
Chen Journal of Inequalities and Applications  (2018) 2018:194 
https://doi.org/10.1186/s13660-018-1791-y

R E S E A R C H Open Access

A note on the almost-Schur lemma on
smooth metric measure spaces
Jui-Tang Chen1*

*Correspondence:
jtchen@ntnu.edu.tw
1Department of Mathematics,
National Taiwan Normal University,
Taipei City, Taiwan, R.O.C.

Abstract
In this paper, we prove almost-Schur inequalities on closed smooth metric measure
spaces, which implies the results of Cheng and De Lellis–Topping whenever the
weighted function f is constant.

MSC: Primary 58J50; 53C23; secondary 53C21; 53C24

Keywords: Almost-Schur inequality; Einstein manifold; Smooth metric measure
space

1 Introduction
In 2012, De Lellis and Topping [11] proved an almost-Schur lemma; that is, if a closed Rie-
mannian manifold has nonnegative Ricci curvature, an almost-Schur inequality involves
scalar curvature and Ricci curvature:

∫
M

(R – R)2 dv ≤ 4n(n – 1)
(n – 2)2

∫
M

∣∣∣∣Ric –
R
n

g
∣∣∣∣
2

dv. (1.1)

In particular, the equality holds if and only if this manifold is Einstein and has constant
scalar curvature.

In [9], Ge and Wang proved the almost-Schur lemma under the condition of nonnegative
scalar curvature in a four-dimensional Riemannian manifold.

In [6], Cheng considered closed Riemannian manifolds with negative Ricci curvature
and obtained a generalization of the De Lellis–Topping type inequality. That is, if Ric ≥
–(n – 1)K for some constant K ≥ 0, she showed that

∫
M

(R – R)2 dv ≤ 4n(n – 1)
(n – 2)2

(
1 –

nK
λ1

)∫
M

∣∣∣∣Ric –
R
n

g
∣∣∣∣
2

dv, (1.2)

where λ1 is the first non-zero eigenvalue of Laplacian on (M, g). For more references, see
[3–5, 7, 10, 18].

In this paper, we study De Lellis–Topping type inequality on a smooth metric measure
space. First, we recall some definitions of smooth metric measure space.

For an n-dimensional closed Riemannian manifold (Mn, g) and a smooth function f on
M, a triple (Mn, g, dvf ) is a smooth metric measure space with a weighted volume identity
dvf = e–f (x) dv, where dv is the volume element of M with respect to the metric g . Let
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(∇f ⊗∇u)ij = 1
2 (f,iu,j + f,ju,i), and let Hess be the Hessian under the metric g . We define the

weighted Laplacian by the trace of

(Hessf u)ij ≡ (Hess u)ij – (∇f ⊗ ∇u)ij;

that is,

�f u = �u – 〈∇f ,∇u〉,

and it is a self-adjoint operator concerning dvf .
Consider the m-Bakry–Émery and ∞-Bakry–Émery Ricci tensor on a smooth metric

measure space by

Ricm
f = Ric + Hess f –

1
m

∇f ⊗ ∇f , m > 0,

and

Ricf = Ric + Hess f ,

respectively. If Ricf = λg (or Ricm
f = λg) for some λ ∈ R, then M is quasi-Einstein (or m-

quasi-Einstein). In particular, if f is a constant function, then M is Einstein.
According to the classical Bochner’s formula, we have a similar formula

1
2
�f |∇u|2 = |Hess u|2 + 〈∇u,∇�f u〉 + Ricf (∇u,∇u)

for u ∈ C3(M) on M. Therefore, many results have been extended from Riemannian man-
ifolds to smooth metric measure spaces. We refer the reader to [1, 2, 8, 13–18] for further
references.

The paper is organized as follows. In Sect. 2, we show our main results. In particular, the
proofs of Theorems 2.1 and 2.2 are shown in Sect. 2.1. In Sect. 2.2, we prove Theorem 2.3
and show partial results for the open problem. Finally, we provide a conclusion in Sect. 3.

2 Results and discussion
First, we show the work by Wu [18], which is a type of inequality for an almost-Schur
lemma on smooth metric measure spaces. Let

Nm
f ≡

(
R +

2(m – 1)
m

�f –
m – 1

m
|∇f |2

)
e– 2

m

and

Nm
f =

∫
M Nm

f dvf∫
M dvf

for any positive number m > 2; if

Ricm
f ≥ |∇f |2

m
g,
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then

∫
M

(
Nm

f – Nm
f
)2e–f dv ≤ 4(m + 1)(m – 2)

m3

∫
M

∣∣∣∣Ricm
f +

tr Ricm
f

m – 2
g
∣∣∣∣
2

e– m+4
m f dv.

Moreover, the equality holds if and only if

Ricm
f +

tr Ricm
f

m – 2
g = 0.

Thus, he generalized De Lellis and Topping’s result.
From Wu’s work, we want to improve the inequality that is an expansion of the almost-

Schur inequality (1.1) for more general Ricci curvature conditions.
In this paper, for convenience, unless otherwise specified, we provide some notation as

follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rf = R + �f , Vf (M) =
∫

M dvf ,

R =
∫

M R dvf
Vf (M) , Rf =

∫
M Rf dvf
Vf (M) ,

Ri̊c = Ric – R
n g, Ri̊cf = Ricf – Rf

n g.

Now we state our results.

Theorem 2.1 Let (Mn, g, dvf ), n > 2, be a closed smooth metric measure space. If

Ricf ≥ (
�f – (n – 1)K

)
g,

then

‖Rf – Rf ‖L2 ≤ 2n
√

A
n – 2

‖Ri̊cf – Hess f ‖L2 + ‖�f ‖L2 , (2.1)

where ‖ · ‖2
L2 =

∫
M | · |2 dvf ,

A =
n – 1

n
+

(n – 1)K
λ1

,

and λ1 is the first positive eigenvalue of the weighted Laplacian �f . Moreover, the equality
holds if and only if M is Einstein and has constant scalar curvature with respect to the
metric g .

Theorem 2.2 Let (Mn, g, dvf ), n > 2, be a closed smooth metric measure space. If

Ricm
f ≥

(
1
m

|∇f |2 – (n – 1)K
)

g

for any positive constant m, then

∫
M

(R – R)2 dvf ≤ 4n2A
(n – 2)2

∫
M

|Ri̊c|2 dvf , (2.2)
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where

A =
n – 1

n
+

m
2

+
(m + 2)(n – 1)K

2λ1
,

and λ1 is the first positive eigenvalue of the weighted Laplacian �f . Moreover, the equality
holds if and only if M is Einstein and has constant scalar curvature with respect to the
metric g .

Theorem 2.3 Let (Mn, g, dvf ), n > 2, be a closed smooth metric measure space. If

Ricf ≥ (
�f – (n – 1)K

)
g,

then
∫

M
(R – R)2 dvf ≤ 4n2A

(n – 2)2

∫
M

|Ri̊c|2 dvf , (2.3)

where

A =
n – 1

n
+

(n – 1)K
λ1

,

and λ1 is the first positive eigenvalue of the weighted Laplacian �f .

Remark 2.1 Inequality (2.1) in Theorem 2.1 is sharp in the sense of two aspects. One is
that the constant

2n
√

A
n – 2

=

√
4n2A

(n – 2)2 =

√
4n(n – 1)
(n – 2)2

(
1 –

nK
λ1

)

is equal to the square root of the constant in inequality (1.2), then this inequality implies
inequality (1.2) whenever f tends to a constant. The other is that if the equality of (2.1)
holds, then M is Einstein and has constant scalar curvature with respect to the metric g .

Remark 2.2 In Theorem 2.3, inequality (2.3) is almost the same as inequality (1.2). If the
equality of (2.3) holds, “M is trivial Einstein and has constant scalar curvature” remains
an open problem. We also note that, due to the work of Cheng [6], we have a partial result
about this topic (see Sect. 2.2).

2.1 Proofs of Theorems 2.1 and 2.2
First, it is easy to verify that in Theorems 2.1, 2.2, 2.3 we may select f such that

∫
f dvf = 0

since (2.1), (2.2), and (2.3) are valid whenever we replace f with f – f̄ , where f̄ =
∫

M f dvf
Vf (M) .

Proof of Theorem 2.1 Assume that R is the nontrivial scalar curvature on M with respect
to metric g , and Rf = R + �f . According to the Sobolev embedding theorem and calculus
variation, there exists a nontrivial solution u : M → R of the equation

⎧⎨
⎩

�f u = Rf – Rf ,∫
M u dvf = 0,

(2.4)
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where

Rf =
∫

M Rf dvf

Vf (M)
.

We also note that the second Bianchi identity div Ric = 1
2∇R implies

(div Ricf )j = (div Ric)j + (div Hess f )j

= ∇iRij + (div Hess f )j

=
1
2

Rj + (div Hess f )j

=
1
2

Rf ,j –
1
2

(�f )j + (div Hess f )j;

therefore,

(div Ri̊cf )j = (div Ricf )j –
Rf ,j

n

=
n – 2

2n
Rf ,j –

1
2

(�f )j + (div Hess f )j.

That is,

div Ri̊cf =
n – 2

2n
∇Rf –

1
2
∇�f + div Hess f , (2.5)

where Ri̊cf = Ricf – Rf
n g .

Then, using

∫
M

〈Ri̊cf , hg〉dvf =
∫

M

〈
Ricf –

Rf

n
g, hg

〉
dvf

=
∫

M
(Rf – Rf )h dvf

= 0,

we have
∫

M
(Rf – Rf )2 dvf

=
∫

M
(Rf – Rf )�f u dvf = –

∫
M

〈∇Rf ,∇u〉dvf

=
–2n
n – 2

∫
M

〈
div Ri̊cf +

1
2
∇�f – div Hess f ,∇u

〉
dvf

=
2n

n – 2

∫
M

〈Ri̊cf – Hess f , Hessf u〉 +
1
2
�f �f u dvf

=
2n

n – 2

∫
M

〈Ri̊cf – Hess f , Hessf u – hg〉 +
n – 2

2n
�f �f u dvf

≤ 2n
n – 2

‖Ri̊cf – Hess f ‖L2‖Hessf u – hg‖L2 +
∫

M
�f �f u dvf , (2.6)
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where ‖ · ‖2
L2 =

∫
M | · |2 dvf and

h =
�f u

n
. (2.7)

Now, we use Bochner’s formula

1
2
�f |∇u|2 = |Hess u|2 + 〈∇u,∇�f u〉 + Ricf (∇u,∇u),

then

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf

=
∫

M
|Hessf u|2 –

(�f u)2

n
dvf

=
∫

M
|Hess u|2 – 2Hess u(∇f ,∇u) +

|∇f |2|∇u|2 + 〈∇f ,∇u〉2

2

–
(�f u)2

n
dvf

≤
∫

M

(
1 –

1
n

)
(�f u)2 – Ricf (∇u,∇u) –

〈∇f ,∇|∇u|2〉

+ |∇f |2|∇u|2 dvf

=
∫

M

(
1 –

1
n

)
(�f u)2 – Ricf (∇u,∇u) + �f |∇u|2 dvf

≤
∫

M

(
1 –

1
n

)
(�f u)2 + (n – 1)K |∇u|2 dvf , (2.8)

whenever Ricf ≥ (�f – (n – 1)K)g .
Since the first positive eigenvalue λ1 (see [1, 8, 12]) of the weighted Laplacian on M is

characterized by

λ1 = inf

{∫
M |∇ϕ|2 dvf∫

M ϕ2 dvf

∣∣∣ ϕ is nontrivial and
∫

M
ϕ dvf = 0

}
,

we get

∫
M

|∇u|2 dvf = –
∫

M
u�f u dvf

= –
∫

M
u(Rf – Rf ) dvf

≤ ‖u‖L2‖Rf – Rf ‖L2

≤ λ–1/2
1 ‖∇u‖L2‖Rf – Rf ‖L2 ,

for which it gives the inequalities

λ1

∫
M

|∇u|2 dvf ≤ ‖Rf – Rf ‖2
L2 and λ2

1

∫
M

u2 dvf ≤ ‖Rf – Rf ‖2
L2 . (2.9)
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Therefore, (2.8) becomes

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf ≤ A‖Rf – Rf ‖2
L2 , (2.10)

where

A =
n – 1

n
+

1
λ1

(n – 1)K .

Now, by (2.10), we may rewrite (2.6) as

∫
M

(Rf – Rf )2 dvf

≤ 2n
n – 2

‖Ri̊cf – Hess f ‖L2

∥∥∥∥Hessf u –
�f u

n
g
∥∥∥∥

L2
+

∫
M

�f �f u dvf

≤ 2n
√

A
n – 2

‖Rf – Rf ‖L2‖Ri̊cf – Hess f ‖L2 +
∫

M
�f (Rf – Rf ) dvf

≤ 2n
√

A
n – 2

‖Rf – Rf ‖L2‖Ri̊cf – Hess f ‖L2 + ‖Rf – Rf ‖L2‖�f ‖L2 ,

which implies the De Lellis–Topping type inequality

‖Rf – Rf ‖L2 ≤ 2n
√

A
n – 2

‖Ri̊cf – Hess f ‖L2 + ‖�f ‖L2 . (2.11)

If the equality of (2.11) holds, we have the following properties:
(i) Ricf (∇u, ·) = (�f – (n – 1)K)g(∇u, ·);

(ii) μ1(Ri̊cf – Hess f ) = Hessf u – �f u
n g , where μ1 is a non-zero constant;

(iii) Rf – Rf = –λ1u = μ2�f , where μ2 is a non-zero constant;
(iv) f = αu, where α is constant (since

∫
M f dvf = 0).

By (iii) and (iv), one has �f f = α�f u = αμ2�f . We rewrite it by

(1 – αμ2)�f = |∇f |2,

and then it infers that f must be zero on M since M is a closed manifold. Therefore, we
complete the proof of Theorem 2.1 by the results of [6] and [11]. �

Proof of Theorem 2.2 In the following, we show an almost-Schur lemma under the as-
sumption of m-Bakry–Émery Ricci tensor, which is similar to the work of [18]. Consider
the nontrivial solution u : M →R of

⎧⎨
⎩

�f u = R – R,∫
M u dvf = 0,

(2.12)

where

R =
∫

M R dvf

Vf (M)
.
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Additionally, the second Bianchi identity div Ric = 1
2∇R implies

div Ri̊c =
n – 2

2n
∇R,

where (div Ric)j = ∇iRij and Ri̊c = Ric – R
n g .

Then we have
∫

M
(R – R)2 dvf =

∫
M

(R – R)�f u dvf = –
∫

M
〈∇R,∇u〉dvf

=
–2n
n – 2

∫
M

〈div Ri̊c,∇u〉dvf

=
2n

n – 2

∫
M

〈Ri̊c, Hessf u〉dvf

=
2n

n – 2

∫
M

〈
Ri̊c, Hessf u –

�f u
n

g
〉

dvf

≤ 2n
n – 2

‖Ri̊c‖L2

∥∥∥∥Hessf u –
�f u

n
g
∥∥∥∥

L2
. (2.13)

Now we use Bochner’s formula

1
2
�f |∇u|2 = |Hess u|2 + 〈∇u,∇�f u〉 + Ricf (∇u,∇u),

one has

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf

=
∫

M
|Hess u – ∇f ⊗ ∇u|2 –

(�f u)2

n
dvf

≤
∫

M

(
1 +

m
2

)
|Hess u|2 +

(
1 +

2
m

)
|∇f ⊗ ∇u|2 –

(�f u)2

n
dvf

=
∫

M

(
1 –

1
n

+
m
2

)
(�f u)2 –

m + 2
2

Ricf (∇u,∇u)

+
m + 2

2m
(|∇f |2|∇u|2 + 〈∇f ,∇u〉2)dvf

≤
∫

M

(
n – 1

n
+

m
2

)
(�f u)2 +

(m + 2)(n – 1)K
2

|∇u|2 dvf . (2.14)

Here, we use Ricm
f ≥ ( 1

m |∇f |2 – (n – 1)K)g .
Therefore, by inequality (2.9) (but we replace (Rf – Rf ) with (R – R)), (2.14) gives

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf ≤ A‖R – R‖2
L2 ; (2.15)

then (2.13) can be rewritten as

‖R – R‖L2 ≤ 2n
√

A
n – 2

‖Ri̊c‖L2 , (2.16)
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where

A =
n – 1

n
+

m
2

+
(m + 2)(n – 1)K

2λ1
.

If the equality of (2.16) holds, then Hess u = 2
m∇f ⊗ ∇u on M; which implies

� 2f
m

u = �u –
2
m

〈∇f ,∇u〉 = 0. (2.17)

That is, u is a weighted harmonic function with respect to weighted measure dv 2f
m

on M,
it infers u = 0 on M. Thus, Theorem 2.2 follows by the results of [6] and [11]. �

By combining Theorem 2.2 and Theorem 2.1, we note the following property.

Corollary 2.1 Let (Mn, g, dvf ), n > 2, be a closed smooth metric measure space. If

Ricm
f ≥

(
1
m

|∇f |2 – (n – 1)K
)

Kg

for any positive constant m, then

‖Rf – Rf ‖L2 ≤ 2n
√

A
n – 2

‖Ri̊cf – Hess f ‖L2 + ‖�f ‖L2 ,

where ‖ · ‖2
L2 =

∫
M(·)2 dvf and

A =
n – 1

n
+

m
2

+
(m + 2)(n – 1)K

2λ1
,

and λ1 is the first positive eigenvalue of the weighted Laplacian �f . Moreover, the equality
holds if and only if M is Einstein and has constant scalar curvature with respect to metric g .

2.2 Proof of Theorem 2.3 and partial result
This is similar to the process from (2.12) to (2.15) (in the proof of Theorem 2.2), but we
replace (2.14) with the following formula:

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf

=
∫

M
|Hessf u|2 –

(�f u)2

n
dvf

=
∫

M
|Hess u|2 – 2 Hess u(∇f ,∇u) +

|∇f |2|∇u|2 + 〈∇f ,∇u〉2

2
–

(�f u)2

n
dvf

≤
∫

M

(
1 –

1
n

)
(�f u)2 – Ricf (∇u,∇u) –

〈∇f ,∇|∇u|2〉 + |∇f |2|∇u|2 dvf

=
∫

M

(
1 –

1
n

)
(�f u)2 – Ricf (∇u,∇u) + �f |∇u|2 dvf

≤
∫

M

(
1 –

1
n

)
(�f u)2 + (n – 1)K |∇u|2 dvf .

Here, we use the curvature assumption Ricf ≥ (�f – (n – 1)K)g .
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Thus, we obtain

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf ≤ A
∫

M
(R – R)2 dvf , (2.18)

and then inequality (2.3)

∫
M

(R – R)2 dvf ≤ 4n2A
(n – 2)2

∫
M

|Ri̊c|2 dvf (2.19)

holds, where

A =
n – 1

n
+

(n – 1)K
λ1

.

If the equality of (2.19) holds, we have the properties:
(i) Ricf (∇u, ·) = (�f – (n – 1)K)g(∇u, ·);

(ii) μRi̊c = Hessf u – �f u
n g , where μ is a non-zero constant;

(iii) R – R = –λ1u;
(iv) f = αu, where α is constant.
In the following, we prove that if the equality of (2.19) holds under the condition α ≤ 1

n–1 ,
then M is Einstein and has constant scalar curvature with respect to metric g but remains
an open problem whenever α > 1

n–1 .
It is clear that if α = 0, theorem follows by [6] (or [11] for K = 0). Therefore, we focus on

α �= 0.
By (ii), (2.18), and (2.19), we compute μ as follows.

μ2
∫

M
|Ri̊c|2 dvf =

∫
M

∣∣∣∣Hessf u –
�f u

n
g
∣∣∣∣
2

dvf

= A‖R – R‖2
L2

=
4n2A2

(n – 2)2

∫
M

|Ri̊c|2 dvf , (2.20)

which gives

(
μ2 –

4n2A2

(n – 2)2

)∫
M

|Ri̊c|2 dvf = 0.

Hence, we have

μ =
2nA
n – 2

=
2n

n – 2

(
n – 1

n
+

(n – 1)K
λ1

)
. (2.21)

By (i) and (iv),

Riju,i + αu,iju,i – αu,j�u + (n – 1)Ku,j = 0
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implies

Rij,ju,i + αu,ijju,i – α(�u),ju,j + Riju,ij + αu2
,ij

– α(�u)2 + (n – 1)K�u = 0. (2.22)

Additionally, (ii) gives

μRiju,ij =
〈
μR
n

g + Hessf u –
�f u

n
g, Hess u

〉

=
μR
n

�u + |Hess u|2 – αHess u(∇u,∇u)

–
�u – α|∇u|2

n
�u. (2.23)

Let u have minimum at p ∈ M; that is, u(p) = infM u. Then (2.22) and (2.23) become

⎧⎨
⎩

Riju,ij = α(�u)2 – α|Hess u|2 – (n – 1)K�u,

μRiju,ij = μR
n �u + |Hess u|2 – 1

n (�u)2,
(2.24)

at p, for which we have

0 =
μR
n

�u + (1 + αμ)|Hess u|2 –
(

1
n

+ αμ

)
(�u)2 + (n – 1)μK�u

= (1 + αμ)|Hess u|2 –
1 + αμ

n
(�u)2

+
μ

n
(
R – (n – 1)α�u + n(n – 1)K

)
�u, (2.25)

at p.
Since

R – (n – 1)α�u + n(n – 1)K = R + �u – (n – 1)α�u + n(n – 1)K

=
(
1 – (n – 1)α

)
�u + R + n(n – 1)K ,

(2.25) can be rewritten as

(1 + αμ)
(

|Hess u|2 –
1
n

(�u)2
)

+
μ

n
(
1 – (n – 1)α

)
(�u)2

+
μ

n
(
R + n(n – 1)K

)
�u

= 0, at p. (2.26)

Because of the curvature assumption

Ric + α Hess u ≥ (
α�u – (n – 1)K

)
g, (2.27)
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we have

R ≥ α(n – 1)�u – n(n – 1)K , (2.28)

which gives

R ≥ α(n – 1)
Vf (M)

∫
M

�u dvf – n(n – 1)K

=
α2(n – 1)

Vf (M)

∫
M

|∇u|2 dvf – n(n – 1)K

> –n(n – 1)K , for all α �= 0. (2.29)

Here, we use

�u = �f u + α|∇u|2

and integration by parts.
If –1

μ
≤ α ≤ 1

n–1 , by (2.29), each term on the left-hand side of (2.26) must be nonnegative
at p; therefore, �u(p) = 0, which implies R(p) = supM R = R, and then M is Einstein and has
constant scalar curvature with respect to metric g .

If α ≤ – 1
μ

, we rewrite (2.26) as

(1 + αμ)
(|Hess u|2 – (�u)2) +

(n – 1) + μ

n
(�u)2

+
μ

n
(
R + n(n – 1)K

)
�u = 0 at p. (2.30)

We note that at p, the n × n matrix Hess u must be semi-positive. Then |Hess u|2 ≤ (�u)2

at p, and the equality holds only if the rank of Hess u(p) is less than 2. From this inequality,
each term on the left-hand side of (2.30) must be nonnegative. Therefore, �u(p) = R(p) –
R = 0, and then M is Einstein and has constant scalar curvature with respect to metric g .

3 Conclusion
This paper contributes two main points. One is that two types of almost-Schur inequalities
on smooth metric measure spaces are established under m-Bakry–Émery Ricci conditions
or ∞-Bakry–Émery Ricci conditions, which imply the results of Cheng [6] and De Lellis–
Topping [11] whenever the weighted function f is constant. The other is that the equality
of our inequality implies geometric qualities of manifold, because the equality holds if
and only if the manifold is Einstein and has constant scalar curvature with respect to the
background metric (see Theorem 2.1, Theorem 2.2, Corollary 2.1, and a partial result of
Theorem 2.3 in Sect. 2.2).

4 Methods
In this paper, we show almost-Schur inequalities on smooth metric measure spaces. The
key points in the proofs are ∇f ⊗∇u and Bochner’s formula, then due to the Bianchi iden-
tity and the first positive eigenvalue of the weighted Laplacian, we establish the almost-
Schur inequalities.
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