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Abstract
Functional version for the so-called Furuta parametric relative operator entropy is
here investigated. Some related functional inequalities are also discussed. The
theoretical results obtained by our functional approach immediately imply those of
operator versions in a simple, fast, and nice way.
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1 Introduction
Let H be a complex Hilbert space. We denote by B(H) the C

∗-algebra of bounded linear
operators acting on H and by B+∗(H) the open cone of all (self-adjoint) positive invertible
operators in B(H). Let A, B ∈ B+∗(H) and p ∈ [0, 1] be a real number. The expressions

A∇pB = (1 – p)A + pB,

A!pB =
(
(1 – p)A–1 + pB–1)–1,

A�pB = A1/2(A–1/2BA–1/2)pA1/2

are known in the literature as the weighted arithmetic mean, weighted harmonic mean,
and weighted geometric mean of A and B, respectively. If p = 1/2 they are simply denoted
by A∇B, A!B, and A�B, respectively. The previous operator means satisfy the following
relationships:

A∇pB = B∇1–pA, A!pB = B!1–pA, A�pB = B�1–pA. (1.1)

It is well known that the double inequality

A!pB ≤ A�pB ≤ A∇pB (1.2)

holds for any A, B ∈ B+∗(H) and p ∈ [0, 1]. Here, the notation T ≤ S means that T , S ∈ B(H)
are self-adjoint and S – T is positive semi-definite.
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Otherwise, the relative operator entropy S(A|B) and the Tsallis relative operator entropy
Tp(A|B) are, respectively, defined by (see [2, 3, 6])

S(A|B) = A1/2 log
(
A–1/2BA–1/2)A1/2, Tp(A|B) =

A�pB – A
p

, p �= 0.

The following double inequality is known in the literature:

A – AB–1A ≤ S(A|B) ≤ B – A. (1.3)

In [5], Furuta introduced a parametric extension of S(A|B) as follows:

Sp(A|B) = A1/2(A–1/2BA–1/2)p
log

(
A–1/2BA–1/2)A1/2. (1.4)

In fact, Sp(A|B) was introduced in [5] for any real number p, but here we restrict ourselves
to the case p ∈ [0, 1].

As pointed out in [5], it is not hard to see that

S0(A|B) = S(A|B), S1(A|B) = –S(B|A) and Sp(A|B) = –S1–p(B|A).

The fundamental goal of this paper is to give an extension of Sp(A|B) when the operator
variables A and B are (convex) functionals. Some functional relationships and inequalities
are provided as well. The related operator versions are deduced in a fast and nice way.

2 Functional extensions
The previous operator concepts have been extended from the case that the variables are
positive operators to the case that the variables are convex functionals, see [9].

Let R̃
H be the extended space of all functionals defined from H into R ∪ {+∞}. Let

f , g ∈ R̃
H be two given functionals (convex or not) and p ∈ (0, 1). The expressions

Ap(f , g) = (1 – p)f + pg,

Hp(f , g) =
(
(1 – p)f ∗ + pg∗)∗,

Gp(f , g) =
sin(pπ )

π

∫ 1

0

tp–1

(1 – t)p Ht(f , g) dt

(2.1)

are called, by analogy, the weighted functional arithmetic mean, the weighted harmonic
mean, and the weighted geometric mean of f and g , respectively. Here, the notation f ∗

refers to the Fenchel conjugate of f defined by

∀x∗ ∈ H f ∗(x∗) = sup
x∈H

{
e
〈
x∗, x

〉
– f (x)

}
. (2.2)

For p = 1/2, we will denote the previous functional means by A(f , g), H(f , g) and G(f , g),
respectively. We extend these means on the whole interval [0, 1] by setting:

A0(f , g) = H0(f , g) = G0(f , g) = f , A1(f , g) = H1(f , g) = G1(f , g) = g. (2.3)
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We mention that here we adopt the conventions 0.(+∞) = +∞ and (+∞) – (+∞) = +∞,
as usual in convex analysis [1, 8]. With this, relations (2.3) are not immediate from their
related functional means (2.1) since the involved functionals f and/or g can take the value
+∞.

For the same reason, analogous relationships of (1.1) for the previous functional means
are also valid, i.e.,

Ap(f , g) = A1–p(g, f ), Hp(f , g) = H1–p(g, f ), Gp(f , g) = G1–p(g, f ).

In fact, the first two relations are immediate from their definitions, and for the third one,
there is a detailed proof in [12]. Also, the analog of (1.2), i.e.,

Hp(f , g) ≤ Gp(f , g) ≤Ap(f , g), (2.4)

holds for any f , g ∈ R̃
H and p ∈ [0, 1]. Here the notation f ≤ g refers to the point-wise order

between f ∈ R̃
H and g ∈ R̃

H defined by: f ≤ g if and only if g(x) – f (x) ≥ 0 for all x ∈ H ,
with the convention +∞ – (+∞) = +∞ as already pointed before. The double inequality
(2.4) implies that the three involved functional means are with finite values whenever f
and g are so.

In the earlier papers [9] and [10] we extended S(A|B) and Tp(A|B) from operators to
(convex) functionals, respectively, as follows:

S(f |g) =
∫ 1

0

Ht(f , g) – f
t

dt,

Tp(f |g) =
Gp(f , g) – f

p
, p �= 0.

The previous functional concepts were constructed as extensions of their related oper-
ator versions in the following sense: if O(A, B) is one of the previous operator concepts,
its functional extension F (f , g) is such that

F (fA, fB) = fO(A,B), (2.5)

where the notation fT , for any T ∈ B(H), refers to the quadratic function generated by the
operator T , i.e., fT (x) = (1/2)〈Tx, x〉 for all x ∈ H .

3 Needed tools
Let f ∈ R̃

H . We denote by dom f := {x ∈ H : f (x) < +∞} the so-called effective domain
of f . The notation int(dom f ) refers to the topological interior of dom f in H . The Fenchel
conjugate f ∗ of f defined by (2.2) satisfies

f ∗(x∗) := sup
x∈dom f

{
e
〈
x∗, x

〉
– f (x)

}

for any x∗ ∈ H . As supremum of a family of affine (so convex) functions, f ∗ is always convex
even if f is not. The conjugate map f �−→ f ∗ is point-wise decreasing and convex. That is,
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f ≤ g implies g∗ ≤ f ∗, and the inequality

(
(1 – p)f + pg

)∗ ≤ (1 – p)f ∗ + pg∗

holds for any f , g ∈ R̃
H and p ∈ [0, 1].

The sub-differential of f at x ∈ dom f is the set ∂f (x) defined by

∂f (x) =
{

x∗ ∈ H ; ∀z ∈ H , f (z) ≥ f (x) + 
e
〈
x∗, z – x

〉}
.

As it is well known, ∂f (x) is a (possibly empty) convex and closed set. If x ∈ int(dom f ),
then ∂f (x) �= ∅. In the case where ∂f (x) �= ∅, we have the equivalence:

x∗ ∈ ∂f (x) ⇐⇒ f (x) + f ∗(x∗) = 
e
〈
x∗, x

〉
.

As usual we denote by �0(H) the cone of all functionals f ∈ R̃
H that are convex, lower

semi-continuous, and proper (i.e., not identically equal to +∞). It is well known that f ∗∗ :=
(f ∗)∗ ≤ f for any f ∈ R̃

H and f ∈ �0(H) if and only if f = f ∗∗ := (f ∗)∗. Moreover, x∗ ∈ ∂f (x)
always implies x ∈ ∂f ∗(x∗), with reversed implication provided that f ∈ �0(H).

The function f is called Gâteaux-differentiable (in short G-differentiable) at x if the di-
rectional derivative

f
′
(x, d) = lim

t↓0

f (x + td) – f (x)
t

of f at x exists in every direction d ∈ H and the map d �−→ f ′ (x, d) is linear and continuous.
In this case we write f ′ (x, d) = ∇f (x).d and ∇f (x) is called the G-derivative of f at x. It is
well known that if f is convex and G-differentiable at x, then ∂f (x) = {∇f (x)}.

For the sake of clearness and simplicity for the reader, we state the following example
illustrating the previous concepts.

Example 3.1 Let A ∈ B(H) and let fA be the quadratic function associated to A, i.e., fA(x) =
(1/2)〈Ax, x〉 for all x ∈ H .

(i) Assume that A ∈ B+∗(H). Then fA is convex and G-differentiable on H , and so

∀x ∈ H ∂fA(x) =
{∇fA(x)

}
= {Ax}.

The coefficient 1/2 appearing in fA enjoys a symmetry role in the aim to have

(fA)∗
(
x∗) = (1/2)

〈
A–1x∗, x∗〉 for all x∗ ∈ H , or in short (fA)∗ = fA–1 .

(ii) For any A, B ∈ B(H), it is easy to check that fA ± fB = fA±B and fA(Bx) = fBAB(x) for
any x ∈ H .

The following result, which will be needed later, has been proved in [11].

Theorem 3.2 Let f ∈ �◦(H) be such that int(dom f ) is nonempty. Then
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(i) The inequality

sup
x∗∈∂f (x)

(
f ∗ – g∗)(x∗) ≤ S(f /g)(x) ≤ (g – f )(x) (3.1)

holds true for all x ∈ int(dom f ).
(ii) If f is moreover G-differentiable at x, then we have

f ∗(∇f (x)
)

– g∗(∇f (x)
) ≤ S(f /g)(x) ≤ (g – f )(x). (3.2)

As explained in [11], (3.1), as well as (3.2), is a functional extension of (1.3) from positive
operators to convex functionals.

For the sake of simplicity for the reader, we need to introduce an auxiliary notation. For
f , g ∈ R̃

H and p ∈ [0, 1], we set

T ∗
p (f |g) =

(Gp(f , g))∗ – f ∗

p
, p �= 0. (3.3)

We have the following result summarizing the elementary properties of T ∗
p (f |g).

Proposition 3.3 The following assertions hold:
(i) For any p ∈ [0, 1), one has

T ∗
1–p(g|f ) =

(Gp(f , g))∗ – g∗

1 – p
.

(ii) For all p ∈ (0, 1], the left-hand side of the inequality

(Ap(f , g))∗(x∗) – f ∗(x∗)
p

≤ T ∗
p (f |g)

(
x∗) ≤ g∗(x∗) – f ∗(x∗)

holds for any x∗ ∈ H , while the right-hand side holds for x∗ such that g∗(x∗) = +∞ or
x∗ ∈ dom f ∗.

Proof (i) Follows from (3.3) with the relation Gp(f , g) = G1–p(g, f ).
(ii) From (2.4) we obtain by taking the conjugate side by side

(
Ap(f , g)

)∗ ≤ (
Gp(f , g)

)∗ ≤ (
Hp(f , g)

)∗.

Remarking that

(
Hp(f , g)

)∗ ≤ (1 – p)f ∗ + pg∗,

we then deduce the desired result. �

Proposition 3.4 For any A, B ∈ B+∗(H) and p ∈ (0, 1], there holds

T ∗
p (fA|fB) = fTp(A–1|B–1).
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Proof First, if for fixed p ∈ [0, 1] we take F = Gp and O(A, B) = A�pB in (2.5), then we have

Gp(fA, fB) = fA�pB.

Now, by (3.3) we have

T ∗
p (fA|fB) =

(Gp(fA, fB))∗ – f ∗
A

p
=

f ∗
A�pB – f ∗

A

p
=

f(A�pB)–1 – fA–1

p
=

fA–1�pB–1 – fA–1

p
.

This, with the fact that αfT = fαT and fT – fS = fT–S for any α ∈ R and T , S ∈ B(H), imme-
diately yields the desired result. �

4 Functional version of Sp(A|B)
As already pointed out before, our aim here is to give an analog of Sp(A|B) when the op-
erator arguments A and B are (convex) functionals f and g , respectively. Such an analog
seems to be hard to define from (1.4) since (1.4) involves the product of operators whose
analogs for functionals are not known yet. For this, we need to state the following result.

Theorem 4.1 The equalities

Sp(A|B) = –
S(A�pB|A)

p
=

S(A�pB|B)
1 – p

(4.1)

hold for any A, B ∈ B+∗(H) and p ∈ (0, 1).

Proof Indeed, we have the property

T∗S(A|B)T = S
(
T∗AT |T∗BT

)

for any A, B ∈ B∗(H) and any invertible operator T ∈ B(H) by using Kubo–Ando theory
[7] and the integral form

S(A|B) =
∫ 1

0

A!tB – A
t

dt.

We thus have the first equality as

S(A�pB|A) = A1/2S
(
I�pA–1/2BA–1/2|I)A1/2

= A1/2S
((

A–1/2BA–1/2)p|I)A1/2

= –A1/2(A–1/2BA–1/2)p
log

(
A–1/2BA–1/2)pA1/2

= –pSp(A|B),

since S(A|I) = –A log A for any A ∈ B+∗(H).
The second equality can be proved in a similar manner. �

Now, to give a functional version of Sp(A|B), we use (4.1) which is more appropriate for
our aim since (4.1) involves only operator concepts (relative operator entropy and opera-
tor geometric mean) whose functional extensions are already done. Taking into account



Raïssouli and Furuichi Journal of Inequalities and Applications  (2018) 2018:212 Page 7 of 10

a symmetric character between p and 1 – p in our desired definition, we then put the fol-
lowing.

Definition 4.2 Let f , g ∈ R̃
H and p ∈ [0, 1]. We set

Sp(f |g) =
S((Gp(f , g))|g)

2(1 – p)
–
S((Gp(f , g))|f )

2p
, (4.2)

with

S0(f |g) = S(f |g) and S1(f |g) = –S(g|f ).

As a first result we state the following.

Proposition 4.3 Let f , g ∈ R̃
H . Then we have

S1/2(f |g) = S
((
G(f , g)

)|g)
– S

((
G(f , g)

)|f ). (4.3)

Further, if dom f = dom g = H , then the equality

Sp(f |g) = –S1–p(g|f ) (4.4)

holds for any p ∈ (0, 1).

Proof Equality (4.3) is immediate from (4.2). However, we mention that (4.4) is not im-
mediate from (4.2) since our involved functionals could take the value +∞. Indeed, we
pay attention to the fact that, if φ,ψ ∈ R̃

H , the equality φ – ψ = –(ψ – φ) is not always
true unless domφ ∪ domψ = H . For this reason, we have assumed in our statement that
dom f = dom g = H in the aim to guarantee that Ht(Gp(f , g), g) or Ht(Gp(f , g), f ) is with fi-
nite values. With this, (4.4) can be deduced from (4.2) when we refer to the relationship
Gp(φ,ψ) = G1–p(ψ ,φ) valid for any φ,ψ ∈ R̃

H and p ∈ [0, 1]. �

A connection between the functional parametric entropy Sp(f |g) and the operator para-
metric entropy Sp(A|B) is expressed by the following result.

Proposition 4.4 Let A, B ∈ B+∗(H) and p ∈ [0, 1]. Then we have

Sp(fA|fB) = fSp(A|B). (4.5)

Proof By (4.2), with (2.5) and (4.1), we have

Sp(fA|fB) =
S(fA�pB|fB)

2(1 – p)
–
S(fA�pB|fA)

2p
=

fS(A�pB|B)

2(1 – p)
–

fS(A�pB|A)

2p
.

This, with similar arguments as in the proof of Proposition 3.4, implies the desired re-
sult. �

Relationship (4.5) justifies that Sp(f |g) is a reasonable extension of Sp(A|B), from oper-
ators to functionals, in the sense of (2.5).
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For the sake of simplicity, we use in the next theorem and in its proof the following
notations:

Gp := Gp(f , g), G∗
p :=

(
Gp(f , g)

)∗, ∇Gp := ∇(
Gp(f , g)

)
, ∂Gp := ∂

(
Gp(f , g)

)
.

We now are in a position to state the following main result.

Theorem 4.5 Let f , g ∈ R̃
H be such that int(domGp(f , g)) �= ∅. Then the following double

inequality

1
2

(
sup

x∗∈∂Gp(x)
T ∗

1–p(g|f )
(
x∗) + Tp(f |g)(x)

)

≤ Sp(f |g)(x)

≤ 1
2

(
–T1–p(g|f )(x) – sup

x∗∈∂Gp(x)
T ∗

p (f |g)
(
x∗)

)
(4.6)

holds for any x ∈ int(domGp(f , g)) and p ∈ (0, 1).

Proof Since int(domGp(f , g)) �= ∅, then ∂Gp(x) �= ∅ for any x ∈ int(domGp(f , g)).
Now, according to Theorem 3.2, we have, for x ∈ int(domGp(f , g)),

sup
x∗∈∂Gp(x)

(
G∗

p – f ∗)(x∗) ≤ S(Gp|f )(x) ≤ (f – Gp)(x), (4.7)

and

sup
x∗∈∂Gp(x)

(
G∗

p – g∗)(x∗) ≤ S(Gp|g)(x) ≤ (g – Gp)(x). (4.8)

Multiplying (4.7) by –1/p and (4.8) by 1/(1 – p) and then summing side by side, we obtain
the desired inequalities after simple manipulations with the help of Proposition 3.3. The
details are simple and therefore omitted. �

Remark 4.6 It is worth mentioning that the condition int(domGp(f , g)) �= ∅ is satisfied if
int(dom f ∩ dom g) �= ∅ since dom f ∩ dom g ⊂ domGp(f , g).

Corollary 4.7 Let f , g ∈ R̃
H be such that Gp(f , g) is G-differentiable at x ∈ H . Then the

inequalities (in the point-wise order sense)

1
2
(
T ∗

1–p(g|f )
(∇Gp(f , g)

)
+ Tp(f |g)

)

≤ Sp(f |g)

≤ 1
2
(
–T1–p(g|f ) – T ∗

p (f |g)
(∇Gp(f , g)

))

hold for any p ∈ (0, 1).
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Proof Since Gp(f , g) is G-differentiable at x, then ∂Gp(f , g)(x) = {∇Gp(f , g)(x)}. Substituting
this in (4.6) and using the definition of the point-wise order, we immediately obtain the
desired inequalities. �

The operator version of the above theorem (and corollary) reads as follows.

Corollary 4.8 Let A, B ∈ B+∗(H) and p ∈ (0, 1). Then we have

1
2
(
(A�pB)T1–p

(
B–1|A–1)(A�pB) + Tp(A|B)

)

≤ Sp(A|B)

≤ 1
2
(
–T1–p(B|A) – (A�pB)Tp

(
A–1|B–1)(A�pB)

)
.

Proof Combining Corollary 4.7, Proposition 3.4, and Example 3.1,(ii), we obtain the de-
sired operator inequalities after simple manipulations. The details are simple and therefore
omitted. �

Corollary 4.8 gives the relation between Furuta parametric relative operator entropy
and Tsallis relative operator entropy in a more general setting than the result in [4, Theo-
rem 2.3].
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