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1 Introduction
In this paper we are studying the reducibility of the following almost-periodic Hamiltonian

system:

% =J[A+eQ(t,8)]x + eg(t,e) + h(x, t,e), xR, 1)
where J is an anti-symmetric symplectic matrix, A is a 2N x 2N symmetric constant ma-
trix with possible multiple eigenvalues, and Q(¢) is an analytic almost-periodic symmetric
2N x 2N matrix with respect to ¢, g(¢, €) and k(x, £, €) are almost-periodic 2N -dimensional
vector-valued functions with respect to ¢, with basic frequencies w = (wy,w,,...) and
h(x,t) = O(x?) (x — 0), and

where Iy is a N x N identity matrix and ¢ is a sufficiently small parameter. First of all we

will recall some previous results in the field of reducibility for analytic differential systems.
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Consider the differential equation

dx
— =A(t)x, xe€R”, 2
A0 @
where A(¢) is an almost-periodic matrix. We call the transformation x = P(f)y almost-
periodic Lyapunov—Perron (L-P) transformation, if P(t) is non-singular and P, P~%, and
P are almost periodic. The transformed equation is

Y _ca, o
where C = P"1(AP — P). If there exists an almost-periodic L-P transformation such that
C(¢) is a constant matrix, then we call equation (2) reducible.

In recent years, many researchers have devoted themselves to the study of the reducibil-
ity of finite dimensional systems by means of the KAM methods. The well-known Floquet
theorem states that every periodic differential equation (2) can be reduced to a constant
coefficients differential equation (3) by means of a periodic change of variables with the
same period as A(f). But, if A(¢) is quasi-periodic (q-p), then there is an example in [1]
which illustrates that (2) is irreducible. In 1981, Johnson and Sell [2] showed that if A(¢) the
quasi-periodic matrix satisfies “full spectrum” conditions, then (2) is reducible. In 1992,
Jorba and Simé [3] proved the reducibility result of linear quasi-periodic systems like (5)
for the constant matrix A with distinct eigenvalues. In 1999, Xu [4] proved the reducibil-
ity result of linear quasi-periodic systems like (5) for the constant matrix A with multiple
eigenvalues. In 1996, Jorba and Sim¢ [5] considered the quasi-periodic system

% = [A + 8Q(t)]x +eg(t) + h(x,t), xeR”, (4)
where the constant matrix A has distinct eigenvalues. They proved that system (4) is
reducible for ¢ € E using the non-resonant conditions and non-degeneracy conditions,
where E is the non-empty Cantor subset such that E C (0, &y). Instead of quasi-periodic
reduction to a constant coefficient linear systems, in 1996, Xu and You [6] proved the re-
ducibility of the linear almost-periodic differential equation

dx_

7 [A + 8Q(t)]x, x € R", (5)

where the constant matrix A has different eigenvalues and Q(¢) is an m x m analytic
almost-periodic matrix with frequencies w = (w1, s, ...). Under some small divisor con-
ditions and for most sufficiently small ¢, they proved that system (5) is reducible to the
constant coefficient system by an affine almost-periodic transformation. In 2013, Qiu and
Li [7] considered the following non-linear almost-periodic differential equation:

dx

pri [A + ea(t)]xzn*l +hix t,e) +f(xte), x€R, (6)
where n > 0 is an integer, A is a positive number, ¢ is a small parameter, % is a higher order
term, and f is a small perturbation term. They proved that under some suitable conditions

and using the KAM method system (6) can be reduced to a suitable normal form with zero
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as an equilibrium point by an affine almost-periodic transformation, so it has an almost-
periodic solution near zero.
In 2015, Li et al. [8] considered the following analytic quasi-periodic Hamiltonian sys-

tem:

dx_

. [A +2Q(0)]x +eg(t) + h(x,0), xeR™, (7)

where the constant matrix A has multiple eigenvalues, Q, g, and /4 are quasi-periodic with
respect to £ and & = O(x?) (x — 0). They proved that by using the non-resonant condi-
tions, non-degeneracy conditions, and a suitable hypothesis of analyticity, the Hamilto-
nian system (7) can be changed to another Hamiltonian system with an equilibrium by a
q-p symplectic transformation.

In this paper we are going to extend the results of [5] to the almost-periodic Hamiltonian
system (1).

This paper is organized as follows. In Sect. 2, statement of the main result is given, in
Sect. 3 we give some lemmas which are essential for the proof of the main result, in Sect. 4
the first KAM step is given, in Sect. 5 the main result is proved, and finally, in Sect. 6
conclusion of the paper is given.

1.1 Definitions and notations

To state our main result, we need some definitions and notations.

Definition 1.1 We say that a function f is a quasi-periodic function of time ¢ with basic
frequencies w = (w1, wy, ..., w,) if f(£) = F(61,6,,...,6,), where F is 27 periodic in all its
arguments 6; = w;t for j = 1,2,...,d. f will be called analytic quasi-periodic in a strip of
width p if F is analytic on D, = {6]|36;| < p,j = 1,2,...,d}. In this case we denote the
norm by ||fll, = > ez |Fxle?¥!. A function f is almost-periodic if f(£) = Y o-, f,(¢), where
fu(t) are all quasi-periodic forn=1,2,....

Definition 1.2 Suppose that A(t) = (a,(t)) is a quasi-periodic m x m matrix. If every a(t)
is analytic on D,, then we call A(¢) analytic on D,.The norm of A(t) is defined as follows:

JA@], = s a0,
If A is a constant matrix, the norm of A is defined as follows:
Al = m x lgls%grlﬂsjh
Write B(0,b) = {x € C||x| < b} and A}, =B(0,b) x D,,.
Definition 1.3 Let /(x,t) be real analytic in x and ¢ on A, ,, and let h(x,t) be quasi-

periodic with respect to ¢ with frequency w. Then h(x,t) can be expanded as a Fourier
series as follows:

i t) =Y hi(x)e™,

kezd
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Then

k
Il ap, = D Vaxloe™,

kezd

where Zir(x) = Y7 x™ and T |y = SUP,epo,p) 2 omeo 1nk| 121" It is easy to see that

Imhalla,, < lhlla,,lh2lla,,

The aim of the study is to develop the reducibility for the almost-periodic non-linear
Hamiltonian system (1). To take over the difficulty from the infinite frequency which gen-
erates the small divisors problem, we need a stronger norm. Inspired by the works of [4,
5], and [8], in this paper, we allow Q, g, and % to be the classes of almost-periodic ma-
trices. Our study is about the reducibility of almost-periodic Hamiltonian systems to [4]
and [8]. So, the usual LP transformation for KAM iteration should not only be almost-
periodic but also symplectic, which preserves the Hamiltonian structure. For this pur-

pose, let us introduce “spatial structure’, “approximation function’, and some related def-
initions.

Definition 1.4 ([9]) Let T be a set of some subsets of the natural number set N. Then

(z,[*]) is called a finite spatial structure in N if 7 satisfies:

1. Ver;
2. IfAl,AQEt,then AUAyeT;
3. UAGT A= N’

and [-] is a weight function defined on 7 such that [#] =0, [A; U Ay] < [A1] + [Az].
Denote the weight value by [k] = infyuppica,aec [A]. Write |k| = Yo |kl

Definition 1.5 ([4]) If U(f) = ) ., Ua(£), where U, (t) are quasi-periodic matrices with
basic frequencies wy = {ws|s € A}, then U(¢) is known as an almost-periodic matrix with
spatial structure (7, [-]) and basic frequencies w, which is the maximum subset of Uw, in

the sense of integer modular. Denote the average of U(¢) by U, where

Let U(t) =Y\, Ua(2), forz>0, p >0,

llu@ll,, =>_ e |unol,

Aet

is called a weight norm with finite spatial structure (7, [-]).

Definition 1.6 ([10]) A is called an approximation function if

1. A:[0,00) — [1,00) is an increasing function and it satisfies A(0) = 1;

2. w is decreasing on [0, 00);

oo log A(t)
3. fy7 el

dt < 00.
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Remark If A is an approximation function, then so is A%

Definition 1.7 Let h(x,t) = Y, ., ha(x,t) with frequency w = (w1, w,,...) and with finite
spatial structure (z,[-]), forz> 0, p > 0,

@Dl =D e rate,,

Aet

is known as the weight norm of A(x, £).

Definition 1.8 A matrix S is said to be symplectic if SJST = J, where ST represents the

transpose of S and J = (_?N 131 ), where Iy is an N x N identity matrix.

For amap ¥ (t,x) : RN — RV, let %—f denote the Jacobian of v with respect to x, that

is, 3x = (ax )aNx2N-

Definition 1.9 v (t, x) is symplectic if and only if the Jacobian of ¥ with respect to x is

symplectic, i.e., E)x] =].

Definition 1.10 A matrix A is said to be Hamiltonian if and only if A = /B, where B is a

symmetric matrix and J is defined as above.

For our problem, the non-resonant conditions will be

o
(ke = 4= V-1t )| = Tesmg

for all 1 < s #j < 2N and k € ZN\{0}, where A1,As,..., Ao are the eigenvalues of
JA, w is the basic frequencies of Q(¢), A(t) is an approximation function satisfying
ZkeZN ‘k‘ XA < and « is a small positive constant. From [4] and [9], we can choose

the weight function

[Al=1+ Zlog"(l +1sl), p>2.
seA

2 Statement of the main result

Theorem 2.1 Suppose that the Hamiltonian system (1) in which JA is a Hamiltonian
matrix with possible multiple eigenvalues, Q(t) = Y Qa(t) and g(t) = >_ g (t) are analytic
almost-periodic matrices with respect tot on D,,, and h(x,t) = >_ h (%, t) is analytic almost-
periodic matrix with respect to t and x on Ay, with basic frequencies w = (w1, s, ...) and
has the spatial structure (t,[-]) which depends continuously on the small parameter ¢.
Suppose that JA is a 2N x 2N matrix with possible multiple eigenvalues Xq,Xz,..., AN
that can be diagonalized and the multiplicity of the eigenvalues Ay is ry, s’ = 1,2,...,1,
ri+ry+- 41 =2N, Ay #0,and Ly # Ay withs' #j and 1 <s',j’ < l. Moreover, assume that
h(x, ¢, €) is analytic with respect to x on the closed ball B;(0), h(0,t,¢) = 0,and D,;h(0,t,¢) =0
and ¢ € (0,&0) is a parameter. If

1. There exists z > 0 such that || Q)| < 00, lIg(E)lll, < 00;
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2. (Non-resonant conditions) . = (A1, Xa,..., kon) and w = (w1, @, ...) satisfy

oo
R T ESNTINTIE ,
Xo
o=y = VoLl = S (9)

forall1 <s,j <2N, k € ZN\{0}, ap > 0 is a small constant and A(t) is an
approximation function;

3. (Non-degeneracy conditions) Suppose that the unique solution of x = JAx + eg(t) is
denoted by x. Assume that J(A + €Q") has 2N different eigenvalues \1(¢)

1
(1 <'s < 2N) which satisfy |, (€) = A, (€)] = 2ne > 0,12 > |W| >n1 >0, and

Gk €)1k @)
Ny > |%| >ny >0, where k, k1,ky =1,2,...,2N, ki ko, € € (0, &), and n,
N1, and 0y are positive constants. Let Q*(¢) = Q(¢) + éth(a_c, t) and 6* be the average
of Q*(2).

4. |IDxxh(x,t,8)llza,, < K, where & € (0,&9) and x € B,(0).

Then there exists a Cantor subset E C (0, &9) with positive Lebesgue measure such that
the Hamiltonian system (1) is reducible for ¢ € E, i.e., there exists an almost-periodic sym-
plectic transformation x = (¢, &)y + ¢(t, &), where (¢, &) and ¢(¢, ) are almost-periodic
with basic frequencies and spatial structure (7, [-]) as Q(¢), which transforms (1) into the

Hamiltonian system

dy

. = A* h* ’tr ) 10

ot (&) + hi(y,t,8) (10
where A,(¢) is the constant matrix and %,(y,t,¢) is of order two in y. Furthermore, for

small enough &y, the relative measure of E in (0, &) is close to 1.

Remark In general, we suppose that g(¢), Q(¢), and /(x, t) depend on &, but for simplicity,
in the following we do not represent this dependence.

3 Some lemmas
In this section, we will give some results in the form of lemmas which are useful for the
proof of Theorem 2.1.

Lemma 3.1 ([4]) Suppose that U and R are almost-periodic matrices, and they have the
same spatial structure and the same frequencies. If ||U ||, < +00, IR, < +00, then UR
is an almost-periodic matrix and has the same spatial structure and the same frequencies
with U and R, and

NURIzp < WUz, o MIRIz,p-

Lemma 3.2 ([4]) Suppose that an analytic almost-periodic matrix U(t) has the spatial
structure (t,[-]), and for z >0, p > 0, |U|l,,, < +00. Then, for the average of U(t), we have
I < Uz
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Lemma 3.3 ([5]) Let A{, A}, ..., Ay be the eigenvalues of By satisfying |A{| > 2v, |A{ = Aj| >
2v, and v > 0 with s #j. Consider By to be a matrix such that B‘IB 1By = diag(Aq, ..., Ad).
Define Bo = max{||Bo|l, | By |1}. Let ¢ be a value such that 0 < ¢ < Then, if JA verifies
lJA = B1|| < g, the following results hold:
1. IfA1,Ag,..., Ay are the eigenvalues of JA, we have |As| > v, [As — Aj| > v, s #].
2. There exists a non-singular matrix B such that B"\JAB = diag(A1, Ay, ..., Ay), which
satisfies |B||, ||B7Y|| < B, where B = 2,.

(61— 152

Remark Indeed, by Gerschgorin’s lemma, the result 1 of Lemma 3.3 can be obtained.
In our case, if the constant matrix A can be diagonalized, then the eigenvalues A of
Ao satisfy |)»?| > 2n3 > 0 with a constant 53, Vs, and A, — Ag = O(¢g), where n > 1 rep-
resents the nth KAM step. So, by Gerschgorin’s lemma, we have that, for small enough
¢, the eigenvalues A of A, satisfy |A”| > n3 > 0, Vs. In this article, we denote v = ne and
By = A;. Then Lemma 3.3 holds and, moreover, in this article, By is a bounded and positive

constant.

Lemma 3.4 Consider the system
& =JAx +eg(t), xeR™, (11)

where JA € B.(A1) and ¢ is given by Lemma 3.3. Let the eigenvalues of JA be )\, where
|As| > n3 > 0 with a constant ns3, Vs. Moreover, g(t) = >_ g (t) is analytic almost-periodic on

D, with frequencies w = (w1, w,, ...) and has the spatial structure (z,[]). Suppose

o
3= VL) | 2 oGS N

Yk € ZN\{0}, a constant a > 0 and an approximation function A(t). Let 0 <p < p, 0 <
z < z. So, for equation (11), a unique analytic almost-periodic solution x(t) exists with
the same spatial structure and the same frequency as g(t) which satisfies |||,z - <

I‘(z a

ce |||g|||zp, where I'(p) = supt>0[A4(t)e Pt and a constant c > 0.

Proof Making the change of variables x = By and by defining h(t) = B-1g(¢), system (11)

can be written as
y=Dy+¢eh(t), ye R, (13)

where D = B~1(JA)B = diag(A1, A2, ..., Aon). Let

w=0%) 0= > A

suppkCA

=), ()= Y e,

suppkCA

where, 0 = wt.
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Substitute these into 75 = Dy, + e¢h,, and by equating the coefficients on both sides, we
obtain

, uY
¥ e Ak _
M = =1k, )
So, by equation (12), we get

(1 Ne-PIk y
bl =e(+ 2 %Makn)weﬂ'k'

3 suppkCA

F(p)A (A g
o

where ¢ > 0 is a constant. Thus

L(p)A*([A])

5 S ce————=|hall,.
"J/A”p P = o ” A”p
Lety=3",.,ya. From Definition 1.2, we have

llzzpz = Y llyallope= ™

Aet

(@) A*([A _
SCEZ (P)A%([ ])HhA”pez[A]_z[A]
o
Aet

r()r)
sw—%;ﬁwmp

By Remark of Lemma 3.3, we have ||B||.||[B7!|| < co, where co > 0 is a constant. Then, since
172020 < 1B 1lIgllz and [1xlz,, < IBIIYllz,» We have

I'(2)I'(p)
lxllz-z,p-7 < ce— — ligllz,p- O
Lemma 3.5 Let i : B,(0) C R — R! be a C? function that satisfies h(0) = 0, % =0,
I % | <K, Vx € By(0), where By (0) is a ball centered at 0 and having radius b, where K
is a constant. Then | h(x)|| < 5 ||x||2 4D | < K.

For the proof of Lemma 3.5, see [5].

Lemma 3.6 Let
P=JAP-PJA + Q, (14)

where JA is a 2N x 2N Hamiltonian matrix and JA € B_(A1), the eigenvalues of A, are
AL AL, Ady with |AL > 2ne and |3} —A}| > 2ne for s #j,and ¢ can be found in Lemma 3.3.
Let ks, 1 < s < 2N, with A; # 0 be the eigenvalues of JA. Moreover, Q(t) = Y , ., Qa(t) is an
analytic almost-periodic Hamiltonian matrix on D, with frequencies w = (w1, s, ...) and
with finite spatial structure (t,[-]). Q = 0, where Q is the average of Q(t). Let

o
|)LS—)L]‘—«/—_1</<,CL)>| > m, (15)
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Vk € ZN\{0}, @ > 0 is a constant and A(¢) is an approximation function, and |Ag, — A, | >
ne, ki Zky. Let 0 < p < p, 0 <z < z. Then we have a unique analytic almost-periodic Hamil-
tonian matrix P(t) with the same spatial structure and the same frequencies as Q(t), which
solves equation (14) and satisfies

1Pllzpp < (Z) L@r®@ o,

where I'(p) = suptZO[A‘*(t)e‘pt and ¢ > 0 is a constant.

Proof We can suppose that the matrix B is as in Lemma 3.4. Making the setting P = BVB~!
and R = B"'QB, equation (14) can be written as

V=DV -VD+R,

where D = diag(A1, Ag, ..., on). Let

Ri=() ()= X e,
suppkCA

Va (Vzlx) VAk Z
suppkCA

where 8 = wt. Substitute these into V, = DV, — V,D+ R, and by equating the coefficients
on both sides, we have v, = 0; or

5j
W = Tak for k #0.
VakT PPaT 7

As Q is analytic on D,, therefore R = B! QB is also analytic on D,. So, by using equation
(15), we have

(1 e=PIK ,
10, = 30 AR s ) e

suppkCA

F(P)A ([A ” H

Thus

F 4
1Pall, WMMP-

Let V=3, . Va. From Definition 1.4, we have

IV lzp75 = Y IIVall,5e=

Aet

(o 4
o 3 TDANAD e
Aet

PRI
o
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By Remark of Lemma 3.3, we have ||B|.|B!|| < co, where ¢y > 0 is a constant. Then, by
using Lemmas 3.1 and 3.2, we can write

IPIz-z,p-5 < IBINIVl--zp5 | B

and

RNz < || B~ 1QIz IBII.
Thus,

IPNz—2,p-5 < c@ 1Qllzp-

Now we prove that P = )", __ P is Hamiltonian. To prove P is Hamiltonian, we need to
prove that P; is symmetric in Py = J'P. As JAand Q = )", ., Qa are Hamiltonian, then by
definition, we can write Q = JQ;, where A and Q; are symmetric. Below we prove that P;
is symmetric. Substituting P = JP; and Q = JQ; into equation (14), we have

Py =AJP; - PjJA + Q) (16)
and transposing equation (16), we have
Pl =AJP] - P[JA + Q.

It is easy to see that JP; and ]P]T are solutions of equation (14); moreover, ]T/ = ﬁ =0.
Since the solution of equation (14) is unique with P = 0, we have that JP; = JPT which
proves that P is Hamiltonian. O

Lemma 3.7 Consider the Hamiltonian system

% = ][A + eQ(t)]x +eg(t) + hix, t), (17)
where JA is a Hamiltonian matrix of dimension 2N x 2N, JA € B.(A1) with ¢ being given
by Lemma 3.3, and s are eigenvalues of JA with |xs| > n3 >0, V1 <s < 2N. Suppose that
Q1) = Y pc; Qa(D), g(8) = X" 4c, () are analytic almost-periodic on D,, and h(x,t) =
Y aer hax, t) is an almost-periodic analytic matrix with respect to t and x on Ay, with
frequencies ® = (w1, ws, ...) and has a finite spatial structure (7, [-]). Suppose also that h(x, t)
is analytic with respect to x on By(0) and satisfies | Dyh(x, t, €)|| < K, Vx € By(0). Moreover,

o

,As_\/_—1<k,w>|zm

Vk € ZN\{0}, with a constant o > 0 and an approximation function A(t). Let 0 < p < p,
0 <z < z. Then, a symplectic change of variables x = y + x exists, so that the Hamiltonian
system (17) can be transformed into the Hamiltonian system

d
d_Jt/ =J[A+eQ* ]y +&%g" (&) + h*(y,t)
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such that
. r@rp)
Q.7 = NQllp + eK———llgllz.»
and
) r@r@) r@re)\*
llg*ll. -5 = e Q= ligll» + CK(T) lgllZ,

where y € By, (0), b1 = b — ||xll.-z,p—5, and T (p) = sup,..o[A*()e"".
Proof Consider that the equation % = JAx + eg(t) has solution x. Using Lemma 3.4, we get

r'@r)
xllz—z,p-5 < ce—— liglz.p-

Using the symplectic transformation x = y + x, equation (17) becomes

d
d—i =J[A+eQ ]y +e%" () + K (y,1),

where
1 1
&) = 5 hx 1) + =JQ()x(t),
e £

Q0= Q) + =Dy

1y, t) = h(x(€) + 3, t) = h(x,1) ~ IDxh(x(0), t)y.

By Lemmas 3.4 and 3.5, we have

1
QN = Q- + > Kllzllz—z,p-7

IF'@rp)
= Q= + eK——"——lgllz,-

For the estimation of [|g*[| .-z -5, by Lemmas 3.4 and 3.5, we have

K

2¢2
T @) (p) r@re)\”

< e lIQllz,llgll=, + c1<<—) lghi2,-

o

gl s, < sl 2y + ~1IQlL-25
e
Lemma 3.8 Let {§,,} be a sequence of real positive numbers such that
Oms1 < (7rm)7?’ 8,2,,,

forallm=> 0, wherey >0and 1 <r<2. Then

N

r

S = [(7r77)

N

o 80]2}%'

For the proof, see [5].
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Lemma 3.9 Letf :[-¢,e] — C be Lipschitz from above (with constant Cr) and from below

(with constant cr), that is,

Ifw) —fW)| <Crlu—vl,  |[f(w)—fW)| = crlu—vl.

Let g : [-¢,e] — C be another Lipschitz from above (with constant § < cr), that is,

|g(u) - gv)| < 8lu—vl.

Then h = f + g is a Lipschitz function from above (with constant Cs + 8) and from below
(with constant cy — 5)

() = h(¥)| < (Cf + 8)lu—vl, () = h(¥)| = (¢r = &) |u—v.
The proof is elementary.

Lemma 3.10 Suppose that By has the eigenvalues A}, 1}, ..., Ay which satisfy |Al| > 2v,
AL - k}| > 2v, and v > 0 with s # j. Suppose that Ay(e) satisfies ||Ao — B1|l < ¢ seen in
Lemma 3.3 and A (¢) relies on € with constant Lu, in a Lipschitz way. Suppose that B(g) is
the transformation that diagonalizes Ay(¢) (as in Lemma 3.3). Then there exist constants
C1, Cy > 0 such that

| B(e1) = Be2) || < CiLayle1 — eal,
||B(81) —B(82)|| < ClLA0|81 — &3,

”)\j(gl) — )\1’(82)“ < C2LA0|81 — &),
where A;(e) for all 1 < j < 2N denote the eigenvalues of Ay(e).

Lemma 3.11 Let {a,,},, be a sequence of positive real numbers which satisfy a,, € 10,1],
[Tog@m = a €10,1]. Let {b,,},n be another sequence of positive real numbers satisfying
[Tor-0 bm = b < +00. Consider the new sequence {Uy,},, defined by V41 = @V — by Then

the sequence {V,,}, approaches to a limit value vy, which satisfies v > avy — b.

For the proof of Lemmas 3.10 and 3.11, see [5].

4 The first KAM step

Let Ag = JA, Qo(t) = JQ(t) be Hamiltonian matrices. First of all, for equation (1), the pos-
sible multiple eigenvalues of A, are changed into distinct eigenvalues and the coefficient
& becomes &% in Qy(¢) and g(¢). In the following, to simplify notations, ¢ > 0 denotes the
different constants. Then the Hamiltonian system (1) can be rewritten as follows:

d
d—’; = [Ao + £Qo(0)]x + £g(t) + h(x, 1), (18)
where x € B,(0), Qo and g are analytic almost-periodic on D,, and / is analytic almost-

periodic on A, , with spatial structure (z, [-]). By using the symplectic transformation x =
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%, + 9, where x, satisfies %" = Aox, + £g(t) on D,,_5, then system (18) becomes

d
d_i = [Ao+eQ O]y + £%¢" (1) + " (3, 1), (19)

where

1
Q" =Qo(t) + ngh(o_co, £),

£0) = hay 1)+ Qole)z(o),

I* = h(xg + 3,8) — (g, £) — IDsh(xg, D).

By using equation (8) and Lemma 3.4, we have

r'@r (o)
%o llz—z,0-7 < e lgllzo- (20)

By defining the average of Q*(¢) as 6*, equation (19) can be rewritten as follows:

d - o~
d_z = [A1 +eQ®)]y + £%8(®) + h(y, 1), (21)

where A; = Ag + 86*, Q*(t) = a(t) + 6*, g=g*%and W= b By using the conditions of The-

orem 2.1, A; has 2N different eigenvalues A1, Ay, ..., Aon which satisfy |1} (e) - A, (e)] >

&P (t

2ne > 0, k; # ky. Now, using the symplectic change of variables y = e?0®x,, system (21) is

transformed into the system

dx1

~ . . d
= I:egp"(Al +£Q —ePy)et™ 4 e=*10 (SPOeSPO(‘) - Eegp"(”)}xl

+e P25 (1) + e’gPOZ(eSPO(”xl, t), (22)
where x € By, (0). By series expansion, we can denote
e =T+ ePy+ W, e’8P°=I—8P0+V~V,

where

W= (ePo)*>  (eP)? .

+ ’
2! 3!
~  (ePo)*  (eP)?
TR T

Then the Hamiltonian system (22) can be rewritten as follows:

dxl ~ . 2
E = (Al + SQ - SPO + 8A1P0 - €POA1 + & Ql)xl

+ e P0gF (1) + e’EPOZ(eEP"(”xl, t), (23)
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where

Q1 = —Po(Q - Py) + (Q = Pyp)Py — Py(A; + Q — ePy)Py

+(I—€Py) (A +£Q— 8150):—Z + g(Al +eQ — ePy)eco
+ Size—ePo (sP.OeSPO(t) - %egpom)).
We would like to have that
Q- Py + APy — PyA; =0,
which is equivalent to
Py =A1Py — PoA; + Q. (24)

Since Ap, Q*(£), and 6* are Hamiltonian matrices, therefore A; = Ag + 86* and a(t) =
Q*(t) - 6* are also Hamiltonian matrices. Using Lemma 3.6, if

o . .
’ki—k}-ﬁ(k,w)‘zm, S#},OES;]EZN (25)

for all k € ZN\{0}, a1 = %, then for equation (24), a unique almost-periodic Hamiltonian
matrix Py = Y Py, exists with the same spatial structure (7, [-]) and the same frequencies
as a(t) on a smaller domain D,_5, which satisfies Py =0 and

I'(o
I1Pollozpp <c Z) L@@ o Il,,- (26)

Therefore, by equation (24), the Hamiltonian system (23) can be rewritten as follows:

dxl

o = [A1 +£2Qu(O)]x1 + 21 (0) + i (1, 1), (27)

where g1 (£) = e P0G (t), hy(x1,t) = e P (ePo®x,  £), and

Q1 = —Po(PoA; — A1 Po) + (PoA1 — A1Po)Py — Po (A1 + e(PoAr — A1 Po)) Py

w
+ (I — ePo) (A1 + £(PoA; —Alpo))g

\TV 1 : d(eo
(A1 + 8(P()A1 —A1P0)) £Po + 26781)0 <8P06£P0 - M)
&2 & dt

Hence, the symplectic transformation is Tox; = %, + ePox; = @o(t, ) + Yolt, e)xy. If
llePolllz—z,p-5 < %, then, by equations (20) and (26), we have

r@r)
lleolllz=—z,p-5 < e ligllz,p» (28)

I'zr
Wo=Tlzps <m0 LN, (29)
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Thus, under the symplectic change of variables x = Tox1, the Hamiltonian system (18)
becomes Hamiltonian system (27). This completes the first KAM step.

5 Proof of the main result

5.1 The proof of Theorem 2.1

Now we will consider the standard iteration step, the proof of which is almost similar to
the first KAM step. In the first step, we proved that A; has 2N different eigenvalues and
£2Q,(t) and £2g; (¢) are smaller perturbations. Now the KAM method will be used to prove
Theorem 2.1 and we will use a similar process as that in [5] and [8]. For simplification of
notations, here ¢ > 0 denotes the different constants. For mth step, consider the Hamilto-

nian system

dxm

Tt [A +¢? Qm(t,s)]xm +82" gu(t,€) + MKy t, €), (30)

where m > 1, x,,, € By, (0), Q,,, and g, are analytic almost-periodic on D, , and /,, is ana-
lytic almost-periodic on Ay, ,, with basic frequencies w = (w1, ws,...) and has the spatial
structure (7, [-]), A, € Bc(A1), and Al" are eigenvalues of A,, with |1 (g) — )»;”(e)| >ne >0,

Vs #j and [A(e)| > n3 > 0. Using the change of variables x,, = x,, + y, where x,, satisfies

‘%—;" = Apx,, + €% gu(t) on D,,,-5,,, the Hamiltonian system (30) can be written as follows:

dy

= = [Anee TQ O]y + ¥ g () + i 8), (31)

where

Q (t)—Qm(t)+ D P (%,,,,8),

2.0 - leLwﬂ+§ﬁQMﬂ&#L

1, 8) = hin(%,,, + 3,8) = B (X,,, 1) = Dicht (., £)y.
By Lemma 3.4, if

m Um
1=V el = G

Yk € ZN\{0}, a,,, = > and A is an approximation function, then we have

n L' @) (0,)
0, W25 < € %Illgmlllzm,pm, (32)
m

where 0 <z, < 2, 0 < 0,,, < P and ¢ > 0 is a constant. By defining the average of Q},(¢) as

6:1, equation (31) can be rewritten as follows:

dy

== [t + 2" Qu®y + 6" Gul®) + Ty, ), (33)

where A,,,1 = A, + sa*m, QL) = (NQ,,,(L‘) + 6;, gn=g,and Zm =hk,.
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Now consider A7"1,..., A5 to be the different eigenvalues of A,,,; which satisfy |)L2”1+1 -
A = 208 > 0, ky # ko

2" P (t)

By applying the symplectic transformation y = e* Xm+1, System (33) is changed into

dxm+1 2m m m e oM
T e’ P’"(Am+1+82 Q- €* P,,,)e‘g Pn

2 m e 2 d 2
+et Py, <82 Pmes Py(t) _ Ees Pm(t)>i|mer1

m

N e_ezm ngzmuzm ) + 6_82'” pm’l:l‘m (652 Pm(t)xmﬂ, t), (34)
where %,,,1 € By,,,, (0). By series expansion, we can denote
e Py 2" P, + W, e P 2" Py, + W,
where

2m 2 2m 3
o P R
2! 3!

Then system (34) can be rewritten as follows:

dx 1 m e m s m m m+1
dmtf = [Am+1 + 52 Qm - 52 Pm + 82 Am+1Pm - 82 PmAm+1 + 82 Qm+1(t)]xm+l
2m 1~ 2m ~ 2
te P E (O v et Py, (e Py, t), (35)
where

Qm+1(t) = —Pm(am - m) + (am - .m)Pm _Pm(Am+1 + 82m(am - m))Pm

Win

+ (1 - Ezmpm) (Am+1 + 82”’ (6m - m))szm

Wm om > 2" p
+ Szm (Am+1 t+é& (Qm - n’l))eé3 "

m . m m
1 6-32 P eszmegz Py _ ie52 Py )
82m+1 dt

We would like to have
Qu = P + A1 Py = PrpAsy = 0.
This can be rewritten as
P = A1 Py = PrA i1 + Qo (36)

Since A,,, Q},(¢), and 6:; are Hamiltonian, therefore A,,,; and Q,,(¢) are Hamiltonian.
By Lemma 3.6, if

o

m+1 m+1 m
A e I TVl

k € ZN\{0}
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and for different eigenvalues k{”*l,...,kg”ﬁl of A,,,1 with |k§"+1 - )L;”+1| >ne,s#£j0<
s,j < 2N, then for equation (36), there exists a unique almost-periodic matrix P,,(f) =

Y ace Pma(t) on D, 5 with frequencies w and spatial structure (t, [-]), which satisfies

'z
R A (37)

Zm»>Pm

Then the Hamiltonian system (35) becomes

6&xn1+ m+ m+
dr - = [Am+1 +& 1Qm+l(t):|xm+1 +&” 1gm+l(t) + M1 (K1, £), (38)
Wheregm+1(t) = eigzmpmgm(th hm+1(xm+l¢ t) =e* th (e xm+17 t) and bY usulg Qm

Py = PpApms1 — Api1 P, we have

Qm+1(t) = _Pm(PmAm+l _Am+1pm) + (PmAm+1 _Am+lpm)Pm

- Py (Am+1 +e2" (PrnAme1 _Am+lpm))Pm

m m W
+ (1_ €’ Pm)(AmH +&° PnAmir — AP ))

82m+1

m 2
+ gzm’: (Am+1 + 82 (PmAm+1 _AmHPm))ee
1 m mo_. m ti m
+ T e Pm (82 P,,,e’?2 P _ Eegz P’”(‘)). (39)

i
Thus, the symplectic transformation is Ty = %, + el P X1 = O (8) + Y (E)Xpra1

If |||82um|||Zm then by equations (32) and (37), we have

Z PP = 2’

m T (@) (D))
[ %Illgm Nz, (40)

m

est" Ll | a

”h[/m - [”'Zm—zrnvpm—ﬁm — ZmPm”

So, using the symplectic change of variables x,, = T),%,,,1, system (30) is transformed

into system (38).

5.2 Iteration
Now we estimate the bounds of |||gy+1[lm+1 and [|Ques1llim+1 as m — oo. For the mth step,
we choose

ao by = 1%, m

oy = — b - __—-m7
"= om’ LT e Pl

) [/ PP I P
Also, suppose that Z, | 0 and p, | 0 satisfy Y ;7 Z, = 3z and Y7 P, = 3. And set
Zm=2— Y 1 Zv Pm =P — Y ueq Py Assume that

o0
2—v—1

o(p)= inf TT[C()]"

p1HP2+:<p
v=1
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then
1 i _ g-v-1
w(EZ) = H[F(zu)]
and
1 > 2L
¢<§p> =[]r@) -
v=1

m
If |"82 Pm|”m+l =< %, we have

b = 1%, llm

b 1 - m—.
T 14 282" 1Pl

Page 18 of 23

(42)

By using Lemma 3.11, equation (42), and for sufficiently small ¢, we obtain by =

lim,;,—, o0 by > o with constant o > 0. By Lemma 3.7, we obtain

@)L (e
QL L < I Qull + c1<mwmgmmm.

m

Therefore, by equations (37) and (43), we have

(F(EWHI)F(ﬁWH ))2
P llime1 < Ky = (1Qunll + Ul )-
Uyl
Set
8¢ o-(m+1)  o—m 2-2 2-192
¢1 =max{c,—{, cm:[(m+1) m- .27 .1 ]
o
m+1 m+1
_ g2 N
., =[[[r@)] . @u)=[][r@)]" .
v=1 v=1

From [9], ¢;, ®1u(2), P.m(p) are all convergent when m goes to infinity. Consider

M = max{1,sup(e16, ()P (0) | [[Q]
m
M, = max{l, sup(clcmd>m(2)d>m(p))} lle®ll,,,
m
and set
M = max{Mi, M,}.
Firstly, we calculate ||gy+1l;+1- By Lemma 3.7, we have

|||gm+1 |||m+1

r (zm+l)r‘(ﬁm+1)
Cc

I'(z I'(o
< a—<|||Qm|||m+c1<mM

m m

Now we estimate || Q,+1 lllm+1-

llgim |”m) gl -

(43)

(44)

(45)
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M
If ”|82 Pm|”m+1 < %, we have

om 2
+¢2" p,, om le=" Pl
e 2l g = 1+ 1™ Ponfl} + ==+ = 2.
Moreover, we have that
s 2"p d omp 0)
e“ P,e m_ —e m
" dt
My N2 215 \3
. m m_ . (&7 P m_ . (7 P
=(82ume82 P o2 Pm( m) 482 Pm( m) +)
2! 3!
om 2 2 3
d((g 21!)m) G 31!’m) +o0)
dt

If [le" Pulllmsr < 3, by

H’%(ezml’m)” <ul|e2" B, ||[|e¥" Pul|"”", fornmezr,

we obtain that

2" Pu(t)

< 4fle* Pl 1 e Pl

m+1 || m+1’

m+1

By equations (36) and (43), we have

. m m
&2" P, 682 Py _ i esz Py ()

dt

m+1

gm+1 2
<ce (l”Pm Wsss1 + WPl 1 1 Qe

+ 1Pyl ms1¢Kom (46)

m

L@ )L (Brrr1) |||gm|||m).

Also, if [|6*" Py llms1 < 3, we have

2
m+1’

Wl Il Woallmsn < 2|[| %" P (47)

So, by equations (40),(46), and (47), we have

||| Qm+1 |||m+1

(zm+1)F (ﬁmﬂ) (

r
<Ky, Pt + WP M N1 Qun e + WP st ol ) -

m

Then, by using equation (43), the above equation can be written as follows:

(C@ms )T (Bya1))?
IQus1llmer < K3, WH; 5 (1QulI?, + N2, + Qg lm)- (48)

m~m+1
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For the estimate of [|Q,,ll,» and |gy > we define

8 = Max{ | Qull s gl }-

By, equations (45) and (48), we have that

L Get) Porsr))®
1 < et CEn ) B0)

3,2
i1

52, (49)

here ¢ > 0 is a constant depending on p, z, and M.
If |||821P1||| < % for!/=0,1,2,...,m — 1, then we have K,,, < (%)mK (as given below). It is

3 — g— g— v
b (T @ )T (0))” < (77",

o

immediate to check that we can find y > 0 such that
where 1 <r<2. -
Using Lemma 3.8, we have §,, < M2", where M = (Vrﬁ )%60. Thus, we have

IQullw < M*™,  lgmllm < M*". (50)

If 0 < eM < 1, then we obtain
lim & [|Qullm =0,  lim & |ignllm =0. (51)
m—00 m—00
Now, we bound ||4,,||. By (43), we have

(zm+l)F (ﬁmﬂ)

m m F
A = Al < |62 Q5. <& (|||Qm|||m+c1<m |||gm|||m>. (52)

m

By cKm%;(ﬁm”) < Mfm with suitable constant M; > 0 and (50), if eMM < 1, then as
m — 00, |Am+1 —Aml — 0. Hence, A,, is convergent, as m — 0o. Suppose

lim A, =A.. (53)

m— 00

Also, by (40), (41), (43), and (50), we have

lim [|@mllme1 =0, lim ||% = Il ms1 = 0. (54)
m—00 m— o0
Let D%z,Ab =M Dy, 0, - BY €quations (28), (29), (40), and (41), and by the condi-

1
1
tions of Theorem 2.1, suppose T = Ty o T1 o --- o Ty,_1. And the convergence of T is

easy to prove on D%Z,A as m — oo. Let T — T on D, as m — oo. To bound

bip 72’Ah,%p
_ 2, .
Py llms1. Eor (44), it is not difficult to choose cK;, CEz)l@ma)” < A12™ \yith suitable
Amm+1 2
constant M; > 0. So, by (50), if eMyM < 1, we have

. m
lim &2 [Pyl n41 = 0.
m— 00

This allows us to have the condition £2” | Py, || s1 < i without reducing the value of ¢ at
each step. Now we will show that K, is convergent for m — c0. By (38), we have

_ @420 Pillan)’

< _ K. (55)
1P 1 1-2[12" Pyl s "

|||Dxm+1xm+1 hm+1 ”|zm+1,Ah
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So, if 82m lIPwllms1 < %, we already have K,, < (3)"K. By the inequality ;- <1 + 2, if
1 <x < 1and (55), we obtain

m 3
K1 < (1+ 46> 1Pl 1) Ko (56)

Using the convergent bound of || P, ||,,.+1 and since K,,, < (%)'”K, then by (56) it is easy to
obtain that the value of K, is convergent for m — oo. Suppose
lim K, =K,. (57)
m—00

Thus, 1im,,, o0 1 = hi(y, ) = O()?) as y — 0.

Hence, using the symplectic change of variables x = Ty = ¢(£) + ¥(¢)y on D loa, 2 SYS

nS\H
S

tem (1) is changed into the Hamiltonian system (10).

5.3 Measure estimate
Now, for small enough &y, we will prove that the non-resonant conditions

1 =Vl =

and

am
R =Lk = S e
for most & € (0, &) hold, where 1 <s,j < 2N, m =0,1,2,..., k € ZN\{0}, and A(¢) is an
approximation function.
Consider the Lipschitz constants from below and above of f(¢) are [(f(¢)) and L(f(¢)),
respectively. For any loss of generality, we can suppose that A{" — /" are pure imaginary
numbers. So, we suppose

m m Em
|)"s —)\j —«/—_l(k,a))| > W, (58)

where A" (¢) — k;”(s) satisfies [(A["(e) — A;”(s)) > 1o > 0 for a constant 1 with s #.

Remark Assume that A,,(¢) is a Lipschitz function of ¢ and L(A,,) — L(A;1) = O(¢). By us-
ing Lemmas 3.9 and 3.10, and hypothesis (3) of Theorem 2.1, it is easy to prove that the
eigenvalues A{" and the differences A" — A" are Lipschitz from below and above if ¢ is small

enough.

The proof of the above remark can be seen in [5].
By condition (2) of Theorem 2.1, for m = 0, equation (58) holds. And, by condition (2)
of Theorem 2.1, we obtain that (58) also holds for s = . Let

f(€)=)»;"—)»]'-"—\/—_1(k,w), s#j
and

0%, = {se (0,20) : [f ()| < m}
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such that system (30) converges for ¢ € (0, &9) whenever &y is small enough and
1(3"(e) = A" (e)) | = no.
Since

[f()] = A =2 = vV=1(k, 0)| - 2Me
(o40]

NN

For |k| < m, [k] < m, and if m > Ai—‘:‘)o, then

o o
VOl = Sapam ~ 2a0ma0m
> L
= N(KD AR
am

>_ 7 @
~ Ak A*([K])

and ijm =¢.

Let, for |k| > m, [k] > m, and if m < % By equation (59), we have

2 _ %m
mes(0y,,) < Ak A*([K])mo”

meS(U U of,m)s S mes(0h,)

s7# keZN\{0} 1<s,j<2d,k:|k|>m,[k]>m

cd?a,e0 1
SN RPN TINT

keZN\(0}
cel
= A3(m)
Let
o
E,= 0,80): A" = A =1k, w)| > ———— L ke ZN\O,5 #j .
{86( ) [ -, kol = S arap k€2 S#’}
Then
(O) 80) -E,= U U ijm.
s#i kezN\(0)
Thus
cel
mes((0, &) — Ey;) =< Am)’

Let E=(,,_; Ex, then

mes((O, £o) —Em) < 683,

Page 22 of 23

(59)
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and

. mes((0,&9) —E,)
lim ————— =
g0—0 &o

0.

So, if & is sufficiently small, E is a non-empty subset of (0, &). Similar to the above, for
sufficiently small gy, [\ — v/ -1(k,w)| > m holds for most ¢ € (0, gp). Hence,we
proved that system (1) is changed into the Hamiltonian system (10).

6 Conclusion

In this work, we discussed the reducibility of almost-periodic Hamiltonian systems and
proved that the almost-periodic non-linear Hamiltonian system (1) is reduced to a con-
stant coefficients Hamiltonian system with an equilibrium by means of an almost-periodic
symplectic transformation. The result was proved for a sufficiently small parameter ¢ by
using some non-resonant conditions, non-degeneracy conditions, the suitable hypothesis
of analyticity, and KAM iterations.
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