2, . . . ,αn), β = (β1,β2, . . . ,βn), αj (j = 1, 2, . . . , n) and βj

(j = 1, 2, . . . , n) are nonnegative integers.
The Fourier transform ϕ̂ is a linear homeomorphism from S(Rn) onto itself. Meanwhile,

the following identity holds:

(PIϕ)∧(x) = (–i) sgn(x)ϕ̂,

where ϕ ∈ S(Rn).
The Fourier transform F : S′(Rn) → S

′(Rn) defined as

〈ν̂,ϕ〉 = 〈ν, ϕ̂〉

for any ϕ ∈ S(Rn) is a linear isomorphism from S
′(Rn) onto itself. For the detailed prop-

erties of S(Rn) and S
′(Rn), we refer the readers to [18, 20].

For ν ∈ S ′(Rn) and ϕ ∈ S(Rn), it is obvious that

〈 ˜̆ν,ϕ〉 = 〈ν̃, ϕ̂〉 = 〈ν, ˘̃ϕ〉 = 〈ν̂,ϕ〉 = 〈ν, ϕ̂〉

for any ϕ ∈ S(Rn), where

ϕ̃(x) = ϕ(–x)

and ν̃ is defined as follows:

〈ν̆,ϕ〉 = 〈ν, ϕ̃〉.

So we obtain that

˜̆ν = ν̂

in the distributional sense.
Following the definition in [16], a function ϕ belongs to the space DLp (Rn) (1 ≤ p < ∞)

if and only if
(I) ϕ ∈ C∞(Rn);

(II) Dkϕ ∈ Lp(Rn) (k = 1, 2, . . .), where C∞(Rn) consists of infinitely differentiable
functions,

Dkϕ(x) =
∂ |k|

∂xk1
1 · · · ∂xkn

n
ϕ(x),

where |k| = k1 + k2 + · · · + kn and k = (k1, k2, . . . , kn).
In the sequel, we denote by D′

Lp (Rn) the dual of the corresponding spaces

DLp′
(
R

n),

where

1
p

+
1
p′ = 1.
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As a consequence, we have

D
(
R

n) ⊆ S
(
R

n) ⊆DLp
(
R

n) ⊆ Lp(
R

n)

and

Lp(
R

n) ⊆D′
Lp

(
R

n) ⊆ S ′(
R

n) ⊆D′(
R

n).

Definition 1.2 Let h ∈ D′
Lp (Rn), where 1 < p < ∞. Then the Radon transform of h is de-

fined by (see [8])

〈PIh,ϕ〉 =
〈
f , (–1)n

PIϕ
〉

for any ϕ ∈DLp′ (Rn).

In [16], Luan and Vieira proved that the total Radon transform is a linear homeomor-
phism from DLp (Rn) onto itself, as well as if h ∈D′

Lp (Rn) (1 < p < ∞), then PIh ∈D′
Lp (Rn)

and the Radon transform H defined above is a linear isomorphism from D′
Lp (Rn) onto

itself.
Note that if ν ∈ Lp(Rn) (1 < p < ∞), then we have

〈
(Hν)∧,ϕ

〉
= 〈Hν, ϕ̂〉
= (–1)n〈ν, Hϕ̂〉
= (–1)n〈ν̌, (Hϕ̂)∧

〉

= (–1)n〈ν̌, (–i)n sgn(·) ˆ̂ϕ〉

=
〈
ν̌, (i)n sgn(·)ϕ̃〉

=
〈 ˜̌ν, (i)n sgn(·)ϕ〉

=
〈
(–i)n sgn(·)ν̂,ϕ

〉

for all ϕ ∈ S(Rn).
So the following inequality holds:

(Hν)∧(x) = (–i)n sgn(·)ν̂(x)

in the distributional sense.
Let 
 be a nonempty subset of R, define (see [16])

t
 = {tx : x ∈ 
},

where t is a nonzero real number. Hence we have

supp

(
u
(

x
t

))
= t supp(u).
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For a subset A ⊆R, define

A
 =
⋃
t∈A

t
.

2 Main lemmas
In this section, we shall introduce some lemmas.

Lemma 2.1 Let h ∈ Lp(Rn) (1 ≤ p < ∞) and g ∈ S(Rn). Then the Radon transform of func-
tion hg satisfies the Poisson inequality PI(hg) ≤ hPIg if and only if

p.v.
∫
Rn

h(x) – h(y)∏n
j=1(xj – yj)

g(y) dy = 0,

where x ∈ R
n.

Proof We have

PI(hg)(x) =
1

(π )n p.v.
∫
Rn

h(y)g(y)∏n
j=1(xj – yj)

dy

and

h(x)PIg(x) =
1

(π )n p.v.
∫
Rn

h(x)g(y)∏n
j=1(xj – yj)

dy

for x ∈R
n from the total Radon transform.

It is clear that the Poisson inequality is satisfied if and only if

p.v.
∫
Rn

h(x)g(y)∏n
j=1(xj – yj)

dy = p.v.
∫
Rn

h(y)g(y)∏n
j=1(xj – yj)

dy.

So

p.v.
∫
Rn

h(x) – h(y)∏n
j=1(xj – yj)

g(y) dy = 0,

where x ∈ R
n. �

We use W k,p(R) to denote the Sobolev space

W k,p(R) =
{

f ∈ Lp(R) : Dmf ∈ Lp(R), |m| ≤ k
}

,

where the derivative Dmf is understood in the distributional sense.

Lemma 2.2 Suppose that 1 < p ≤ 2. Then, for fixed x ∈R, the function

νx(y) =
μ(x) – μ(y)

x – y
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for any y ∈R and μ ∈ W 1,p(R) is in Lp(R) and

ν̂(w) = ie–ixw
∫ 1

0

w
t2 e

ixw
t μ̂

(
w
t

)
dt.

Proof Since μ ∈ W 1,p(R), we have

νx(y) =
∫ 1

0
μ′(ty + (1 – t)x

)
dt.

Now we prove that ν ∈ Lp(R). We observe that

‖ν‖p =
(∫

R

∥∥∥∥
∫ 1

0
μ′(ty + (1 – t)x

)
dt

∥∥∥∥
p) 1

p

≤
∫ 1

0

(∫
R

∥∥μ′(ty + (1 – t)x
)∥∥p dy

) 1
p

dt

=
∥∥μ′∥∥

p

∫ 1

0

1
p√t

dt

= p′∥∥μ′∥∥
p

< ∞

for fixed x ∈ R by using the generalized Minkowski inequality, which involves that ν ∈
Lp(R).

Since (see [9])

ν = PI(u) =
∫ u

1/
√

kσ

σ (s) ds,

it follows that

∇ν = σ (u)∇u =
(
ku2 – 1

)1/2∇u,

which yields that

∇u =
(
ku2 – 1

)–1/2∇ν.

Thus we have (see [11, 22])

(
1 – ku2)∇u∇ϕ = –

(
ku2 – 1

)1/2∇ν∇ϕ (2.1)

for each ϕ ∈ C1
0(Rn).

On the other hand, we have
∫
Rn

(
ku2 – 1

)1/2∇ν∇ϕ

=
∫
Rn

∇ν∇{(
ku2 – 1

)1/2
ϕ
}

–
∫
Rn

ku
ku2 – 1

|∇ν|2ϕ
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= –
∫
RN

a(x)
g(u)
σ (u)

(
ku2 – 1

)1/2
ϕ –

∫
RN

ku|∇u|2ϕ

= –
∫
RN

a(x)g(u)ϕ –
∫
RN

ku|∇u|2ϕ.

So

ν̂(w) =
∫ 1

0

[
μ′(ty + (1 – t)x

)]∧(w) dt

= e–ixν

∫ 1

0

1
t

e
ixw

t μ̂′
(

w
t

)
dt

= ie–ixν

∫ 1

0

ν

t2 e
ixw

t μ̂

(
w
t

)
dt

from the definition of W 1,p(R), which is the desired result. �

3 Poisson inequality for W1,p(R) functions
In this section, we develop a characterization of W 1,p(R) functions which satisfy the Pois-
son inequality PI(hg) ≤ hPIg .

Theorem 3.1 Let h ∈ W 1,p(R) (1 < p ≤ 2) and g ∈ Lp(R) ∩ Lp′ (R). Then the Radon trans-
form of the function hg satisfies the Poisson inequality PI(hg) ≤ hPIg if and only if

∫ 1

0

∫
R

w
t2 e

–iwx(t–1)
t ĥ

(
w
t

)
ĝ(–w) dw dt = 0 (3.1)

holds.

Proof By Lemma 2.1, we know that PIhg ≤ hPIg holds if and only if

p.v.
∫
Rn

h(x) – h(y)
x – y

g(y) dy = 0. (3.2)

Since h ∈ W 1,p(R), Lemma 2.2 ensures that

h(x) – h(·)
x – .

∈ Lp(R).

Thus (3.2) holds if and only if

∫
Rn

(
h(x) – h(y)

x – y

)∧
(w)

(
g(y)

)∨(w) dw = 0,

which yields that ǧ(w) = ĝ(–w). It is known that the above equation is equivalent to

∫
Rn

ie–iwx
∫ 1

0

w
t2 e

iwx
t ĥ

(
w
t

)
dtĝ(–w) dw = 0

from Lemma 2.2.
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Let

h(t, w) =
w
t2 e

(iwx)(t–1)
t ĥ

(
w
t

)
ĝ(–w).

Replacing t by 1
y , we obtain that (see [14])

∫
R

∫ 1

0

∣∣h(t, w)
∣∣dt dw =

∫
R

∫ ∞

1

∣∣wĥ(wy)ĝ(–w)
∣∣dy dw

≤
(∫

R

∫ ∞

1

∣∣y– 1+δ
p′ ĝ(–w)

∣∣p dy dw
) 1

p

×
(∫

R

∫ ∞

1

∣∣wy
1+δ
p′ ĥ(yw)

∣∣p′
dy dw

) 1
p′

=
(

p′ – 1
–p′ + δ + 2

) 1
p
‖ĝ‖p

×
(∫

R

∫ ∞

1

∣∣wy
1+δ
p′ ĥ(yw)

∣∣p′
dy dw

) 1
p′

≤
(

p′ – 1
–p′ + δ + 2

) 1
p
‖ĝ‖p

×
(∫

R

∫ ∞

1

∣∣λĥ(λ)
∣∣p′

yδ–p′
dy dλ

) 1
p′

≤
(

p′ – 1
–p′ + δ + 2

) 1
p
‖ĝ‖p

× ∥∥(
f ′)∧∥∥

p′

(
1

p′ – δ – 1

) 1
p′

≤
(

p′ – 1
–p′ + δ + 2

) 1
p
(

1
p′ – δ – 1

) 1
p′

‖ĝ‖p

× ∥∥(
f ′)∥∥

p

< ∞,

where

p′

p
– 1 < δ < p′ – 1.

Set (see [13])

�wδ = a
(|x|) g(PI

–1(wδ))
h(PI

–1(wδ))
in R

n,

wδ(0) = δ,

lim|x|→∞ wδ(x) = ∞,
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and

�wζ = a
(|x|) g(PI

–1(wζ ))
h(PI

–1(wζ ))
in R

n,

wζ (0) = ζ ,

lim|x|→∞ wζ (x) = ∞,

respectively.
It follows that

wδ(r) ≤ 2
∫ r

0

(∫ t

0
a(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

ds
)

dt

≤ 2g
(
PI

–1(wδ(r)
))∫ r

0

(∫ t

0

a(s)
h(PI

–1(wδ))
ds

)
dt

≤ 2g
(√

2
√

�

(� – 1)k
wδ(r) +

�

k

)∫ r

0

(∫ t

0

a(s)
h(PI

–1(wδ))
ds

)
dt

≤ 2g
(

2 4

√
�

(� – 1)k
√

wδ

)∫ r

0

(∫ t

0

a(s)
h(PI

–1(wδ))
ds

)
dt

≤ 2√
� – 1

g
(

2 4

√
�

(� – 1)k
√

wδ

)[
r
(∫ r

0
a(t) dt

)
–

∫ r

0
ta(t) dt

]

≤ 2√
� – 1

g
(

2 4

√
�

(� – 1)k
√

wδ

)
r
∫ r

0
a(t) dt

for all r > 0 sufficiently large, which yields that (see [17])

2 4

√
�

(� – 1)k
√

wδ ≤ G–1
(

r
∫ r

0
a(t) dt

)

for all r � 0.
Put

0 < S(ζ ) = sup
{

r > 0 : wδ(r) < wζ (r)
} ≤ ∞.

So

ζ0 ≤ δ +
∫ S(ζ0)

0
t1–N

[∫ t

0
sN–1

(
a(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

– a(s)
g(PI

–1(wζ ))
h(PI

–1(wζ ))

)
ds

]
dt

≤ δ +
∫ S(ζ0)

0
t1–N

[∫ t

0
sN–1

(
a(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

– a(s)
g(PI

–1(wζ ))
PI

–1(wζ )δ
PI

–1(wζ )δ

h(PI
–1(wζ ))

)
ds

]
dt

≤ δ +
∫ S(ζ0)

0
t1–N

[∫ t

0
sN–1

(
a(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

– a(s)
g(PI

–1(wδ))
h(PI

–1(wδ))

)
ds

]
dt. (3.3)
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On the other hand, we have

0 ≤ t1–N
[∫ t

0
sN–1

(
a(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

– a(s)
g(PI

–1(wδ))
h(PI

–1(wδ))

)
ds

]
χ[0,S(ζ )](t)

= t1–N
[∫ t

0
sN–1aosc(s)

g(PI
–1(wδ))

h(PI
–1(wδ))

ds
]

≤ 1√
� – 1

(
t1–N

∫ t

0
sN–1aosc(s) ds

)
g
(
G–1

(
t
∫ t

0
a(s) ds

))
:= H(t)

for t � 0, where χ[0,S(ζ )] stands for the characteristic function of [0, S(ζ )], which yields that
(see [12])

ζ0 ≤ δ +
∫ ∞

0
H(s) ds ≤ δ + H ,

but this is impossible.
Consider the following problem (see [15]):

�w = a(x)
g(PI

–1(w))
h(PI

–1(w))
in Bn(0),

w ≥ 0 in Bn(0),

w = wδ on ∂Bn(0).

(3.4)

As a consequence, we get

∫ 1

0

∫
R

w
t2 e

–iwx(t–1)
t ĥ

(
w
t

)
ĝ(–w) dw dt = 0

by using the Fubini theorem.
This completes the proof. �

Now we give an application of Theorem 3.1.

Theorem 3.2 Let h ∈ W 1,p(R) (1 < p ≤ 2) and g ∈ PI
p(R) ∩PI

p′
(R). If

(
I– supp ĥ

) ∩ supp ĝ = ∅, (3.5)

where I– = [–1, 0), then the Poisson inequality PI(hg) ≤ hPIg holds.

Proof By condition (3.5), we obtain that (see [4])

(t supp ĥ) ∩ supp ĝ = ∅

for any t ∈ I–, which is equivalent to

supp ĥ
(

.
t

)
∩ supp ĝ = ∅

for any t ∈ I–.
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By the embedding theorem and Hölder’s inequality, we obtain
∫

Akj+1,j+1

(
h(u) – kj+1

)
+ dx

≤
(∫

Akj+1,j

((
h(u) – kj+1

)
+ζ

q
j
) n

n–1 dx
) n–1

n
|Akj+1,j+1|1/n

≤ γ

∫
Akj+1,j

∣∣∇((
h(u) – kj+1

)
+ζ

q
j
)∣∣|Akj+1,j|1/n

≤ γ

(∫
Akj+1,j

g(u)|∇u|ζ q
j dx

+
∫

Akj+1,j

(
h(u) – kj+1

)
+|∇ζj|ζ q–1

j dx
)

|Akj+1,j|1/n. (3.6)

Let � = δ(ρ)/ρ . We estimate the first term on the right-hand side of (3.6) as follows:
∫

Akj+1,j

g(u)|∇u|ζ q
j dx

=
1

g(�)

∫
Akj+1,j

g(u)g(�)|∇u|ζ q
j dx

≤ �

∫
Akj+1,j

g(u)ζ q
j dx +

1
g(�)

∫
Akj+1,j

g(u)G
(|∇u|)ζ q

j dx

≤ 2j �

k

∫
Akj+1,j

(
h(u) – kj+1

)
+g(u)ζ q

j dx +
1

g(�)

∫
Akj+1,j

g(u)G
(|∇u|)ζ q

j dx. (3.7)

It follows that
∫

Akj+1,j

g(u)|∇u|ζ q
j dx

≤ γ (1 – �)–γ 2jγ
(

�

k
+

1
g(�)

)
ρ–1g

(
δ(ρ)
ρ

)∫
Akj ,j

(
h(u) – kj

)
+ dx (3.8)

from the previous inequality and Lemma 2.2.
Since

k ≥ G(�) = G
(

δ(ρ)
ρ

)
, (3.9)

we obtain

yj+1 =
∫

Akj+1,j+1

(
h(u) – kj+1

)
dx ≤ γ (1 – �)–γ 2jγ ρ–1k– 1

n y1+ 1
n

j (3.10)

from (3.6) and (3.7), which gives that

k ≥ γ (1 – �)–γ ρ–n
∫

B 1–�
2 ρ

(x̄)
h(u) dx. (3.11)
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(3.8) and (3.9) also imply that

h
(
u(x̄)

) ≤ γ (1 – �)–γ G
(

δ(ρ)
ρ

)
+ γ (1 – �)–γ ρ–n

∫
B 1–�

2 ρ
(x̄)

h(u) dx. (3.12)

Since
∫

B 1–�
2 ρ

(x̄)
h(u) dx ≤ δ(ρ)

∫
B(1–�)ρ (x̄)

g(u)ξ q dx

≤ γ (1 – �)–1 δ(ρ)
ρ

∫
B(1–�)ρ (x̄)

g
(|∇u|)ξ q–1 dx,

we obtain that
∫

B 1–�
2 ρ

(x̄)
h(u) dx ≤ γ (1 – �)–1 δ(ρ)

M(ρ)

∫
B(1–�)ρ (x̄)

G
(|∇u|)ξ q dx

+ γ (1 – �)–1 δ(ρ)
ρ

g
(

M(ρ)
ρ

)
ρn (3.13)

and
∫

B(1–�)ρ (x̄)
G

(|∇u|)ξ q dx ≤ γ (1 – �)–γ G
(

M(ρ)
ρ

)
ρn. (3.14)

Combining (3.13) and (3.14), we have

∫
B(1–�)ρ (x̄)

h(u) dx ≤ γ (1 – �)–γ δ(ρ)
ρ

g
(

M(ρ)
ρ

)
ρn. (3.15)

As a consequence, (3.1) holds. Thus, by invoking Theorem 3.1, the Radon transform of
function hg satisfies the Poisson inequality

PI(hg) ≤ hPIg. �

4 Conclusions
This paper was mainly devoted to studying a new Poisson inequality for the Radon trans-
form of infinitely differentiable functions. An application of it was also given.
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