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Abstract
This paper studies the reducibility of almost-periodic Hamiltonian systems with small
perturbation near the equilibrium which is described by the following Hamiltonian
system:

dx

dt
= J

[
A + εQ(t,ε)

]
x + εg(t,ε) + h(x, t,ε).

It is proved that, under some non-resonant conditions, non-degeneracy conditions,
the suitable hypothesis of analyticity and for the sufficiently small ε, the system can
be reduced to a constant coefficients system with an equilibrium by means of an
almost-periodic symplectic transformation.
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1 Introduction
In this paper we are studying the reducibility of the following almost-periodic Hamiltonian
system:

dx
dt

= J
[
A + εQ(t, ε)

]
x + εg(t, ε) + h(x, t, ε), x ∈ R2N , (1)

where J is an anti-symmetric symplectic matrix, A is a 2N × 2N symmetric constant ma-
trix with possible multiple eigenvalues, and Q(t) is an analytic almost-periodic symmetric
2N ×2N matrix with respect to t, g(t, ε) and h(x, t, ε) are almost-periodic 2N-dimensional
vector-valued functions with respect to t, with basic frequencies ω = (ω1,ω2, . . .) and
h(x, t) = O(x2) (x → 0), and

J =

(
0 IN

–IN 0

)

,

where IN is a N × N identity matrix and ε is a sufficiently small parameter. First of all we
will recall some previous results in the field of reducibility for analytic differential systems.
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Consider the differential equation

dx
dt

= A(t)x, x ∈ Rm, (2)

where A(t) is an almost-periodic matrix. We call the transformation x = P(t)y almost-
periodic Lyapunov–Perron (L-P) transformation, if P(t) is non-singular and P, P–1, and
Ṗ are almost periodic. The transformed equation is

dy
dt

= C(t)y, (3)

where C = P–1(AP – Ṗ). If there exists an almost-periodic L-P transformation such that
C(t) is a constant matrix, then we call equation (2) reducible.

In recent years, many researchers have devoted themselves to the study of the reducibil-
ity of finite dimensional systems by means of the KAM methods. The well-known Floquet
theorem states that every periodic differential equation (2) can be reduced to a constant
coefficients differential equation (3) by means of a periodic change of variables with the
same period as A(t). But, if A(t) is quasi-periodic (q-p), then there is an example in [1]
which illustrates that (2) is irreducible. In 1981, Johnson and Sell [2] showed that if A(t) the
quasi-periodic matrix satisfies “full spectrum” conditions, then (2) is reducible. In 1992,
Jorba and Simó [3] proved the reducibility result of linear quasi-periodic systems like (5)
for the constant matrix A with distinct eigenvalues. In 1999, Xu [4] proved the reducibil-
ity result of linear quasi-periodic systems like (5) for the constant matrix A with multiple
eigenvalues. In 1996, Jorba and Simó [5] considered the quasi-periodic system

dx
dt

=
[
A + εQ(t)

]
x + εg(t) + h(x, t), x ∈ Rm, (4)

where the constant matrix A has distinct eigenvalues. They proved that system (4) is
reducible for ε ∈ E using the non-resonant conditions and non-degeneracy conditions,
where E is the non-empty Cantor subset such that E ⊂ (0, ε0). Instead of quasi-periodic
reduction to a constant coefficient linear systems, in 1996, Xu and You [6] proved the re-
ducibility of the linear almost-periodic differential equation

dx
dt

=
[
A + εQ(t)

]
x, x ∈ Rm, (5)

where the constant matrix A has different eigenvalues and Q(t) is an m × m analytic
almost-periodic matrix with frequencies ω = (ω1,ω2, . . .). Under some small divisor con-
ditions and for most sufficiently small ε, they proved that system (5) is reducible to the
constant coefficient system by an affine almost-periodic transformation. In 2013, Qiu and
Li [7] considered the following non-linear almost-periodic differential equation:

dx
dt

=
[
A + εa(t)

]
x2n+1 + h(x, t, ε) + f (x, t, ε), x ∈ R, (6)

where n ≥ 0 is an integer, A is a positive number, ε is a small parameter, h is a higher order
term, and f is a small perturbation term. They proved that under some suitable conditions
and using the KAM method system (6) can be reduced to a suitable normal form with zero
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as an equilibrium point by an affine almost-periodic transformation, so it has an almost-
periodic solution near zero.

In 2015, Li et al. [8] considered the following analytic quasi-periodic Hamiltonian sys-
tem:

dx
dt

=
[
A + εQ(t)

]
x + εg(t) + h(x, t), x ∈ R2m, (7)

where the constant matrix A has multiple eigenvalues, Q, g , and h are quasi-periodic with
respect to t and h = O(x2) (x → 0). They proved that by using the non-resonant condi-
tions, non-degeneracy conditions, and a suitable hypothesis of analyticity, the Hamilto-
nian system (7) can be changed to another Hamiltonian system with an equilibrium by a
q-p symplectic transformation.

In this paper we are going to extend the results of [5] to the almost-periodic Hamiltonian
system (1).

This paper is organized as follows. In Sect. 2, statement of the main result is given, in
Sect. 3 we give some lemmas which are essential for the proof of the main result, in Sect. 4
the first KAM step is given, in Sect. 5 the main result is proved, and finally, in Sect. 6
conclusion of the paper is given.

1.1 Definitions and notations
To state our main result, we need some definitions and notations.

Definition 1.1 We say that a function f is a quasi-periodic function of time t with basic
frequencies ω = (ω1,ω2, . . . ,ωd) if f (t) = F(θ1, θ2, . . . , θd), where F is 2π periodic in all its
arguments θj = ωjt for j = 1, 2, . . . , d. f will be called analytic quasi-periodic in a strip of
width ρ if F is analytic on Dρ = {θ ||�θj| ≤ ρ, j = 1, 2, . . . , d}. In this case we denote the
norm by ‖f ‖ρ =

∑
k∈Zd |Fk|eρ|k|. A function f is almost-periodic if f (t) =

∑∞
n=1 fn(t), where

fn(t) are all quasi-periodic for n = 1, 2, . . . .

Definition 1.2 Suppose that A(t) = (asj(t)) is a quasi-periodic m×m matrix. If every asj(t)
is analytic on Dρ , then we call A(t) analytic on Dρ .The norm of A(t) is defined as follows:

∥∥A(t)
∥∥

ρ
= m × max

1≤s,j≤r

∥∥asj(t)
∥∥

ρ
.

If A is a constant matrix, the norm of A is defined as follows:

‖A‖ = m × max
1≤s,j≤r

|asj|.

Write B(0, b) = {x ∈ C||x| ≤ b} and �b,ρ = B(0, b) × Dρ .

Definition 1.3 Let h(x, t) be real analytic in x and t on �b,ρ , and let h(x, t) be quasi-
periodic with respect to t with frequency ω. Then h(x, t) can be expanded as a Fourier
series as follows:

h(x, t) =
∑

k∈Zd

hk(x)ei〈k,θ〉.
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Then

‖h‖�b,ρ =
∑

k∈Zd

|hk|beρ|k|,

where hk(x) =
∑∞

n=0 hnkxn and |hk|b = supx∈B(0,b)
∑∞

n=0 |hnk||x|n. It is easy to see that

‖h1h2‖�b,ρ ≤ ‖h1‖�b,ρ ‖h2‖�b,ρ .

The aim of the study is to develop the reducibility for the almost-periodic non-linear
Hamiltonian system (1). To take over the difficulty from the infinite frequency which gen-
erates the small divisors problem, we need a stronger norm. Inspired by the works of [4,
5], and [8], in this paper, we allow Q, g , and h to be the classes of almost-periodic ma-
trices. Our study is about the reducibility of almost-periodic Hamiltonian systems to [4]
and [8]. So, the usual LP transformation for KAM iteration should not only be almost-
periodic but also symplectic, which preserves the Hamiltonian structure. For this pur-
pose, let us introduce “spatial structure”, “approximation function”, and some related def-
initions.

Definition 1.4 ([9]) Let τ be a set of some subsets of the natural number set N. Then
(τ , [·]) is called a finite spatial structure in N if τ satisfies:

1. ∅ ∈ τ ;
2. If 	1,	2 ∈ τ , then 	1 ∪ 	2 ∈ τ ;
3.

⋃
	∈τ 	 = N,

and [·] is a weight function defined on τ such that [∅] = 0, [	1 ∪ 	2] ≤ [	1] + [	2].

Denote the weight value by [k] = infsupp k⊂	,	∈τ [	]. Write |k| =
∑∞

s=1 |ks|.

Definition 1.5 ([4]) If U(t) =
∑

	∈τ U	(t), where U	(t) are quasi-periodic matrices with
basic frequencies ω	 = {ωs|s ∈ 	}, then U(t) is known as an almost-periodic matrix with
spatial structure (τ , [·]) and basic frequencies ω, which is the maximum subset of ∪ω	 in
the sense of integer modular. Denote the average of U(t) by U , where

U = lim
T→∞

1
2T

∫ T

–T
U(t) dt.

Let U(t) =
∑

	∈τ U	(t), for z > 0, ρ > 0,

∣
∣
∣
∣
∣
∣U(t)

∣
∣
∣
∣
∣
∣
z,ρ =

∑

	∈τ

ez[	]∥∥U	(t)
∥
∥

ρ

is called a weight norm with finite spatial structure (τ , [·]).

Definition 1.6 ([10]) � is called an approximation function if
1. � : [0,∞) → [1,∞) is an increasing function and it satisfies �(0) = 1;
2. log�(t)

t is decreasing on [0,∞);
3.

∫ ∞
0

log�(t)
t2 dt < ∞.
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Remark If � is an approximation function, then so is �4.

Definition 1.7 Let h(x, t) =
∑

	∈τ h	(x, t) with frequency ω = (ω1,ω2, . . .) and with finite
spatial structure (τ , [·]), for z > 0, ρ > 0,

∣∣∣∣∣∣h(x, t)
∣∣∣∣∣∣

z,�b,ρ
=

∑

	∈τ

ez[	]∥∥h	(x, t)
∥∥

�b,ρ

is known as the weight norm of h(x, t).

Definition 1.8 A matrix S is said to be symplectic if SJST = J , where ST represents the
transpose of S and J = ( 0 IN

–IN 0 ), where IN is an N × N identity matrix.

For a map ψ(t, x) : R2N → R2N , let ∂ψ

∂x denote the Jacobian of ψ with respect to x, that
is, ∂ψ

∂x = ( ∂ψi
∂xj

)2N×2N .

Definition 1.9 ψ(t, x) is symplectic if and only if the Jacobian of ψ with respect to x is
symplectic, i.e., ∂ψ

∂x J ∂ψ

∂x
T = J .

Definition 1.10 A matrix A is said to be Hamiltonian if and only if A = JB, where B is a
symmetric matrix and J is defined as above.

For our problem, the non-resonant conditions will be

∣∣λs – λj –
√

–1〈k,ω〉∣∣ ≥ α

�4(|k|)�4([k])

for all 1 ≤ s �= j ≤ 2N and k ∈ ZN\{0}, where λ1,λ2, . . . ,λ2N are the eigenvalues of
JA, ω is the basic frequencies of Q(t), �(t) is an approximation function satisfying
∑

k∈ZN
1

�(|k|)�([k]) < ∞ and α is a small positive constant. From [4] and [9], we can choose
the weight function

[	] = 1 +
∑

s∈	

logp(1 + |s|), p > 2.

2 Statement of the main result
Theorem 2.1 Suppose that the Hamiltonian system (1) in which JA is a Hamiltonian
matrix with possible multiple eigenvalues, Q(t) =

∑
Q	(t) and g(t) =

∑
g	(t) are analytic

almost-periodic matrices with respect to t on Dρ , and h(x, t) =
∑

h	(x, t) is analytic almost-
periodic matrix with respect to t and x on �b,ρ with basic frequencies ω = (ω1,ω2, . . .) and
has the spatial structure (τ , [·]) which depends continuously on the small parameter ε.
Suppose that JA is a 2N × 2N matrix with possible multiple eigenvalues λ1,λ2, . . . ,λ2N

that can be diagonalized and the multiplicity of the eigenvalues λs′ is rs′ , s′ = 1, 2, . . . , l,
r1 +r2 + · · ·+rl = 2N , λs′ �= 0, and λs′ �= λj′ with s′ �= j′ and 1 ≤ s′, j′ ≤ l. Moreover, assume that
h(x, t, ε) is analytic with respect to x on the closed ball Bb(0), h(0, t, ε) = 0, and Dxh(0, t, ε) = 0
and ε ∈ (0, ε0) is a parameter. If

1. There exists z > 0 such that |||Q(t)|||z,ρ < ∞, |||g(t)|||z,ρ < ∞;
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2. (Non-resonant conditions) λ = (λ1,λ2, . . . ,λ2N ) and ω = (ω1,ω2, . . .) satisfy

∣
∣λs –

√
–1〈k,ω〉∣∣ ≥ α0

�(|k|)�([k])
, (8)

∣∣λs – λj –
√

–1〈k,ω〉∣∣ ≥ α0

�(|k|)�([k])
(9)

for all 1 ≤ s, j ≤ 2N , k ∈ ZN\{0}, α0 > 0 is a small constant and �(t) is an
approximation function;

3. (Non-degeneracy conditions) Suppose that the unique solution of ẋ = JAx + εg(t) is
denoted by x. Assume that J(A + εQ∗) has 2N different eigenvalues λ1

s (ε)
(1 ≤ s ≤ 2N ) which satisfy |λ1

k1
(ε) – λ1

k2
(ε)| ≥ 2ηε > 0, η2 ≥ | d(λ1

k (ε))
dt | ≥ η1 > 0, and

η2 ≥ | d(λ1
k1

(ε)–λ1
k2

(ε))
dt | ≥ η1 > 0, where k, k1, k2 = 1, 2, . . . , 2N , k1 �= k2, ε ∈ (0, ε0), and η,

η1, and η2 are positive constants. Let Q∗(t) = Q(t) + 1
ε
Dxh(x, t) and Q∗ be the average

of Q∗(t).
4. |||Dxxh(x, t, ε)|||z,�b,ρ ≤ K , where ε ∈ (0, ε0) and x ∈ Bb(0).

Then there exists a Cantor subset E ⊂ (0, ε0) with positive Lebesgue measure such that
the Hamiltonian system (1) is reducible for ε ∈ E, i.e., there exists an almost-periodic sym-
plectic transformation x = ψ(t, ε)y + ϕ(t, ε), where ψ(t, ε) and ϕ(t, ε) are almost-periodic
with basic frequencies and spatial structure (τ , [·]) as Q(t), which transforms (1) into the
Hamiltonian system

dy
dt

= A∗(ε) + h∗(y, t, ε), (10)

where A∗(ε) is the constant matrix and h∗(y, t, ε) is of order two in y. Furthermore, for
small enough ε0, the relative measure of E in (0, ε0) is close to 1.

Remark In general, we suppose that g(t), Q(t), and h(x, t) depend on ε, but for simplicity,
in the following we do not represent this dependence.

3 Some lemmas
In this section, we will give some results in the form of lemmas which are useful for the
proof of Theorem 2.1.

Lemma 3.1 ([4]) Suppose that U and R are almost-periodic matrices, and they have the
same spatial structure and the same frequencies. If |||U|||z,ρ < +∞, |||R|||z,ρ < +∞, then UR
is an almost-periodic matrix and has the same spatial structure and the same frequencies
with U and R, and

|||UR|||z,ρ ≤ |||U|||z,ρ |||R|||z,ρ .

Lemma 3.2 ([4]) Suppose that an analytic almost-periodic matrix U(t) has the spatial
structure (τ , [·]), and for z > 0, ρ > 0, |||U|||z,ρ < +∞. Then, for the average of U(t), we have
‖U‖ ≤ |||U|||z,ρ .
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Lemma 3.3 ([5]) Let λ1
1,λ1

2, . . . ,λ1
2l be the eigenvalues of B1 satisfying |λ1

s | > 2ν , |λ1
s – λ1

j | >
2ν , and ν > 0 with s �= j. Consider B0 to be a matrix such that B–1

0 B1B0 = diag(λ1
1, . . . ,λ1

2l).
Define β0 = max{‖B0‖,‖B–1

0 ‖}. Let ς be a value such that 0 < ς < 2ν

(6l–1)β2
0

. Then, if JA verifies
‖JA – B1‖ < ς , the following results hold:

1. If λ1,λ2, . . . ,λ2l are the eigenvalues of JA, we have |λs| > ν , |λs – λj| > ν , s �= j.
2. There exists a non-singular matrix B such that B–1JAB = diag(λ1,λ2, . . . ,λ2l), which

satisfies ‖B‖,‖B–1‖ ≤ β , where β = 2β0.

Remark Indeed, by Gerschgorin’s lemma, the result 1 of Lemma 3.3 can be obtained.
In our case, if the constant matrix A0 can be diagonalized, then the eigenvalues λ0

s of
A0 satisfy |λ0

s | ≥ 2η3 > 0 with a constant η3, ∀s, and An – A0 = O(ε), where n ≥ 1 rep-
resents the nth KAM step. So, by Gerschgorin’s lemma, we have that, for small enough
ε, the eigenvalues λn

s of An satisfy |λn
s | ≥ η3 > 0, ∀s. In this article, we denote ν = ηε and

B1 = A1. Then Lemma 3.3 holds and, moreover, in this article, β0 is a bounded and positive
constant.

Lemma 3.4 Consider the system

ẋ = JAx + εg(t), x ∈ R2N , (11)

where JA ∈ Bς (A1) and ς is given by Lemma 3.3. Let the eigenvalues of JA be λs, where
|λs| ≥ η3 > 0 with a constant η3, ∀s. Moreover, g(t) =

∑
g	(t) is analytic almost-periodic on

Dρ with frequencies ω = (ω1,ω2, . . .) and has the spatial structure (τ , [·]). Suppose

∣∣λs –
√

–1〈k,ω〉∣∣ ≥ α

�4(|k|)�4([k])
(12)

∀k ∈ ZN\{0}, a constant α > 0 and an approximation function �(t). Let 0 < ρ < ρ , 0 <
z < z. So, for equation (11), a unique analytic almost-periodic solution x(t) exists with
the same spatial structure and the same frequency as g(t) which satisfies |||x|||z–z,ρ–ρ ≤
cε �(z)�(ρ)

α
|||g|||z,ρ , where �(ρ) = supt≥0[�4(t)e–ρt and a constant c > 0.

Proof Making the change of variables x = By and by defining h(t) = B–1g(t), system (11)
can be written as

ẏ = Dy + εh(t), y ∈ R2N , (13)

where D = B–1(JA)B = diag(λ1,λ2, . . . ,λ2N ). Let

y	 =
(
ysj
	

)
,

(
ysj
	k

)
=

∑

supp k⊂	

ysj
	ke

√
–1〈k,θ〉,

h	 =
(
hsj

	

)
,

(
hsj

	k
)

=
∑

supp k⊂	

hsj
	ke

√
–1〈k,θ〉,

where, θ = ωt.
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Substitute these into ẏ	 = Dy	 + εh	, and by equating the coefficients on both sides, we
obtain

ysj
	k = ε

hsj
	k

λs –
√

–1〈k,ω〉 .

So, by equation (12), we get

∥∥ysj
	

∥∥
ρ–ρ

≤ ε

(
1
η3

+
∑

supp k⊂	

�4(|k|)e–ρ|k|

α
�4([k]

)
)∣∣hsj

	k
∣∣eρ|k|

≤ cε
�(ρ)�4([	])

α

∥∥hsj
	

∥∥
ρ

,

where c > 0 is a constant. Thus

‖y	‖ρ–ρ ≤ cε
�(ρ)�4([	])

α
‖h	‖ρ .

Let y =
∑

	∈τ y	. From Definition 1.2, we have

|||y|||z–z,ρ–ρ =
∑

	∈τ

‖y	‖ρ–ρe(z–z)[	]

≤ cε
∑

	∈τ

�(ρ)�4([	])
α

‖h	‖ρez[	]–z[	]

≤ cε
�(ρ)�(z)

α
|||h|||z,ρ .

By Remark of Lemma 3.3, we have ‖B‖.‖B–1‖ ≤ c0, where c0 > 0 is a constant. Then, since
|||h|||z,ρ ≤ ‖B–1‖|||g|||z,ρ and |||x|||z,ρ ≤ ‖B‖|||y|||z,ρ , we have

|||x|||z–z,ρ–ρ ≤ cε
�(z)�(ρ)

α
|||g|||z,ρ . �

Lemma 3.5 Let h : Bb(0) ⊂ Rl → Rl be a C2 function that satisfies h(0) = 0, d(h(0))
dx = 0,

‖ d2(h(x))
dx2 ‖ ≤ K , ∀x ∈ Bb(0), where Bb(0) is a ball centered at 0 and having radius b, where K

is a constant. Then ‖h(x)‖ ≤ K
2 ‖x‖2, ‖ d(h(x))

dx ‖ ≤ K‖x‖.

For the proof of Lemma 3.5, see [5].

Lemma 3.6 Let

Ṗ = JAP – PJA + Q, (14)

where JA is a 2N × 2N Hamiltonian matrix and JA ∈ Bς (A1), the eigenvalues of A1 are
λ1

1,λ1
2, . . . ,λ1

2N with |λ1
s | > 2ηε and |λ1

s –λ1
j | > 2ηε for s �= j, and ς can be found in Lemma 3.3.

Let λs, 1 ≤ s ≤ 2N , with λs �= 0 be the eigenvalues of JA. Moreover, Q(t) =
∑

	∈τ Q	(t) is an
analytic almost-periodic Hamiltonian matrix on Dρ with frequencies ω = (ω1,ω2, . . .) and
with finite spatial structure (τ , [·]). Q = 0, where Q is the average of Q(t). Let

∣
∣λs – λj –

√
–1〈k,ω〉∣∣ ≥ α

�4(|k|)�4([k])
, (15)
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∀k ∈ ZN\{0}, α > 0 is a constant and �(t) is an approximation function, and |λk1 – λk2 | ≥
ηε, k1 �= k2. Let 0 < ρ < ρ , 0 < z < z. Then we have a unique analytic almost-periodic Hamil-
tonian matrix P(t) with the same spatial structure and the same frequencies as Q(t), which
solves equation (14) and satisfies

|||P|||z–z,ρ–ρ ≤ c
�(z)�(ρ)

α
|||Q|||z,ρ ,

where �(ρ) = supt≥0[�4(t)e–ρt and c > 0 is a constant.

Proof We can suppose that the matrix B is as in Lemma 3.4. Making the setting P = BVB–1

and R = B–1QB, equation (14) can be written as

V̇ = DV – VD + R,

where D = diag(λ1,λ2, . . . ,λ2N ). Let

R	 =
(
rsj
	

)
,

(
rsj
	k

)
=

∑

supp k⊂	

rsj
	ke

√
–1〈k,θ〉,

V	 =
(
vsj
	

)
,

(
vsj
	k

)
=

∑

supp k⊂	

vsj
	ke

√
–1〈k,θ〉,

where θ = ωt. Substitute these into V̇	 = DV	 –V	D+R	, and by equating the coefficients
on both sides, we have vsj

	0 = 0; or

vsj
	k =

rsj
	k

λs – λj –
√

–1〈k,ω〉 for k �= 0.

As Q is analytic on Dρ , therefore R = B–1QB is also analytic on Dρ . So, by using equation
(15), we have

∥
∥vsj

	

∥
∥

ρ–ρ
≤

∑

supp k⊂	

�4(|k|)e–ρ|k|

α
�4([k]

)∣∣rsj
	k

∣
∣eρ|k|

≤ �(ρ)�4([	])
α

∥
∥rsj

	k
∥
∥

ρ
.

Thus

‖P	‖ρ–ρ ≤ �(ρ)�4([	])
α

‖R	‖ρ .

Let V =
∑

	∈τ V	. From Definition 1.4, we have

|||V |||z–z,ρ–ρ =
∑

	∈τ

‖V	‖ρ–ρe(z–z)[	]

≤
∑

	∈τ

�(ρ)�4([	])
α

‖R	‖ρez[	]–z[	]

≤ �(ρ)�(z)
α

|||R|||z,ρ .
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By Remark of Lemma 3.3, we have ‖B‖.‖B–1‖ ≤ c0, where c0 > 0 is a constant. Then, by
using Lemmas 3.1 and 3.2, we can write

|||P|||z–z,ρ–ρ ≤ ‖B‖|||V |||z–z,ρ–ρ

∥∥B–1∥∥

and

|||R|||z,ρ ≤ ∥
∥B–1∥∥|||Q|||z,ρ‖B‖.

Thus,

|||P|||z–z,ρ–ρ ≤ c
�(z)�(ρ)

α
|||Q|||z,ρ .

Now we prove that P =
∑

	∈τ P	 is Hamiltonian. To prove P is Hamiltonian, we need to
prove that PJ is symmetric in PJ = J–1P. As JA and Q =

∑
	∈τ Q	 are Hamiltonian, then by

definition, we can write Q = JQJ , where A and QJ are symmetric. Below we prove that PJ

is symmetric. Substituting P = JPJ and Q = JQJ into equation (14), we have

ṖJ = AJPJ – PJ JA + QJ , (16)

and transposing equation (16), we have

ṖT
J = AJPT

J – PT
J JA + QJ .

It is easy to see that JPJ and JPT
J are solutions of equation (14); moreover, JPJ = JPT

J = 0.
Since the solution of equation (14) is unique with P = 0, we have that JPJ = JPT

J , which
proves that P is Hamiltonian. �

Lemma 3.7 Consider the Hamiltonian system

dx
dt

= J
[
A + εQ(t)

]
x + εg(t) + h(x, t), (17)

where JA is a Hamiltonian matrix of dimension 2N × 2N , JA ∈ Bς (A1) with ς being given
by Lemma 3.3, and λs are eigenvalues of JA with |λs| ≥ η3 > 0, ∀1 ≤ s ≤ 2N . Suppose that
Q(t) =

∑
	∈τ Q	(t), g(t) =

∑
	∈τ g	(t) are analytic almost-periodic on Dρ , and h(x, t) =

∑
	∈τ h	(x, t) is an almost-periodic analytic matrix with respect to t and x on �b,ρ with

frequencies ω = (ω1,ω2, . . .) and has a finite spatial structure (τ , [·]). Suppose also that h(x, t)
is analytic with respect to x on Bb(0) and satisfies ‖Dxxh(x, t, ε)‖ ≤ K , ∀x ∈ Bb(0). Moreover,

∣∣λs –
√

–1〈k,ω〉∣∣ ≥ α

�4(|k|)�4([k])

∀k ∈ ZN\{0}, with a constant α > 0 and an approximation function �(t). Let 0 < ρ < ρ ,
0 < z < z. Then, a symplectic change of variables x = y + x exists, so that the Hamiltonian
system (17) can be transformed into the Hamiltonian system

dy
dt

= J
[
A + εQ∗]y + ε2g∗(t) + h∗(y, t)
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such that

∣∣∣∣∣∣Q∗∣∣∣∣∣∣
z–z,ρ–ρ

≤ |||Q|||z,ρ + cK
�(z)�(ρ)

α
|||g|||z,ρ

and

∣
∣
∣
∣
∣
∣g∗∣∣∣∣∣∣

z–z,ρ–ρ
≤ c

�(z)�(ρ)
α

|||Q|||z,ρ |||g|||z,ρ + cK
(

�(z)�(ρ)
α

)2

|||g|||2z,ρ ,

where y ∈ Bb1 (0), b1 = b – |||x|||z–z,ρ–ρ , and �(ρ) = supt≥0[�4(t)e–ρt .

Proof Consider that the equation dx
dt = JAx + εg(t) has solution x. Using Lemma 3.4, we get

|||x|||z–z,ρ–ρ ≤ cε
�(z)�(ρ)

α
|||g|||z,ρ .

Using the symplectic transformation x = y + x, equation (17) becomes

dy
dt

= J
[
A + εQ∗]y + ε2g∗(t) + h∗(y, t),

where

g∗(t) =
1
ε2 h(x, t) +

1
ε

JQ(t)x(t),

Q∗(t) = Q(t) +
1
ε

Dxh(x, t),

h∗(y, t) = h
(
x(t) + y, t

)
– h(x, t) – JDxh

(
x(t), t

)
y.

By Lemmas 3.4 and 3.5, we have

∣∣∣∣∣∣Q∗∣∣∣∣∣∣
z–z,ρ–ρ

≤ |||Q|||z,ρ +
1
ε

K |||x|||z–z,ρ–ρ

≤ |||Q|||z,ρ + cK
�(z)�(ρ)

α
|||g|||z,ρ .

For the estimation of |||g∗|||z–z,ρ–ρ , by Lemmas 3.4 and 3.5, we have

∣∣∣∣∣∣g∗∣∣∣∣∣∣
z–z,ρ–ρ

≤ c
K

2ε2 |||x|||2z–z,ρ–ρ +
1
ε
|||Q|||z–z,ρ–ρ

≤ c
�(z)�(ρ)

α
|||Q|||z,ρ |||g|||z,ρ + cK

(
�(z)�(ρ)

α

)2

|||g|||2z,ρ . �

Lemma 3.8 Let {δm} be a sequence of real positive numbers such that

δm+1 ≤ (
γ rm)γ rm

δ2
m

for all m ≥ 0, where γ > 0 and 1 < r < 2. Then

δm ≤ [(
γ r

r
2–r

) γ
2–r δ0

]2m.

For the proof, see [5].
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Lemma 3.9 Let f : [–ε, ε] → C be Lipschitz from above (with constant Cf ) and from below
(with constant cf ), that is,

∣
∣f (u) – f (v)

∣
∣ ≤ Cf |u – v|, ∣

∣f (u) – f (v)
∣
∣ ≥ cf |u – v|.

Let g : [–ε, ε] → C be another Lipschitz from above (with constant δ < cf ), that is,

∣
∣g(u) – g(v)

∣
∣ ≤ δ|u – v|.

Then h = f + g is a Lipschitz function from above (with constant Cf + δ) and from below
(with constant cf – δ)

∣∣h(u) – h(v)
∣∣ ≤ (Cf + δ)|u – v|, ∣∣h(u) – h(v)

∣∣ ≥ (cf – δ)|u – v|.

The proof is elementary.

Lemma 3.10 Suppose that B1 has the eigenvalues λ1
1,λ1

2, . . . ,λ1
2N which satisfy |λ1

s | > 2ν ,
|λ1

s – λ1
j | > 2ν , and ν > 0 with s �= j. Suppose that A0(ε) satisfies ‖A0 – B1‖ < ς seen in

Lemma 3.3 and A0(ε) relies on ε with constant LA0 in a Lipschitz way. Suppose that B(ε) is
the transformation that diagonalizes A0(ε) (as in Lemma 3.3). Then there exist constants
C1, C2 > 0 such that

∥
∥B(ε1) – B(ε2)

∥
∥ ≤ C1LA0 |ε1 – ε2|,

∥
∥B(ε1) – B(ε2)

∥
∥ ≤ C1LA0 |ε1 – ε2|,

∥
∥λj(ε1) – λj(ε2)

∥
∥ ≤ C2LA0 |ε1 – ε2|,

where λj(ε) for all 1 ≤ j ≤ 2N denote the eigenvalues of A0(ε).

Lemma 3.11 Let {am}m be a sequence of positive real numbers which satisfy am ∈ ]0, 1],
∏∞

m=0 am = a ∈ ]0, 1]. Let {bm}m be another sequence of positive real numbers satisfying
∏∞

m=0 bm = b < +∞. Consider the new sequence {υm}m defined by υm+1 = amυm – bm. Then
the sequence {υm}m approaches to a limit value υ∞ which satisfies υ∞ ≥ aυ0 – b.

For the proof of Lemmas 3.10 and 3.11, see [5].

4 The first KAM step
Let A0 = JA, Q0(t) = JQ(t) be Hamiltonian matrices. First of all, for equation (1), the pos-
sible multiple eigenvalues of A0 are changed into distinct eigenvalues and the coefficient
ε becomes ε2 in Q0(t) and g(t). In the following, to simplify notations, c > 0 denotes the
different constants. Then the Hamiltonian system (1) can be rewritten as follows:

dx
dt

=
[
A0 + εQ0(t)

]
x + εg(t) + h(x, t), (18)

where x ∈ Bb(0), Q0 and g are analytic almost-periodic on Dρ , and h is analytic almost-
periodic on �b,ρ with spatial structure (τ , [·]). By using the symplectic transformation x =
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x0 + y, where x0 satisfies dx0
dt = A0x0 + εg(t) on Dρ–ρ , then system (18) becomes

dy
dt

=
[
A0 + εQ∗(t)

]
y + ε2g∗(t) + h∗(y, t), (19)

where

Q∗ = Q0(t) +
1
ε

Dxh(x0, t),

g∗(t) =
1
ε2 h(x0, t) +

1
ε

Q0(t)x0(t),

h∗ = h(x0 + y, t) – h(x0, t) – JDxh(x0, t)y.

By using equation (8) and Lemma 3.4, we have

|||x0|||z–z,ρ–ρ ≤ cε
�(z)�(ρ)

α0
|||g|||z,ρ . (20)

By defining the average of Q∗(t) as Q∗, equation (19) can be rewritten as follows:

dy
dt

=
[
A1 + εQ̃(t)

]
y + ε2̃g(t) + h̃(y, t), (21)

where A1 = A0 + εQ∗, Q∗(t) = Q̃(t) + Q∗, g̃ = g∗, and h̃ = h∗. By using the conditions of The-
orem 2.1, A1 has 2N different eigenvalues λ1,λ2, . . . ,λ2N which satisfy |λ1

k1
(ε) – λ1

k2
(ε)| ≥

2ηε > 0, k1 �= k2. Now, using the symplectic change of variables y = eεP0(t)x1, system (21) is
transformed into the system

dx1

dt
=

[
e–εP0 (A1 + εQ̃ – εṖ0)eεP0 + e–εP0

(
εṖ0eεP0(t) –

d
dt

eεP0(t)
)]

x1

+ e–εP0ε2̃g(t) + e–εP0 h̃
(
eεP0(t)x1, t

)
, (22)

where x ∈ Bb1 (0). By series expansion, we can denote

eεP0 = I + εP0 + W , e–εP0 = I – εP0 + W̃ ,

where

W =
(εP0)2

2!
+

(εP0)3

3!
+ · · · ,

W̃ =
(εP0)2

2!
–

(εP0)3

3!
+ · · · .

Then the Hamiltonian system (22) can be rewritten as follows:

dx1

dt
=

(
A1 + εQ̃ – εṖ0 + εA1P0 – εP0A1 + ε2Q1

)
x1

+ e–εP0ε2̃g(t) + e–εP0 h̃
(
eεP0(t)x1, t

)
, (23)
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where

Q1 = –P0(Q̃ – Ṗ0) + (Q̃ – Ṗ0)P0 – P0(A1 + εQ̃ – εṖ0)P0

+ (I – εP0)(A1 + εQ̃ – εṖ0)
W
ε2 +

W̃
ε2 (A1 + εQ̃ – εṖ0)eεP0

+
1
ε2 e–εP0

(
εṖ0eεP0(t) –

d
dt

eεP0(t)
)

).

We would like to have that

Q̃ – Ṗ0 + A1P0 – P0A1 = 0,

which is equivalent to

Ṗ0 = A1P0 – P0A1 + Q̃. (24)

Since A0, Q∗(t), and Q∗ are Hamiltonian matrices, therefore A1 = A0 + εQ∗ and Q̃(t) =
Q∗(t) – Q∗ are also Hamiltonian matrices. Using Lemma 3.6, if

∣
∣λ1

s – λ1
j –

√
–1〈k,ω〉∣∣ ≥ α1

�4(|k|)�4([k])
, s �= j, 0 ≤ s, j ≤ 2N (25)

for all k ∈ ZN\{0}, α1 = α0
2 , then for equation (24), a unique almost-periodic Hamiltonian

matrix P0 =
∑

P0	 exists with the same spatial structure (τ , [·]) and the same frequencies
as Q̃(t) on a smaller domain Dρ–ρ , which satisfies P0 = 0 and

|||P0|||z–z,ρ–ρ ≤ c
�(z)�(ρ)

α0

∣∣∣∣∣∣Q∗∣∣∣∣∣∣
z,ρ . (26)

Therefore, by equation (24), the Hamiltonian system (23) can be rewritten as follows:

dx1

dt
=

[
A1 + ε2Q1(t)

]
x1 + ε2g1(t) + h1(x1, t), (27)

where g1(t) = e–εP0 g̃(t), h1(x1, t) = e–εP0 h̃(eεP0(t)x1, t), and

Q1 = –P0(P0A1 – A1P0) + (P0A1 – A1P0)P0 – P0
(
A1 + ε(P0A1 – A1P0)

)
P0

+ (I – εP0)
(
A1 + ε(P0A1 – A1P0)

)W
ε2

+
W̃
ε2

(
A1 + ε(P0A1 – A1P0)

)
eεP0 +

1
ε2 e–εP0

(
εṖ0eεP0 –

d(eεP0 )
dt

)
.

Hence, the symplectic transformation is T0x1 = x0 + eεP0 x1 = ϕ0(t, ε) + ψ0(t, ε)x1. If
|||εP0|||z–z,ρ–ρ ≤ 1

2 , then, by equations (20) and (26), we have

|||ϕ0|||z–z,ρ–ρ ≤ cε
�(z)�(ρ)

α0
|||g|||z,ρ , (28)

|||ψ0 – I|||z–z,ρ–ρ ≤ cε
�(z)�(ρ)

α0

∣∣∣∣∣∣Q∗∣∣∣∣∣∣
z,ρ . (29)
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Thus, under the symplectic change of variables x = T0x1, the Hamiltonian system (18)
becomes Hamiltonian system (27). This completes the first KAM step.

5 Proof of the main result
5.1 The proof of Theorem 2.1
Now we will consider the standard iteration step, the proof of which is almost similar to
the first KAM step. In the first step, we proved that A1 has 2N different eigenvalues and
ε2Q1(t) and ε2g1(t) are smaller perturbations. Now the KAM method will be used to prove
Theorem 2.1 and we will use a similar process as that in [5] and [8]. For simplification of
notations, here c > 0 denotes the different constants. For mth step, consider the Hamilto-
nian system

dxm

dt
=

[
Am + ε2m

Qm(t, ε)
]
xm + ε2m

gm(t, ε) + hm(xm, t, ε), (30)

where m ≥ 1, xm ∈ Bbm (0), Qm and gm are analytic almost-periodic on Dρm , and hm is ana-
lytic almost-periodic on �bm ,ρm with basic frequencies ω = (ω1,ω2, . . .) and has the spatial
structure (τ , [·]), Am ∈ Bς (A1), and λm

s are eigenvalues of Am with |λm
s (ε) – λm

j (ε)| ≥ ηε > 0,
∀s �= j and |λm

s (ε)| ≥ η3 > 0. Using the change of variables xm = xm + y, where xm satisfies
dxm
dt = Amxm + ε2m gm(t) on Dρm–ρm , the Hamiltonian system (30) can be written as follows:

dy
dt

=
[
Am + ε2m

Q∗
m(t)

]
y + ε2m+1

g∗
m(t) + h∗

m(y, t), (31)

where

Q∗
m(t) = Qm(t) +

1
ε2m Dxhm(xm, t),

g∗
m(t) =

1
ε2m+1 hm(xm, t) +

1
ε2m Qm(t)xm(t),

h∗
m(y, t) = hm(xm + y, t) – hm(xm, t) – Dxhm(xm, t)y.

By Lemma 3.4, if

∣∣λm
s –

√
–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])

∀k ∈ ZN\{0}, αm = α0
2m , and � is an approximation function, then we have

|||xm|||zm–zm ,ρm–ρm ≤ cε2m �(zm)�(ρm)
αm

|||gm|||zm ,ρm , (32)

where 0 < zm < zm, 0 < ρm < ρm, and c > 0 is a constant. By defining the average of Q∗
m(t) as

Q∗
m, equation (31) can be rewritten as follows:

dy
dt

=
[
Am+1 + ε2m

Q̃m(t)
]
y + ε2m+1

g̃m(t) + h̃m(y, t), (33)

where Am+1 = Am + εQ∗
m, Q∗

m(t) = Q̃m(t) + Q∗
m, g̃m = g∗

m, and h̃m = h∗
m.
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Now consider λm+1
1 , . . . ,λm+1

2N to be the different eigenvalues of Am+1 which satisfy |λm+1
k1

–
λm+1

k2
| ≥ 2ηε > 0, k1 �= k2.

By applying the symplectic transformation y = eε2m
Pm(t)xm+1, system (33) is changed into

dxm+1

dt
=

[
e–ε2m

Pm
(
Am+1 + ε2m

Q̃m – ε2m
Ṗm

)
eε2m

Pm

+ e–ε2m
Pm

(
ε2m

Ṗmeε2m
Pm(t) –

d
dt

eε2m
Pm(t)

)]
xm+1

+ e–ε2m
Pmε2m+1

g̃m(t) + e–ε2m
Pm h̃m

(
eε2m

Pm(t)xm+1, t
)
, (34)

where xm+1 ∈ Bbm+1 (0). By series expansion, we can denote

eε2m
Pm = I + ε2m

Pm + Wm, e–ε2m
Pm = I – ε2m

Pm + W̃m,

where

Wm =
(ε2m Pm)2

2!
+

(ε2m Pm)3

3!
+ · · · , W̃m =

(ε2m Pm)2

2!
–

(ε2m Pm)3

3!
+ · · · .

Then system (34) can be rewritten as follows:

dxm+1

dt
=

[
Am+1 + ε2m

Q̃m – ε2m
Ṗm + ε2m

Am+1Pm – ε2m
PmAm+1 + ε2m+1

Qm+1(t)
]
xm+1

+ e–ε2m
Pmε2m+1

g̃m(t) + e–ε2m
Pm h̃m

(
eε2m

Pm(t)xm+1, t
)
, (35)

where

Qm+1(t) = –Pm(Q̃m – Ṗm) + (Q̃m – Ṗm)Pm – Pm
(
Am+1 + ε2m

(Q̃m – Ṗm)
)
Pm

+
(
I – ε2m

Pm
)(

Am+1 + ε2m
(Q̃m – Ṗm)

) Wm

ε2m+1

+
W̃m

ε2m+1

(
Am+1 + ε2m (Q̃m – Ṗm)

)
eε2m

Pm

+
1

ε2m+1 e–ε2m
Pm

(
ε2m

Ṗmeε2m
Pm –

d
dt

eε2m
Pm

)
.

We would like to have

Q̃m – Ṗm + Am+1Pm – PmAm+1 = 0.

This can be rewritten as

Ṗm = Am+1Pm – PmAm+1 + Q̃m. (36)

Since Am, Q∗
m(t), and Q∗

m are Hamiltonian, therefore Am+1 and Q̃m(t) are Hamiltonian.
By Lemma 3.6, if

∣
∣λm+1

s – λm+1
j –

√
–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])
, k ∈ ZN\{0}
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and for different eigenvalues λm+1
1 , . . . ,λm+1

2N of Am+1 with |λm+1
s – λm+1

j | ≥ ηε, s �= j 0 ≤
s, j ≤ 2N , then for equation (36), there exists a unique almost-periodic matrix Pm(t) =
∑

	∈τ Pm	(t) on Dρm–ρm with frequencies ω and spatial structure (τ , [·]), which satisfies

|||Pm|||zm–zm ,ρm–ρm ≤ c
�(zm)�(ρm)

αm

∣∣∣∣∣∣Q∗
m
∣∣∣∣∣∣

zm ,ρm
. (37)

Then the Hamiltonian system (35) becomes

dxm+1

dt
=

[
Am+1 + ε2m+1

Qm+1(t)
]
xm+1 + ε2m+1

gm+1(t) + hm+1(xm+1, t), (38)

where gm+1(t) = e–ε2m
Pm g̃m(t), hm+1(xm+1, t) = e–ε2m

Pm h̃m(eε2m
Pm(t)xm+1, t), and by using Q̃m –

Ṗm = PmAm+1 – Am+1Pm, we have

Qm+1(t) = –Pm(PmAm+1 – Am+1Pm) + (PmAm+1 – Am+1Pm)Pm

– Pm
(
Am+1 + ε2m

(PmAm+1 – Am+1Pm)
)
Pm

+
(
I – ε2m

Pm
)(

Am+1 + ε2m
(PmAm+1 – Am+1Pm)

) Wm

ε2m+1

+
W̃m

ε2m+1

(
Am+1 + ε2m

(PmAm+1 – Am+1Pm)
)
eε2m

Pm

+
1

ε2m+1 e–ε2m
Pm

(
ε2m

Ṗmeε2m
Pm –

d
dt

eε2m
Pm(t)

)
. (39)

Thus, the symplectic transformation is Tmxm+1 = xm + eε2m
Pm xm+1 = ϕm(t) + ψm(t)xm+1.

If |||ε2m Pm|||zm–zm ,ρm–ρm ≤ 1
2 , then by equations (32) and (37), we have

|||ϕm|||zm–zm ,ρm–ρm ≤ cε2m �(zm)�(ρm)
αm

|||gm|||zm ,ρm , (40)

|||ψm – I|||zm–zm ,ρm–ρm ≤ cε2m �(zm)�(ρm)
αm

∣
∣
∣
∣
∣
∣Q∗

m
∣
∣
∣
∣
∣
∣
zm ,ρm

. (41)

So, using the symplectic change of variables xm = Tmxm+1, system (30) is transformed
into system (38).

5.2 Iteration
Now we estimate the bounds of |||gm+1|||m+1 and |||Qm+1|||m+1 as m → ∞. For the mth step,
we choose

αm =
α0

2m , bm+1 =
bm – |||xm|||m
eε2m |||Pm|||m+1

, ||| · |||m = ||| · |||zm ,ρm .

Also, suppose that zν ↓ 0 and ρν ↓ 0 satisfy
∑∞

ν=0 zν = 1
2 z and

∑∞
ν=0 ρν = 1

2ρ . And set
zm = z –

∑m
ν=1 zν , ρm = ρ –

∑m
ν=1 ρν . Assume that

ϕ(ρ) = inf
ρ1+ρ2+···<ρ

∞∏

ν=1

[
�(ρν)

]2–ν–1
,
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then

ϕ

(
1
2

z
)

=
∞∏

ν=1

[
�(zν)

]2–ν–1

and

ϕ

(
1
2
ρ

)
=

∞∏

ν=1

[
�(ρν)

]2–ν–1
.

If |||ε2m Pm|||m+1 ≤ 1
2 , we have

bm+1 ≥ bm – |||xm|||m
1 + 2ε2m |||Pm|||m+1

. (42)

By using Lemma 3.11, equation (42), and for sufficiently small ε, we obtain b∞ =
limm→∞ bm ≥ σ with constant σ > 0. By Lemma 3.7, we obtain

∣∣∣∣∣∣Q∗
m
∣∣∣∣∣∣

m+1 ≤ |||Qm|||m + cKm
�(zm+1)�(ρm+1)

αm
|||gm|||m. (43)

Therefore, by equations (37) and (43), we have

|||Pm|||m+1 ≤ cKm
(�(zm+1)�(ρm+1))2

αmαm+1

(|||Qm|||m + |||gm|||m
)
. (44)

Set

c1 = max

{
c,

8c
α

}
, cm =

[
(m + 1)2–(m+1)

m2–m · · ·22–2 · 12–1]2

�m(z) =
m+1∏

ν=1

[
�(zν)

]2–ν

, �m(ρ) =
m+1∏

ν=1

[
�(ρν)

]2–ν

.

From [9], cm, �m(z), �m(ρ) are all convergent when m goes to infinity. Consider

M1 = max
{

1, sup
m

(
c1cm�m(z)�m(ρ)

)}∣∣∣∣∣∣Q(t)
∣∣∣∣∣∣

z,ρ ,

M2 = max
{

1, sup
m

(
c1cm�m(z)�m(ρ)

)}∣
∣
∣
∣
∣
∣g(t)

∣
∣
∣
∣
∣
∣
z,ρ ,

and set

M = max{M1,M2}.

Firstly, we calculate |||gm+1|||m+1. By Lemma 3.7, we have

|||gm+1|||m+1

≤ c
�(zm+1)�(ρm+1)

αm

(
|||Qm|||m + cKm

�(zm+1)�(ρm+1)
αm

|||gm|||m
)

|||gm|||m. (45)

Now we estimate |||Qm+1|||m+1.
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If |||ε2m Pm|||m+1 ≤ 1
2 , we have

∣∣∣∣∣∣e±ε2m
Pm

∣∣∣∣∣∣
m+1 ≤ 1 +

∣∣∣∣∣∣ε2m
Pm

∣∣∣∣∣∣ +
|||ε2m Pm|||2

2!
+ · · · ≤ 2.

Moreover, we have that

ε2m
Ṗmeε2m

Pm –
d
dt

eε2m
Pm(t)

=
(

ε2m
Ṗmeε2m

Pm + ε2m
Ṗm

(ε2m Pm)2

2!
+ ε2m

Ṗm
(ε2m Pm)3

3!
+ · · ·

)

–
d( (ε2m

Pm)2

2! + (ε2m
Pm)3

3! + · · · )
dt

.

If |||ε2m Pm|||m+1 ≤ 1
2 , by

∣
∣∣
∣

∣
∣∣
∣

∣
∣∣
∣

d
dt

(
ε2m

Pm
)n

∣
∣∣
∣

∣
∣∣
∣

∣
∣∣
∣ ≤ n

∣∣∣∣∣∣ε2m
Ṗm

∣∣∣∣∣∣∣∣∣∣∣∣ε2m
Pm

∣∣∣∣∣∣n–1, for n ∈ Z+,

we obtain that

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣ε

2m
Ṗmeε2m

Pm –
d
dt

eε2m
Pm(t)

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
m+1

≤ 4
∣
∣
∣
∣
∣
∣ε2m

Ṗm
∣
∣
∣
∣
∣
∣
m+1

∣
∣
∣
∣
∣
∣ε2m

Pm
∣
∣
∣
∣
∣
∣
m+1.

By equations (36) and (43), we have

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣ε

2m
Ṗmeε2m

Pm –
d
dt

eε2m
Pm(t)

∣∣
∣∣

∣∣
∣∣

∣∣
∣∣
m+1

≤ cε2m+1
(

|||Pm|||2m+1 + |||Pm|||m+1|||Qm|||m

+ |||Pm|||m+1cKm
�(zm+1)�(ρm+1)

αm
|||gm|||m

)
. (46)

Also, if |||ε2m Pm|||m+1 ≤ 1
2 , we have

|||Wm|||m+1, |||W̃m|||m+1 ≤ 2
∣∣∣∣∣∣ε2m

Pm
∣∣∣∣∣∣2

m+1. (47)

So, by equations (40),(46), and (47), we have

|||Qm+1|||m+1

≤ cKm
�(zm+1)�(ρm+1)

αm

(|||Pm|||2m+1 + |||Pm|||m+1|||Qm|||m + |||Pm|||m+1|||gm|||m
)
.

Then, by using equation (43), the above equation can be written as follows:

|||Qm+1|||m+1 ≤ cK3
m

(�(zm+1)�(ρm+1))5

α3
mα2

m+1

(|||Qm|||2m + |||gm|||2m + |||Qm|||m|||gm|||m
)
. (48)
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For the estimate of |||Qm|||m and |||gm|||m, we define

δm = max
{|||Qm|||m, |||gm|||m

}
.

By, equations (45) and (48), we have that

δm+1 ≤ cK3
m

(�(zm+1)�(ρm+1))5

α3
mα2

m+1
δ2

m, (49)

here c > 0 is a constant depending on ρ , z, and M.
If |||ε2l Pl||| ≤ 1

4 for l = 0, 1, 2, . . . , m – 1, then we have Km ≤ ( 9
2 )mK (as given below). It is

immediate to check that we can find γ > 0 such that cK3
m

α3
mα2

m+1
(�(zm+1)�(ρm+1))5 ≤ (γ rm)γ rm ,

where 1 < r < 2.
Using Lemma 3.8, we have δm ≤ M2m , where M = (γ r r

2–r )
γ

2–r δ0. Thus, we have

|||Qm|||m ≤ M2m
, |||gm|||m ≤ M2m

. (50)

If 0 < εM < 1, then we obtain

lim
m→∞ ε2m |||Qm|||m = 0, lim

m→∞ ε2m |||gm|||m = 0. (51)

Now, we bound ‖Am‖. By (43), we have

‖Am+1 – Am‖ ≤ ∣∣∣∣∣∣ε2m
Q∗

m
∣∣∣∣∣∣

m+1 ≤ ε2m
(

|||Qm|||m + cKm
�(zm+1)�(ρm+1)

αm
|||gm|||m

)
. (52)

By cKm
�(zm+1)�(ρm+1)

αm
≤ M2m

1 with suitable constant M1 > 0 and (50), if εM1M < 1, then as
m → ∞, ‖Am+1 – Am‖ → 0. Hence, Am is convergent, as m → ∞. Suppose

lim
m→∞ Am = A∗. (53)

Also, by (40), (41), (43), and (50), we have

lim
m→∞|||ϕm|||m+1 = 0, lim

m→∞|||ψm – I|||m+1 = 0. (54)

Let D 1
2 z,�b, 1

2 ρ
=

⋂∞
m=0 Dzm ,�bm ,ρm . By equations (28), (29), (40), and (41), and by the condi-

tions of Theorem 2.1, suppose Tm = T0 ◦ T1 ◦ · · · ◦ Tm–1. And the convergence of Tm is
easy to prove on D 1

2 z,�b, 1
2 ρ

as m → ∞. Let Tm → T on D 1
2 z,�b, 1

2 ρ
as m → ∞. To bound

|||Pm|||m+1. For (44), it is not difficult to choose cKm
(�(zm+1)�(ρm+1))2

αmαm+1
≤ M2m

2 with suitable
constant M2 > 0. So, by (50), if εM2M < 1, we have

lim
m→∞ ε2m |||Pm|||m+1 = 0.

This allows us to have the condition ε2m‖Pm‖m+1 ≤ 1
4 without reducing the value of ε at

each step. Now we will show that Km is convergent for m → ∞. By (38), we have

|||Dxm+1xm+1 hm+1|||zm+1,�bm+1,ρm+1
≤ (1 + 2|||ε2m Pm|||m+1)2

1 – 2|||ε2m Pm|||m+1
Km. (55)
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So, if ε2m |||Pm|||m+1 ≤ 1
4 , we already have Km ≤ ( 9

2 )mK . By the inequality 1
1–x ≤ 1 + 2x, if

1
4 ≤ x ≤ 1

2 and (55), we obtain

Km+1 ≤ (
1 + 4ε2m |||Pm|||m+1

)3Km. (56)

Using the convergent bound of |||Pm|||m+1 and since Km ≤ ( 9
2 )mK , then by (56) it is easy to

obtain that the value of Km is convergent for m → ∞. Suppose

lim
m→∞ Km = K∗. (57)

Thus, limm→∞ hm = h∗(y, t) = O(y2) as y → 0.
Hence, using the symplectic change of variables x = Ty = ϕ(t) + ψ(t)y on D 1

2 z,�b, 1
2 ρ

, sys-

tem (1) is changed into the Hamiltonian system (10).

5.3 Measure estimate
Now, for small enough ε0, we will prove that the non-resonant conditions

∣
∣λm

s –
√

–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])

and

∣∣λm
s – λm

j –
√

–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])

for most ε ∈ (0, ε0) hold, where 1 ≤ s, j ≤ 2N , m = 0, 1, 2, . . . , k ∈ ZN\{0}, and �(t) is an
approximation function.

Consider the Lipschitz constants from below and above of f (ε) are l(f (ε)) and L(f (ε)),
respectively. For any loss of generality, we can suppose that λm

s – λm
j are pure imaginary

numbers. So, we suppose

∣
∣λm

s – λm
j –

√
–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])
, (58)

where λm
s (ε) – λm

j (ε) satisfies l(λm
s (ε) – λm

j (ε)) ≥ η0 > 0 for a constant η0 with s �= j.

Remark Assume that Am(ε) is a Lipschitz function of ε and L(Am) – L(A1) = O(ε). By us-
ing Lemmas 3.9 and 3.10, and hypothesis (3) of Theorem 2.1, it is easy to prove that the
eigenvalues λm

s and the differences λm
s –λm

j are Lipschitz from below and above if ε is small
enough.

The proof of the above remark can be seen in [5].
By condition (2) of Theorem 2.1, for m = 0, equation (58) holds. And, by condition (2)

of Theorem 2.1, we obtain that (58) also holds for s = j. Let

f (ε) = λm
s – λm

j –
√

–1〈k,ω〉, s �= j

and

Ok
sjm =

{
ε ∈ (0, ε0) :

∣
∣f (ε)

∣
∣ <

αm

�4(|k|)�4([k])

}
,
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such that system (30) converges for ε ∈ (0, ε0) whenever ε0 is small enough and

l
(
λm

s (ε) – λm+1
j (ε)

)| ≥ η0. (59)

Since

∣∣f (ε)
∣∣ ≥ ∣∣λs – λj –

√
–1〈k,ω〉∣∣ – 2Mε

≥ α0

�(|k|)�([k])
– 2Mε0.

For |k| ≤ m, [k] ≤ m, and if 1
4�(|k|)�([k]) > Mε0

α0
, then

∣∣f (ε)
∣∣ ≥ α0

�(|k|)�([k])
–

α0

2�(m)�(m)

≥ α0

�4(|k|)�4([k])

≥ αm

�4(|k|)�4([k])

and Ok
sjm = φ.

Let, for |k| ≥ m, [k] ≥ m, and if 1
4�(|k|)�([k]) < ηε0

α0
. By equation (59), we have

mes
(
Ok

sjm
)

<
αm

�4(|k|)�4([k])η0
,

mes

(⋃

s �=j

⋃

k∈ZN\{0}
Ok

sjm

)
≤

∑

1≤s,j≤2d,k:|k|≥m,[k]≥m

mes
(
Ok

sjm
)

≤ cd2αmε0

α�3(m)
∑

k∈ZN\{0}

1
�(|k|)�[k]

≤ cε2
0

�3(m)
.

Let

Em =
{
ε ∈ (0, ε0) :

∣
∣λm

s – λm
j –

√
–1〈k,ω〉∣∣ ≥ αm

�4(|k|)�4([k])
, k ∈ ZN\0, s �= j

}
.

Then

(0, ε0) – Em =
⋃

s �=j

⋃

k∈ZN\{0}
Ok

sjm.

Thus

mes
(
(0, ε0) – Em

)
=≤ cε2

0
�3(m)

.

Let E =
⋂∞

m=1 Em, then

mes
(
(0, ε0) – Em

) ≤ cε2
0,
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and

lim
ε0→0

mes((0, ε0) – Em)
ε0

= 0.

So, if ε0 is sufficiently small, E is a non-empty subset of (0,ε0). Similar to the above, for
sufficiently small ε0, |λm

s –
√

–1〈k,ω〉| ≥ αm
�4(|k|)�4([k]) holds for most ε ∈ (0, ε0). Hence,we

proved that system (1) is changed into the Hamiltonian system (10).

6 Conclusion
In this work, we discussed the reducibility of almost-periodic Hamiltonian systems and
proved that the almost-periodic non-linear Hamiltonian system (1) is reduced to a con-
stant coefficients Hamiltonian system with an equilibrium by means of an almost-periodic
symplectic transformation. The result was proved for a sufficiently small parameter ε by
using some non-resonant conditions, non-degeneracy conditions, the suitable hypothesis
of analyticity, and KAM iterations.
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