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Abstract
In this paper, we study the exponential stability in the pth moment of mild solutions
to neutral stochastic functional partial differential equations driven by Brownian
motion and fractional Brownian motion:

d
[
x(t) + g(t, xt)

]
=

[
Ax(t) + f (t, xt)

]
dt + h(t, xt)dW(t) + σ (t)dBH(t),

where H ∈ (1/2, 1). Our method for investigating the stability of solutions is based on
the Banach fixed point theorem. The obtained results generalize and improve the
results due to Boufoussi and Hajji (Stat. Probab. Lett. 82:1549–1558, 2012), Caraballo et
al. (Nonlinear Anal. 74:3671–3684, 2011), and Luo (J. Math. Anal. Appl. 355:414–425,
2009).
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1 Introduction
Many dynamical systems not only depend on present and past states but also involve
derivatives with delays. Neutral stochastic functional partial differential equations (NSF-
PDEs) are often used to describe such kind of systems. In recent years, NSFPDEs have been
extensively studied in the literature, we can refer to [6, 9, 12–14, 19] for those only driven
by Brownian motion and also refer to [1, 2, 4, 5, 11] for those only driven by fractional
Brownian motion (fBm). For example, Luo [13] studied the exponential stability in mean
square of mild solution for NSFPDE only driven by Brownian motion; Boufoussi and Hajji
[2] discussed the exponential stability in mean square of mild solution for NSPDE only
driven by fBm with finite delay. Furthermore, the stochastic processes in hydrodynamics,
telecommunications, and finance demonstrate the availability of random noise that can
be modeled by Brownian motion and also the so-called long memory that can be modeled
with the help of fBm with Hurst index 1/2 < H < 1. Since the seminal paper [7], mixed
stochastic models containing both standard Brownian motion and fBm have gained a lot

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1793-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1793-9&domain=pdf
mailto:83681556@qq.com


Zhang and Ruan Journal of Inequalities and Applications  (2018) 2018:201 Page 2 of 15

of attention. Very recently, there has been considerable interest in studying this class of
SDEs (see [3, 10, 16, 17, 20, 21]).

However, to the best of our knowledge, there is no paper which investigates the exponen-
tial stability in the pth moment of mild solutions to neutral stochastic functional partial
differential equations driven by Brownian motion and fractional Brownian motion. Moti-
vated by the above, in this work, we consider the following mixed NSFPDE:

⎧
⎪⎪⎨

⎪⎪⎩

d[x(t) + g(t, xt)] = [Ax(t) + f (t, xt)] dt + h(t, xt) dW (t) + σ (t) dBH(t),

t ∈ [0, T],

x(s) = ϕ(s), s ∈ [–r, 0], r ≥ 0,

(1.1)

under suitable conditions on the operator A, the coefficient functions g , f , h, σ , and the
initial value ϕ. Here W (t) denotes Brownian motion and BH (t) denotes fBm with H ∈
(1/2, 1).

The purpose of this paper is to investigate the exponential stability in the pth moment
of mild solution of mixed NSFPDE (1.1) by means of the Banach fixed point theory.

The rest of this paper is organized as follows. In Sect. 2, we first recall some necessary
preliminaries on the stochastic differential equations with respect to Brownian motion
and fractional Brownian motion. In Sect. 3, the exponential stability in the pth moment
of mild solution of mixed NSFPDE (1.1) is proved, the results in [2, 5, 13] are generalized
and improved.

2 Preliminaries
Let T > 0 be a fixed time horizon and (�,F ,P) be a complete probability space equipped
with a normal filtration F = {Ft}t≥0 satisfying the usual assumptions. Let W = {W (t), t ∈
[0, T]} be a standard Brownian motion and B = {BH (t), t ∈ [0, T]} be a fractional Brownian
motion with Hurst parameter H ∈ (1/2, 1) on the complete probability space (�,F ,P).
We denote by C([–r, T]; U) the space of all continuous functions from [–r, T] to U . Let
(U ,‖ · ‖U , (·, ·)U ) and (Ki,‖ · ‖Ki , (·, ·)Ki ) be two separable Hilbert spaces, and let L(Ki, U)
denote the space of all bounded linear operators from Ki to U , i = W , B. We assume that
{e(i)

n }n∈N+ are two complete orthonormal bases in Ki and Q(i) ∈ L0
i (Ki, U) are two operators

defined by Q(i)e(i)
n = λ

(i)
n e(i)

n with finite trace tr Q(i) =
∑∞

n=1 λ
(i)
n < ∞, where {λ(i)

n }n∈N+ are non-
negative real numbers and i = W , B. Then there exists a real-valued sequence {ωn(t)}n∈N+

of one-dimensional standard Brownian motions mutually independent over (�,F ,P) such
that

W (t) =
∞∑

n=1

√
λ

(W )
n e(W )

n ωn(t), t ≥ 0.

The infinite dimensional cylindrical KB-valued fBm BH (t) is defined by the formal sum

BH (t) =
∞∑

n=1

√
λ

(B)
n e(B)

n wH
n (t), t ≥ 0,

where the sequence {wH
n (t)}n∈N+ are stochastically independent scalar fBms with Hurst

parameter H ∈ (1/2, 1). Let L0
i (Ki, U) be the space of all Q(i)-Hilbert–Schmidt operators

from Ki to U , i = W , B. Now we can show the following two definitions of norms.
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Definition 2.1 (Chen et al. [6]) Let ξ ∈ L(KW , U) and define

‖ξ‖2
L0

W
:= tr

(
ξQ(W )ξ∗)

=
∞∑

n=1

∥
∥∥
√

λ
(W )
n ξe(W )

n

∥
∥∥

2

U
.

If ‖ξ‖2
L0

W
< ∞, then ξ is called a Q(W )-Hilbert–Schmidt operator and the space L0

W :=

L0
W (KW , U) equipped with the inner product 〈ϕ,ψ〉L0

W
=

∑∞
n=1〈ϕe(W )

n ,ψe(W )
n 〉 is a separable

Hilbert space.

Definition 2.2 (Boufoussi and Hajji [2]) In order to define Wiener integrals with respect
to the Q(B)-fBm, we recall that η ∈ L(KB, U) is called a Q(B)-Hilbert–Schmidt operator if

‖η‖2
L0

B
:= tr

(
ηQ(B)η∗)

=
∞∑

n=1

∥∥
∥
√

λ
(B)
n ηe(B)

n

∥∥
∥

2

U
< ∞,

and that the space L0
B := L0

B(KB, U) equipped with the inner product 〈ϕ,ψ〉L0
B

=
∑∞

n=1〈ϕe(B)
n ,

ψe(B)
n 〉 is a separable Hilbert space.

Lemma 2.1 (Prato and Zabczyk [8]) For any p ≥ 0 and for arbitrary L0
W -valued pre-

dictable process 
(·), we have

sup
s∈[0,t]

E
∥
∥∥
∥

∫ s

0

(u) dW (u)

∥
∥∥
∥

2p

U
≤ cp

(∫ t

0

(
E
∥∥
(s)

∥∥2p
L0

W

)1/p ds
)p

, t ∈ [0, T],

where cp = (p(2p – 1))p.

Let {wH (t)}t∈[0,T] be the one-dimensional fBm with Hurst parameter H ∈ (1/2, 1). This
means by definition that wH is a centered Gaussian process with covariance function:

RH (s, t) =
1
2
(
t2H + s2H – |t – s|2H)

.

Moreover, wH has the following Wiener integral representation:

wH (t) =
∫ t

0
KH (t, s) dw(s),

where w = {w(t)}t∈[0,T] is a Wiener process and KH (t, s) is the kernel given by

KH (t, s) = cH s
1
2 –H

∫ t

s
(u – s)H– 3

2 uH– 1
2 du

for t > s. Here, cH =
√

H(2H–1)
B(2–2H,H– 1

2 )
and B(·, ·) denotes the beta function. We put KH (t, s) = 0

if t ≤ s.

Lemma 2.2 (Caraballo et al. [5]) Let ϕ : [0, T] 
−→ L0
B(KB, U) such that

∞∑

n=1

∥∥(
ϕ
√

Q(B)en
)∥∥

L1/H ([0,T];U) < ∞ (2.1)
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holds, and for any a, b ∈ [0, T] with a > b,

E

∥
∥∥
∥

∫ a

b
ϕ(s) dBH(s)

∥
∥∥
∥

2

U
≤ cH H(2H – 1)(a – b)2H–1

∞∑

n=1

∫ a

b

∥∥ϕ(s)
√

Q(B)en
∥∥2

U ds,

where cH =
√

H(2H–1)
B(2–2H,H– 1

2 )
. If, in addition,

∞∑

n=1

∥∥ϕ(t)
√

Q(B)en
∥∥

U is uniformly convergent for t ∈ [0, T],

then

E

∥
∥∥
∥

∫ a

b
ϕ(s) dBH(s)

∥
∥∥
∥

2

U
≤ cH H(2H – 1)(a – b)2H–1

∫ a

b

∥∥ϕ(s)
∥∥2

L0
B(K ,U) ds. (2.2)

Lemma 2.3 (Mémin et al. [15]) For every T ,
∫ T

0 f (t) dZt is a centered Gaussian random
variable, for every p > 0, there exists a constant k(p) such that

E

∥∥
∥∥

∫ T

0
f (t) dZt

∥∥
∥∥

p

≤ k(p)
(
E

∥∥
∥∥

∫ T

0
f (t) dZt

∥∥
∥∥

2) p
2

. (2.3)

Lemma 2.4 (Pazy [18]) Suppose that A is the infinitesimal generator of an analytic semi-
group of uniformly bounded linear operators {S(t)}t≥0 on the separable Hilbert space U .
It is well known that there exist some constants M ≥ 1,λ ∈ R such that ‖S(t)‖ ≤ Meλt , for
t ≥ 0, and moreover, if 0 ∈ ρ(–A), where ρ(–A) is the resolvent set of –A, then,

(a) for any c ≥ 0, the subspace D((–A)c) is dense in U with the norm

‖ζ‖2
c := sup

t∈R
E

∥
∥(–A)cζ

(
t, x(t)

)∥∥
U , ζ ∈ D

(
(–A)c),

(b) for each x ∈ D((–A)c), we have S(t)(–A)cx = (–A)cS(t)x,
(c) there exist a pair of positive constants Mc > 0 and λ > 0 such that

∥∥(–A)cS(t)
∥∥

U ≤ Mce–λtt–c, t > 0.

We denote by C([a, b]; U) = C([a, b]; (�,F ,P; U)) the Banach space of all continuous
functions from [a, b] into U endowed with the supremum norm.

Consider two fixed real numbers r ≥ 0 and T > 0. If x ∈ C([–r, T]; U) for each t ∈ [0, T],
we denote by xt ∈ C([–r, 0]; U) the function defined by xt(s) = x(t + s) for s ∈ [–r, 0].

We consider the exponential stability of mild solution to the following mixed NSFPDE:

⎧
⎪⎪⎨

⎪⎪⎩

d[x(t) + g(t, xt)] = [Ax(t) + f (t, xt)] dt + h(t, xt) dW (t) + σ (t) dBH(t),

t ∈ [0, T],

x(t) = ϕ(t), t ∈ [–r, 0],

(2.4)

where W (t) is the Brownian motion and BH(t) is the fractional Brownian motion which
were previously introduced, the initial value ϕ ∈ C([–r, 0]; U), and A : Dom(A) ⊂ U → U
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is the infinitesimal generator of a strongly continuous semigroup S(·) on U . The mappings
f : [0, T] × C([–r, 0]; U) → U , g : [0, T] × C([–r, 0]; U) → U , h : [0, T] × C([–r, 0]; U) → U ,
and σ : [0, T] → L0

B(KB, U), and they are all Borel measurable.

Definition 2.3 A U-valued process {x(t), t ∈ [–r, T]} is called mild solution of (2.4) if
(i) x(t) is adapted to Ft , t ≥ 0;

(ii) x(t) = ϕ(t) for t ∈ [–r, 0];
(iii) x(t) ∈ U has càdlàg paths on t ∈ [0, T] almost surely, and for arbitrary t ∈ [0, T],

x(t) = S(t)
[
ϕ(0) + g(0,ϕ)

]
– g(t, xt)

–
∫ t

0
AS(t – s)g(s, xs) ds +

∫ t

0
S(t – s)f (s, xs) ds

+
∫ t

0
S(t – s)h(s, xs) dW (s) +

∫ t

0
S(t – s)σ (s) dBH(s) a.s. (2.5)

Definition 2.4 Let p be an integer p ≥ 2. Equation (2.5) is said to be exponentially stable
in the pth moment if, for any initial value ϕ, there exists a pair of constants γ > 0 and C > 0
such that

E
∥∥x(t)

∥∥p
U ≤ Ce–γ t , t ≥ 0. (2.6)

In order to set the stability problem, we suppose that the following assumptions hold:
(H1) The operator A is a closed linear operator generating a strongly continuous semi-

group S(t), t ≥ 0, on the separable Hilbert space U and satisfying

∥
∥S(t)

∥
∥

U ≤ Me–λt , ∀t ≥ 0, where M ≥ 1 and λ > 0. (2.7)

(H2) The mappings f (t, ·) and h(t, ·) satisfy the following conditions: p ≥ 2 and p is an
integer for any x, y ∈ C([–r, T]; U) and t ≥ 0

∫ t

0
eλs∥∥f (t, xs) – f (t, ys)

∥
∥p

U ds ≤ Cp
f

∫ t

–r
eλs∥∥x(s) – y(s)

∥
∥p

U ds, Cf ≥ 0, (2.8)

∫ t

0
eλs∥∥h(t, xs) – h(t, ys)

∥∥p
U ds ≤ Cp

h

∫ t

–r
eλs∥∥x(s) – y(s)

∥∥p
U ds, Ch ≥ 0,

∫ ∞

0
eλs∥∥f (s, 0)

∥
∥p

U ds < ∞. (2.9)

(H3) The mapping g : [0, T] × C([–r, 0]; U) → U is continuous in the pth mean sense
and satisfies, for any x, y ∈ C([–r, T]; U) and t ≥ 0, g(t, x) ∈ D((–A)β ) and

∥
∥(–A)βg(t, x) – (–A)βg(t, y)

∥
∥

U ≤ Cg‖x – y‖U , Cg ≥ 0,

lim
t→s

E
∥
∥(–A)βg(t, x) – (–A)βg(s, x)

∥
∥p

U = 0,
(2.10)

where β ∈ (0, 1] and satisfies pβ > 1, p is an integer p ≥ 2. We further assume
g(t, 0) ≡ 0 for t ≥ 0.
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(H4) The mapping σ : [0, T] → L0
B(KB, U) satisfies

∫ ∞

0
eλs∥∥σ (s)

∥
∥2

L0
B(KB ,U) ds < ∞. (2.11)

3 Main results
In this section, we consider the exponential stability in the pth moment of mild solution
of mixed NSFPDE (2.4) by means of the Banach fixed point theory.

Theorem 1 Suppose that conditions (H1)–(H4) hold. Then Eq. (2.4) is exponentially stable
in the pth moment if

4p–1
(∥∥(–A)–β

∥∥p
U Cp

g + Cp
g Mp

1–βλ–pβ�p–1
(

pβ – 1
p – 1

)
+ Mpλ–pCp

f

+ MpcpCp
hλ–p/2(2(p – 1)/(p – 2)

)1–p/2
)

< 1, (3.1)

where �(·) is the gamma function and M, M1–β are the corresponding constants in
Lemma 2.4, and cp = (p(p – 1)/2)p/2.

Proof Denote by S the Banach space of all F -adapted processes φ(t, w) : [–r,∞) × � −→
R, which is almost surely continuous in t for fixed ω ∈ �. Moreover, φ(s, w) = ϕ(s) for
s ∈ [–r, 0] and eαt

E‖φ(t, w)‖p
U −→ 0 as t −→ ∞, where α is a positive constant such that

0 < α < λ.
Define an operator π : S −→ S by (πx)(t) = ψ(t) for t ∈ [–r, 0] and for t ≥ 0,

(πx)(t) = S(t)
[
ϕ(0) + g(0,ϕ)

]
– g(t, xt) –

∫ t

0
AS(t – s)g(s, xs) ds

+
∫ t

0
S(t – s)f (s, xs) ds +

∫ t

0
S(t – s)h(s, xs) dW (s) +

∫ t

0
S(t – s)σ (s) dBH(s)

:=
6∑

i=1

Ii(t). (3.2)

Firstly, we verify the continuity in the pth moment of π on [0,∞). Let x ∈ S , t1 ≥ 0, and
r be positive and small enough, then

E
∥∥(πx)(t1 + r) – (πx)(t1)

∥∥p
U ≤ 6p–1

6∑

i=1

E
∥∥Ii(t1 + r) – Ii(t1)

∥∥p
U .

Obviously,

E
∥∥Ii(t1 + r) – Ii(t1)

∥∥p
U −→ 0, i = 1, 4, as r −→ 0.

Since the operator (–A)–β is bounded and by (H3) we know the mapping (–A)βg is con-
tinuous in the pth moment, so

E
∥∥I2(t1 + r) – I2(t1)

∥∥p
U −→ 0, as r −→ 0.
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As for the third term on the right-hand side of (3.2), we get

E
∥∥I3(t1 + r) – I3(t1)

∥∥p
U ≤ 2p–1

E

∥
∥∥
∥

∫ t1

0

(
S(r) – I

)
(–A)1–βS(t1 – s)(–A)βg(s, xs) ds

∥
∥∥
∥

p

U

+ 2p–1
E

∥
∥∥∥

∫ t1+r

t1

(–A)1–βS(t1 + r – s)(–A)βg(s, xs) ds
∥
∥∥∥

p

U

:= I31(r) + I32(r).

By the strong continuity of S(t), for any s ∈ [0, t1], we have

lim
r→0

(
S(r) – I

)
(–A)1–βS(t1 – s)(–A)βg(s, xs) = 0.

By using Lemma 2.4 and the fact that 0 < β ≤ 1, we have

∥∥(
S(r) – I

)
(–A)1–βS(t1 – s)(–A)βg(s, xs)

∥∥
U ≤ 2MM1–β

(t1 – s)1–β

∥∥(–A)βg(s, xs)
∥∥

U ,

since β ∈ (0, 1] and by the Lebesgue dominated theorem, we obtain

lim
r→0

I31(r) = 0.

On the other hand,

∥∥(–A)1–βS(t1 + r – s)(–A)βg(s, xs)
∥∥

U ≤ M1–β

(t1 + r – s)1–β

∥∥(–A)βg(s, xs)
∥∥

U ,

so I32(r) −→ 0 as r −→ 0, then

E
∥∥I3(t1 + r) – I3(t)

∥∥p
U −→ 0, as r −→ 0.

Moreover, by using Lemma 2.1, we get

E
∥∥I5(t1 + r) – I5(t1)

∥∥p
U

= E
∥
∥∥
∥

∫ t1

0

(
S(t1 + r – s) – S(t1 – s)

)
g(s, xs) dW (s)

+
∫ t1+r

t1

S(t1 + r – s)g(s, xs) dW (s)
∥∥
∥∥

p

U

≤ 2p–1cp

[∫ t1

0

(
E
∥
∥(

S(t1 + r – s) – S(t1 – s)
)
g(s, xs)

∥
∥p

U

)2/p ds
]p/2

+ 2p–1cp

[∫ t1+r

t1

(
E
∥∥S(t1 + r – s)g(s, xs)

∥∥p
U

)2/p ds
]p/2

→ 0 as r → 0,

where cp = (p(p – 1)/2)p/2.
As for the sixth term on the right-hand side of (3.2), we first verify E‖I6(t1 + r) –

I6(t1)‖2
U −→ 0 as r −→ 0. Further, by using (2.3), we can get E‖I6(t1 + r) – I6(t1)‖p

U −→ 0 as
r −→ 0.
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By using the Cauchy–Schwarz inequality, we get

E
∥∥I6(t1 + r) – I6(t1)

∥∥2
U ≤ 2E

∥
∥∥
∥

∫ t1

0

(
S(t1 + r – s) – S(t1 – s)

)
σ (s) dBH(s)

∥
∥∥
∥

2

U

+ 2E
∥∥
∥∥

∫ t1+r

t1

S(t1 + r – s)σ (s) dBH(s)
∥∥
∥∥

2

U

:= I61(r) + I62(r).

Applying inequality (2.2) and condition (2.7) to J1, we get

I61(r) = 2E
∥∥∥
∥

∫ t1

0

(
S(t1 + r – s) – S(t1 – s)

)
σ (s) dBH(s)

∥∥∥
∥

2

U

≤ 2cH H(2H – 1)t2H–1
1

∫ t1

0

∥
∥S(t1 – s)

(
S(r) – I

)
σ (s)

∥
∥2

L0
B(KB ,U) ds

≤ 2cH H(2H – 1)t2H–1
1 M2

∫ t1

0

∥∥(
S(r) – I

)
σ (s)

∥∥2
L0

B(KB ,U) ds −→ 0,

when r −→ 0 since S(r)σ (s) −→ σ (s) and ‖S(r)σ (s)‖L0
B(KB ,U) ≤ M‖σ (s)‖L0

B(KB ,U) for any fixed
s > 0.

Applying inequality (2.2) and condition (2.7) to J2, we can obtain

I62(r) ≤ 2cH H(2H – 1)r2H–1M2
∫ t1+r

t1

∥∥σ (s)
∥∥2

L0
B(KB ,U) ds −→ 0 as r −→ 0.

So, E‖I6(t1 + r) – I6(t1)‖2
U −→ 0 as r −→ 0.

Further, by using (2.3), we get

E
∥
∥I6(t1 + r) – I6(t1)

∥
∥p

U ≤ k(p)
[
E

∥
∥I6(t1 + r) – I6(t1)

∥
∥2

U

] p
2 −→ 0 as r −→ 0.

Thus, π is indeed continuous in the pth moment on [0,∞).
Secondly, we show that π (S) ⊂ S . It follows from (3.2) that

eαt
E

∥
∥(πx)(t)

∥
∥p

U ≤ 6p–1eαt
E

∥
∥S(t)

(
ϕ(0) + g(0,ϕ)

)∥∥p
U

+ 6p–1eαt
E

∥∥g(t, xt)
∥∥p

U

+ 6p–1eαt
E

∥∥
∥∥

∫ t

0
AS(t – s)g(s, xs) ds

∥∥
∥∥

p

U

+ 6p–1eαt
E

∥∥
∥∥

∫ t

0
S(t – s)f (s, xs) ds

∥∥
∥∥

p

U

+ 6p–1eαt
E

∥∥
∥∥

∫ t

0
S(t – s)h(s, xs) dW (s)

∥∥
∥∥

p

U

+ 6p–1eαt
E

∥∥∥
∥

∫ t

0
S(t – s)σ (s) dBH(s)

∥∥∥
∥

p

U
. (3.3)
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Now we estimate the terms on the right-hand side of (3.3). First, by condition (2.7), we
can obtain

6p–1eαt
E

∥
∥S(t)(ϕ(0) + g(0,ϕ)

∥
∥p

U

≤ 6p–1Mpe–pλteαt∥∥ϕ(0) + g(0,ϕ)
∥
∥p

U → 0 as t → ∞. (3.4)

For any x(t) ∈ S and any ε1 > 0, there exists t1 > 0 such that eαt
E‖x(t)‖p

U < ε1 for t – r > t1.
Thus we can get

6p–1eαt
E

∣
∣g(t, xt)

∣
∣p
U ≤ 6p–1∥∥(–A)–β

∥
∥p

U Cp
g eαt

E‖xt‖p
U

≤ 6p–1∥∥(–A)–β
∥∥p

U Cp
g eαt

E sup
–r≤s≤0

∥∥x(t + s)
∥∥p

U

≤ 6p–1∥∥(–A)–β
∥
∥p

U Cp
g eαte–α(t+s)ε1

≤ 6p–1∥∥(–A)–β
∥∥p

U Cp
g eαsε1.

So, from the above, we can get

6p–1eαt
E

∣∣g(t, xt)
∣∣p
U −→ 0 as t −→ ∞. (3.5)

Further, Hölder’s inequality, Lemma 2.4, and (2.10) yield

6p–1eαt
E

∥
∥∥
∥

∫ t

0
AS(t – s)g(s, xs) ds

∥
∥∥
∥

p

U

≤ 6p–1eαt
E

(∫ t

0

∥∥(–A)1–βS(t – s)(–A)βg(s, xs)
∥∥

U ds
)p

≤ 6p–1Cp
g Mp

1–βeαt
E

[∫ t

0
e–λ(t–s)(t – s)β–1‖xs‖U ds

]p

= 6p–1Cp
g Mp

1–βeαt
E

[∫ t

0
e–λ(p–1)(t–s)/p(t – s)β–1e–λ(t–s)/p‖xs‖U ds

]p

≤ 6p–1Cp
g Mp

1–βeαt
[∫ t

0
e–λ(t–s)(t – s)

(β–1)p
p–1 ds

]p–1 ∫ t

0
e–λ(t–s)

E‖xs‖p
U ds

≤ 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
eαt

∫ t

0
e–λ(t–s)

E‖xs‖p
U ds

= 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
eαt

∫ t

0
e–λ(t–s)eαs–αs

E‖xs‖p
U ds

= 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)t

∫ t

0
e(λ–α)seαs

E‖xs‖p
U ds

≤ 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)t

∫ t

t1

e(λ–α)seαs
E sup

–r≤θ≤0

∥
∥x(s + θ )

∥
∥p

U ds

+ 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)t

∫ t1

0
e(λ–α)seαs

E sup
–r≤θ≤0

∥∥x(s + θ )
∥∥p

U ds

≤ 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)teαθ

∫ t

t1

e(λ–α)seα(s+θ )
E sup

–r≤θ≤0

∥
∥x(s + θ )

∥
∥p

U ds
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+ 6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)

× e(α–λ)teαθ

∫ t1

0
e(λ–α)seα(s+θ )

E sup
–r≤θ≤0

∥∥x(s + θ )
∥∥p

U ds.

For any x(t) ∈ S and any ε2 > 0, there exists t2 > 0 such that eαs
E‖x(s)‖p

U < ε2, for t > t2, we
can get

6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)te–αθ

×
∫ t

t1

e(λ–α)seα(s+θ )
E sup

–r≤θ≤0

∥
∥x(s + θ )

∥
∥p

U ds < ε2.

As e(α–λ)t → 0 as t → ∞, there exists t3 > t2 such that, for any t ≥ t3, we have

6p–1Cp
g Mp

1–βλ1–pβ�p–1
(

pβ – 1
p – 1

)
e(α–λ)te–αθ

×
∫ t1

0
e(λ–α)seα(s+θ )

E sup
–r≤θ≤0

∥∥x(s + θ )
∥∥p

U ds < ε2.

So, from the above, we can obtain, for any t ≥ t3,

6p–1eαt
E

∥
∥∥
∥

∫ t

0
AS(t – s)g(s, xs) ds

∥
∥∥
∥

p

U
≤ 2ε2.

That is to say,

6p–1eαt
E

∥∥
∥∥

∫ t

0
AS(t – s)g(s, xs) ds

∥∥
∥∥

p

U
−→ 0 as t −→ ∞. (3.6)

Using the similar method to the forth term on the right-hand side of (3.3), we get

6p–1eαt
E

∥
∥∥
∥

∫ t

0
S(t – s)f (s, xs) ds

∥
∥∥
∥

p

U

≤ 6p–1eαt
E

[∫ t

0

∥∥S(t – s)f (s, xs)
∥∥

U ds
]p

≤ 6p–1Mpeαt
E

[∫ t

0
e–λ(t–s)∥∥f (s, xs)

∥∥
U ds

]p

≤ 6p–1Mpeαt
E

[∫ t

0
e–λ(p–1)(t–s)/pe–λ(t–s)/p∥∥f (s, xs)

∥∥
U ds

]p

≤ 6p–1Mpeαt
[∫ t

0
e–λ(t–s) ds

]p–1

E

[∫ t

0
e–λ(t–s)∥∥f (s, xs)

∥∥p
U ds

]

≤ 6p–1Mpλ1–peαt
E

[∫ t

0
e–λ(t–s)∥∥f (s, xs) – f (s, 0) + f (s, 0)

∥∥p
U ds

]

≤ 12p–1MpCp
f λ1–peαt

∫ t

–r
e–λ(t–s)

E
∥
∥x(s)

∥
∥p

U ds

+ 12p–1Mpλ1–peαt
∫ t

0
e–λ(t–s)∥∥f (s, 0)

∥
∥p

U ds
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= 12p–1MpCp
f λ1–pe–(λ–α)t

∫ t

–r
eλseαs–αs

E
∥∥x(s)

∥∥p
U ds

+ 12p–1Mpλ1–pe–(λ–α)t
∫ t

0
eλs∥∥f (s, 0)

∥∥p
U ds

≤ 12p–1MpCp
f λ1–pe(α–λ)t

∫ t

–r
e(λ–α)seαs

E
∥
∥x(s)

∥
∥p

U ds

+ 12p–1Mpλ1–pe–(λ–α)t
∫ t

0
eλs∥∥f (s, 0)

∥∥p
U ds

:= k1(t) + k2(t).

For any x(t) ∈ S and any ε3 > 0, there exists t4 > 0 such that eαs
E‖x(s)‖p

U < λp–1(λ–α)
12p–1MpCp

f
ε3, for

t > t4, we can get

12p–1Mpλ1–pCp
f e(α–λ)t

∫ t

t4

e(λ–α)seαs
E

∥
∥x(s)

∥
∥p

U ds < ε3.

As e(α–λ)t −→ 0 as t −→ ∞, there exists t5 > t4 such that, for any t ≥ t5, we have

12p–1Mpλ1–pCp
f e(α–λ)t

∫ t4

–r
e(λ–α)seαs

E
∥
∥x(s)

∥
∥p

U ds < ε3.

So, from the above, we obtain, for any t ≥ t5, k1(t) −→ 0 as t −→ ∞.
As e–(λ–α)t −→ 0, as t −→ ∞, and condition (2.9), we can obtain k2(t) −→ 0 as t −→ ∞.
That is to say,

6p–1eαt
E

∥∥
∥∥

∫ t

0
S(t – s)f (s, xs) ds

∥∥
∥∥

p

U
−→ 0 as t −→ ∞. (3.7)

Using the similar method and Lemma 2.1 to the fifth term on the right-hand side of (3.3),
we obtain

6p–1eαt
E

∥∥
∥∥

∫ t

0
S(t – s)h(s, xs) dW (s)

∥∥
∥∥

p

U

≤ 6p–1eαt
E

[∫ t

0

∥
∥S(t – s)h(s, xs)

∥
∥

U dW (s)
]p

≤ 6p–1Mpeαt
E

[∫ t

0
e–λ(t–s)∥∥h(s, xs)

∥
∥

U dW (s)
]p

≤ 6p–1Mpcpeαt
{∫ t

0

(
e–λ(t–s)

E
∥∥h(s, xs)

∥∥p
U

)2/p ds
}p/2

= 6p–1Mpcpeαt
{∫ t

0
e– –2λ(t–s)

p
(
E

∥
∥h(s, xs)

∥
∥p

U

)2/p ds
}p/2

≤ 6p–1Mpcpeαt
{∫ t

0
e– –(2p–2)λ(t–s)

p e– –2λ(t–s)
p

(
E

∥∥h(s, xs)
∥∥p

U

)2/p ds
}p/2

≤ 6p–1Mpcpeαt
{∫ t

0
e– 2(p–1)λ(t–s)

p–2 ds
}p/2–1 ∫ t

0
e–λ(t–s)

E
∥
∥h(s, xs)

∥
∥p

U ds



Zhang and Ruan Journal of Inequalities and Applications  (2018) 2018:201 Page 12 of 15

≤ 6p–1Mpcpeαt(2λ(p – 1)/(p – 2)
)1–p/2

∫ t

0
e–λ(t–s)

E
∥∥h(s, xs) – h(s, 0) + h(s, 0)

∥∥p
U ds

≤ 6p–1MpcpCp
h
(
2λ(p – 1)/(p – 2)

)1–p/2eαt
∫ t

–r
e–λ(t–s)

E
∥
∥x(s)

∥
∥p

U ds

+ 6p–1MpcpCp
h
(
2λ(p – 1)/(p – 2)

)1–p/2eαt
∫ t

0
e–λ(t–s)

E
∥
∥h(s, 0)

∥
∥p

U ds,

where cp = (p(p – 1)/2)p/2. We remark that if p = 2, then inequality (3.9) also holds with
00:=1. Hence we have, for p ≥ 2,

6p–1eαt
E

∥∥
∥∥

∫ t

0
S(t – s)h(s, xs) dW (s)

∥∥
∥∥

p

U

≤ 6p–1MpcpCp
h
(
2λ(p – 1)/(p – 2)

)1–p/2eαt
∫ t

–r
e–λ(t–s)

E
∥∥x(s)

∥∥p
U ds

+ 6p–1MpcpCp
h
(
2λ(p – 1)/(p – 2)

)1–p/2eαt
∫ t

0
e–λ(t–s)

E
∥∥h(s, 0)

∥∥p
U ds. (3.8)

Similar to the proof of (3.7), from (3.8) we obtain

6p–1eαt
E

∥
∥∥∥

∫ t

0
S(t – s)h(s, xs) dW (s)

∥
∥∥∥

p

U
−→ 0 as t −→ ∞. (3.9)

As for the sixth term on the right-hand side of (3.3), by using inequality (2.2) and con-
dition (2.7), we have

(
eαt) 2

p E

∥∥
∥∥

∫ t

0
S(t – s)σ (s) dBH(s)

∥∥
∥∥

2

U

≤ (
eαt) 2

p M2cHH(2H – 1)t2H–1
∫ t

0
e–2λ(t–s)∥∥σ (s)

∥
∥2

L0
B(KB ,U) ds

≤ M2cH H(2H – 1)t2H–1e( 2
p α–λ)t

∫ t

0
eλs∥∥σ (s)

∥∥2
L0

B(KB ,U) ds.

So, from the above and (2.11), we can obtain

(
eαt) 2

p E

∥∥∥
∥

∫ t

0
S(t – s)σ (s) dBH(s)

∥∥∥
∥

2

U
−→ 0 as t −→ ∞.

Further, by using (2.3), we get

6p–1eαt
E

∥
∥∥
∥

∫ t

0
S(t – s)σ (s) dBH(s)

∥
∥∥
∥

p

U

≤ 6p–1k(p)
[
(
eαt) 2

p E

∥
∥∥
∥

∫ t

0
S(t – s)σ (s) dBH(s)

∥
∥∥
∥

2

U

] p
2 → 0 as t → ∞.

Thus, from (3.4)–(3.10), we know that eαt
E‖(πx)(t)‖p

U −→ 0 as t −→ ∞. So we conclude
that π (S) ⊂ S .
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Finally, we will show that π is contractive. For x, y ∈ S , proceeding as we did previously,
we can obtain

E sup
t∈[0,T]

∥∥(πx)(t) – (πy)(t)
∥∥p

U

≤ 4p–1
E sup

t∈[0,T]

∥
∥g(t, xt) – g(t, yt)

∥
∥p

U

+ 4p–1
E sup

t∈[0,T]

∥∥
∥∥

∫ t

0
AS(t – s)(g(s, xs) – g(s, ys) ds

∥∥
∥∥

p

U

+ 4p–1
E sup

t∈[0,T]

∥
∥∥
∥

∫ t

0
S(t – s)(f (s, xs) – f (s, ys) ds

∥
∥∥
∥

p

U

+ 4p–1
E sup

t∈[0,T]

∥
∥∥
∥

∫ t

0
S(t – s)(h(s, xs) – h(s, ys) dW (s)

∥
∥∥
∥

p

U

≤ 4p–1∥∥(–A)–β
∥∥p

U Cp
g E sup

t∈[0,T]

∥∥x(t) – y(t)
∥∥p

U

+ 4p–1Cp
g Mp

1–βλ–pβ�p–1
(

pβ – 1
p – 1

)
E sup

t∈[0,T]

∥∥x(t) – y(t)
∥∥p

U

+ 4p–1Mpλ–pCp
f E sup

t∈[0,T]

∥
∥x(t) – y(t)

∥
∥p

U

+ 4p–1MpcpCp
hλ–p/2(2(p – 1)/(p – 2)

)1–p/2
E sup

t∈[0,T]

∥∥x(t) – y(t)
∥∥p

U

≤ E sup
t∈[0,T]

∥
∥x(t) – y(t)

∥
∥p

U

× 4p–1
(∥∥(–A)–β

∥∥p
U Cp

g + Cp
g Mp

1–βλ–pβ�p–1
(

pβ – 1
p – 1

)
+ Mpλ–pCp

f

+ MpcpCp
hλ–p/2(2(p – 1)/(p – 2)

)1–p/2
)

. (3.10)

Thus by (3.1) we know that π is a contraction mapping.
Hence, by the contraction mapping theorem, π has a unique fixed point x(t) in S , which

is a solution of (2.4) with x(s) = ϕ(s) on [–r, 0] and eαt
E‖x(t)‖p

U −→ 0 as t −→ ∞. This
completes the proof. �

Remark 3.1 Boufoussi and Hajji in [2] considered the mean square stability of NSPDE only
driven by fBm. We consider the stability in the pth moment (p ≥ 2) of mixed NSFPDE. In
this sense, this paper generalizes the result in [2].

Remark 3.2 When g ≡ 0, h ≡ 0 of Eq. (2.4) and p = 2 in our paper, then inequality (3.1)
can be written as λ2 > C2

f M2; however, the corresponding condition in Caraballo et al. [5]
is λ2 > 6cf M2, where cf = C2

f . In addition, our condition (2.8) is

∫ t

0
eλs∥∥f (t, xs) – f (t, ys)

∥
∥p

U ds ≤ Cp
f

∫ t

–r
eλs∥∥x(s) – y(s)

∥
∥p

U ds. (3.11)
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However, the corresponding condition in [5] is

∫ t

0
ems∥∥f (t, xs) – f (t, ys)

∥∥2
U ds ≤ cf

∫ t

–r
ems∥∥x(s) – y(s)

∥∥2
U ds, ∀0 ≤ m ≤ λ. (3.12)

Obviously, when p = 2, (3.11) is weaker than (3.12). So our results generalize and improve
those of [5].

Remark 3.3 When σ ≡ 0, p = 2, then Eq. (2.4) reduces to a NSFPDE only driven by Brow-
nian motion in which the exponential stability in mean square of mild solution has been
studied by Luo [13]. Obviously, the given result in [13] can be seen as a special case of our
result. In this sense, we generalized the result given in [13].
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