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Abstract
In this paper, we introduce and study a generalization of the k-Bessel function of
order ν given by

Wkν ,c(x) :=
∞∑

r=0

(–c)r

�k(rk + ν + k)r!

( x
2

)2r+ ν
k
.

We also indicate some representation formulae for the function introduced. Further,
we show that the function Wkν ,c is a solution of a second-order differential equation.
We investigate monotonicity and log-convexity properties of the generalized
k-Bessel function Wkν ,c , particularly, in the case c = –1. We establish several inequalities,
including a Turán-type inequality. We propose an open problem regarding the
pattern of the zeroes of Wkν ,c .
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1 Introductions
Motivated with the repeated appearance of the expression

x(x + k)(x + 2k) · · · (x + (n – 1)k
)

in the combinatorics of creation and annihilation operators [13, 14] and the perturba-
tive computation of Feynman integrals (see [12]), a generalization of the well-known
Pochhammer symbols is given in [15] as

(x)n,k := x(x + k)(x + 2k) · · · (x + (n – 1)k
)
,

for all k > 0, calling it the Pochhammer k-symbol. Closely associated functions that have
relation with the Pochhammer symbols are the gamma and beta functions. Hence it is use-
ful to recall some facts about the k-gamma and k-beta functions. The k-gamma function,
denoted as �k, is studied in [15] and defined by

�k(x) :=
∫ ∞

0
tx–1e– tk

k dt (1.1)
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for Re(x) > 0. Several properties of the k-gamma functions and applications in generaliz-
ing other related functions like k-beta and k-digamma functions can be found in [15, 27,
28] and references therein.

The k-digamma functions defined by �k := �′
k/�k are studied in [28]. These functions

have the series representation

�k(t) :=
log(k) – γ1

k
–

1
t

+
∞∑

n=1

t
nk(nk + t)

, (1.2)

where γ1 is the Euler–Mascheroni constant.
A calculation yields

� ′
k(t) =

∞∑

n=0

1
(nk + t)2 , k > 0 and t > 0. (1.3)

Clearly, �k is increasing on (0,∞).
The Bessel function of order p given by

Jp(x) :=
∞∑

k=0

(–1)k

�(k + p + 1)�(k + 1)

(
x
2

)2k+p

(1.4)

is a particular solution of the Bessel differential equation

x2y′′(x) + xy′(x) +
(
x2 – p2)y(x) = 0. (1.5)

Here � denotes the gamma function. A solution of the modified Bessel equation

x2y′′(x) + xy′(x) –
(
x2 + ν2)y(x) = 0, (1.6)

is the modified Bessel function

Iν(x) :=
∞∑

k=0

1
�(k + ν + 1)�(k + 1)

(
x
2

)2k+ν

. (1.7)

The Bessel function has several generalizations (see, e.g., [9, 10]) and is notably inves-
tigated in [1, 17]. In [1], a generalized Bessel function is defined in the complex plane,
and sufficient conditions for it to be univalent, starlike, close-to-convex, or convex are
obtained. This generalization is given by the power series

Wp,b,c(z) =
∞∑

k=0

(–c)k( z
2 )2k+p+1

�(k + 1)�(k + p + b+2
2 )

, p, b, c ∈C. (1.8)

In this paper, we consider the function defined by the series

Wkν,c(x) :=
∞∑

r=0

(–c)r

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

, (1.9)
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where k > 0, ν > –1, and c ∈ R. As k → 1, the k-Bessel function W1
ν,1 is reduced to the

classical Bessel function Jν , whereas W1
ν,–1 coincides with the modified Bessel function Iν .

Thus, we call the function Wkν,c the generalized k-Bessel function. Basic properties of the
k-Bessel and related functions can be found in recent works [8, 19–21].

Turán [30] proved that the Legendre polynomials Pn(x) satisfy the determinantal in-
equality

∣∣∣∣
Pn(x) Pn+1(x)

Pn+1(x) Pn+2(x)

∣∣∣∣ ≤ 0, –1 ≤ x ≤ 1, (1.10)

where n = 0, 1, 2, . . . , and the equality occurs only for x = ±1. The inequalities similar to
(1.10) can be found in the literature [2, 3, 5, 11, 16, 25] for several other functions, for
example, ultraspherical polynomials, Laguerre and Hermite polynomials, Bessel functions
of the first kind, modified Bessel functions, and the polygamma function. Karlin and Szegö
[24] named determinants in (1.10) as Turánians. More details about Turánians can be
found in [5, 11, 18, 22, 23, 29].

The aim of this paper is to investigate the influence of the �k functions on the properties
of the k-Bessel function defined in (1.9). It is shown that the properties of the classical
Bessel functions can be extended to the k-Bessel functions. Moreover, we investigate the
effects of �k instead of � on the monotonicity and log-convexity properties and related
inequalities of the k-Bessel functions. The outcomes of our investigation are presented as
follows.

In Section 2, we derive representation formulae and some recurrence relations for Wkν,c.
More importantly, the function Wkν,c is shown to be a solution of a certain differential equa-
tion of second order, which contains (1.5) and (1.6) for the particular case k = 1 and for
particular values of c. At the end of Section 2, we give two types of integral representations
for Wkν,c.

Section 3 is devoted to the investigation of monotonicity and log-convexity properties
of the functions Wkν,c and to relation between two k-Bessel functions of different order. As
a consequence, we deduce Turán-type inequalities.

In Section 4, we give concluding remarks and list two tables for the zeroes of Wkν,c, leading
to an open problem for future studies.

2 Representations for the k-Bessel function
2.1 The k-Bessel differential equation
In this section, we find differential equations corresponding to the functions Wkν,c.

Proposition 2.1 Let k > 0 and ν > –k. Then the function Wkν,c is a solution of the homoge-
neous differential equation

x2 d2y
dx2 + x

dy
dx

+
1
k2

(
cx2k – ν2)y = 0. (2.1)

Proof Differentiating both sides of (1.9) with respect to x, it follows that

d
dx
Wkν,c(x) =

∞∑

r=0

(–c)r(2r + ν
k )

�k(rk + ν + k)r!

(
x2r+ ν

k–1

22r+ ν
k

)
.
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This implies

x
d

dx
Wkν,c(x) =

∞∑

r=0

(–c)r(2r + ν
k )

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

. (2.2)

Now differentiating (2.2) with respect to x and then using the property �k(z + k) = z�k(z)
of the k-gamma function yield

x2 d2

dx2W
k
ν,c(x) + x

d
dx
Wkν,c(x)

=
∞∑

r=0

(–c)r(2r + ν
k )2

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

=
∞∑

r=1

(–c)r4r(r + ν
k )

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

+
ν2

k2

∞∑

r=0

(–c)r

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

=
4
k

∞∑

r=1

(–c)r

�k(rk + ν)(r – 1)!

(
x
2

)2r+ ν
k

+
ν2

k2W
k
ν,c(x)

= –
cx2

k
Wkν,c(x) +

ν2

k2W
k
ν,c(x).

A further simplification leads to the differential equation (2.1). �

2.2 Recurrence relations
From (2.2) we have

x
d

dx
Wkν,c(x) =

1
k

∞∑

r=0

(–c)r(2rk + ν)
�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

=
ν

k

∞∑

r=0

(–c)r

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

+ 2
∞∑

r=1

(–c)r

�k(rk + ν + k)(r – 1)!

(
x
2

)2r+ ν
k

=
ν

k
Wkν,c(x) + 2

∞∑

r=0

(–c)r+1

�k(rk + ν + 2k)r!

(
x
2

)2r+2+ ν
k

=
ν

k
Wkν,c(x) – xcWkν+k,c(x).

Thus we have the difference equation

x
d

dx
Wkν,c(x) =

ν

k
Wkν,c(x) – xcWkν+k,c(x). (2.3)
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Again, rewrite (2.2) as

x
d

dx
Wkν,c(x) =

1
k

∞∑

r=0

(–c)r(2rk + 2ν) – ν

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

= –
ν

k

∞∑

r=0

(–c)r

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

+ 2
∞∑

r=0

(–c)r(rk + ν)
�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

= –
ν

k
Wkν,c(x) +

x
k

∞∑

r=0

(–c)r

�k(rk + ν – k + k)r!

(
x
2

)2r+ ν–k
k

= –
ν

k
Wkν,c(x) +

x
k
Wkν–k,c(x).

This gives us the second difference equation

x
d

dx
Wkν,c(x) =

x
k
Wkν–k,c(x) –

ν

k
Wkν,c(x). (2.4)

Thus (2.3) and (2.4) lead to the following recurrence relations.

Proposition 2.2 Let k > 0 and ν > –k. Then

2νWkν,c(x) = xWkν–k,c(x) + xckWkν+k,c(x), (2.5)

Wkν–k,c(x) =
2
x

∞∑

r=0

(–1)r(ν + 2rk)Wkν+2rk,c(x), (2.6)

d
dx

(
x

ν
k Wkν,c(x)

)
=

x ν
k

k
Wkν–k,c(x), (2.7)

d
dx

(
x– ν

k Wkν,c(x)
)

= –cx– ν
k Wkν+k,c(x), (2.8)

dm

dxm

(
Wkν,c(x)

)
=

1
2mkm

m∑

n=0

(–1)n

(
m
n

)
cnknWkν–mk+2nk,c(x) for all m ∈N. (2.9)

Proof Relation (2.5) follows by subtracting (2.4) from (2.3).
Next to establish (2.6), let us rewrite (2.5) as

Wkν–k,c(x) + ckWkν+k,c(x) = 2
ν

x
Wkν,c(x). (2.10)

Now multiply both sides of (2.10) by –ck and replace ν by ν + 2k. Then we have

–ckWkν+k,c(x) – c2k2Wkν+3k,c(x) = –2ck
ν + 2k

x
Wkν+2k,c(x). (2.11)

Similarly, multiplying both sides of (2.10) by c2k2 and replacing ν by ν + 4k give

c2k2Wkν+3k,c(x) + c3k3Wkν+5k,c(x) = 2c2k2 ν + 4k
x

Wkν+4k,c(x). (2.12)

Continuing and adding them lead to (2.6).
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From definition (1.9) it is clear that

x
ν
k Wkν,c(x) =

∞∑

r=0

(–c)r

�k(rk + ν + k)22r+ ν
k r!

(x)2r+ 2ν
k . (2.13)

The derivative of (2.13) with respect to x is

d
dx

(
x

ν
k Wkν,c(x)

)
=

∞∑

r=0

(–c)r(2r + 2ν
k )

�k(rk + ν + k)22r+ ν
k r!

(x)2r+ 2ν
k –1

=
x ν
k

k

∞∑

r=0

(–c)r

�k(rk + ν)r!

(
x
2

)2r+ ν
k–1

=
x ν
k

k
Wkν–k,c(x).

Similarly,

d
dx

(
x– ν

k Wkν,c(x)
)

=
∞∑

r=1

(–c)r2r
�k(rk + ν + k)22r+ ν

k r!
(x)2r–1

= x– ν
k

∞∑

r=1

(–c)r

�k(rk + ν + k)(r – 1)!

(
x
2

)2r+ ν
k–1

= x– ν
k

∞∑

r=0

(–c)r+1

�k(rk + ν + 2k)r!

(
x
2

)2r+ ν
k+1

= –cx– ν
k Wkν+k,c(x).

Identity (2.9) can be proved by using mathematical induction on m. Recall that

(
r
r

)
=

(
r
0

)
= 1

and
(

r
n

)
+

(
r

n – 1

)
=

(
r + 1

n

)
.

For m = 1, the proof of identity (2.9) is equivalent to showing that

2k
d

dx
Wkν,c(x) = Wkν–k,c(x) – ckWkν+k,c(x). (2.14)

This relation can be obtained by simply adding (2.3) and (2.4). Thus, identity (2.9) holds
for m = 1.

Assume that identity (2.9) also holds for any m = r ≥ 2, that is,

dr

dxr

(
Wkν,c(x)

)
=

1
2mkr

r∑

n=0

(–1)n

(
r
n

)
cnknWkν–rk+2nk,c(x).
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This implies, for m = r + 1,

dr+1

dxr+1

(
Wkν,c(x)

)

=
1

2rkr

r∑

n=0

(–1)n

(
r
n

)
cnkn d

dr
Wkν–rk+2nk,c(x)

=
1

2r+1kr+1

r∑

n=0

(–1)n

(
r
n

)
cnkn(Wkν–(r+1)k+2nk,c(x) – ckWkν–(r–1)k+2nk,c(x)

)

=
1

2r+1kr+1

r∑

n=0

(–1)n

(
r
n

)
cnknWkν–(r+1)k+2nk,c(x)

–
1

2r+1kr+1

r∑

n=0

(–1)n

(
r
n

)
cn+1kn+1Wkν–(r–1)k+2nk,c(x)

=
1

2r+1kr+1

[
Wkν–(r+1)k,c(x) +

r∑

n=1

(–1)r

((
r
n

)
+

(
r

n – 1

))
Wkν–(r+1)k+2nk,c(x)

– (–1)rcr+1kr+1Wkν+(r+1)k,c(x)

]

=
1

2r+1kr+1

[(
r + 1

0

)
Wkν–(r+1)k,c(x)

+
r∑

n=1

(–1)r

(
r + 1

n

)
Wkν–(r+1)k+2nk,c(x)

+ (–1)r+1

(
r + 1
r + 1

)
cr+1kr+1Wkν–(r+1)k+2(r+1)k,c(x)

]

=
1

2r+1kr+1

r+1∑

n=0

(–1)r

(
r + 1

n

)
Wkν–(r+1)k+2nk,c(x).

Hence, identity (2.9) is concluded by the mathematical induction on m. �

2.3 Integral representations of k-Bessel functions
Now we will derive two integral representations of the functions Wkν,c. For this purpose,
we need to recall the k-Beta functions from [15]. The k version of the beta functions is
defined by

Bk(x, y) =
�k(x)�k(y)
�k(x + y)

=
1
k

∫ 1

0
t

x
k–1(1 – t)

y
k–1 dt. (2.15)

Substituting t by t2 on the integral in (2.15), it follows that

Bk(x, y) =
2
k

∫ 1

0
t

2x
k –1(1 – t2) y

k–1 dt. (2.16)
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Let x = (r + 1)k and y = ν . Then from (2.15) and (2.16) we have

1
�k(rk + ν + k)

=
2

�k((r + 1)k)�k(ν)

∫ 1

0
t2r+1(1 – t2) ν

k–1 dt. (2.17)

According to [15], we have the identity �k(kx) = kx–1�(x). This gives

1
�k(rk + ν + k)

=
2

kr�(r + 1)�k(ν)

∫ 1

0
t2r+1(1 – t2) ν

k–1 dt. (2.18)

Now (1.9) and (2.18) together yield the first integral representation

Wkν,c(x) =
2

�k(ν)

(
x
2

) ν
k

∫ 1

0
t
(
1 – t2) ν

k–1
∞∑

r=0

(–c)r

�(r + 1)r!

(
xt

2
√
k

)2r

dt

=
2

�k(ν)

(
x
2

) ν
k

∫ 1

0
t
(
1 – t2) ν

k–1W0,1,c

(
xt√
k

)
dt, (2.19)

where Wp,b,c is defined in (1.8).
For the second integral representation, substitute x = r +k/2 and y = ν +k/2 into (2.16).

Then (2.17) can be rewritten as

1
�k(rk + ν + k)

=
2

�k((r + 1
2 )k)�k(ν + k

2 )

∫ 1

0
t2r(1 – t2) ν

k– 1
2 dt. (2.20)

Again, the identity �k(kx) = kx–1�(x) yields

�k

((
r +

1
2

)
k

)
= kr– 1

2 �

(
r +

1
2

)
. (2.21)

Further, the Legendre duplication formula (see [4, 6])

�(z)�
(

z +
1
2

)
= 21–2z√π�(2z) (2.22)

shows that

�

(
r +

1
2

)
r! = r�

(
r +

1
2

)
�(r) =

√
π (2r)!
22r .

This, together with (2.20) and (2.21), reduces the series (1.9) of Wkν,c to

Wkν,c(x) =
2
√
k

�k(ν + k
2 )

(
x
2

) ν
k

∫ 1

0

(
1 – t2) ν

k– 1
2

∞∑

r=0

(–c)r

�(r + 1)r!

(
xt

2
√
k

)2r

dt

=
2
√
k√

π�k(ν + k
2 )

(
x
2

) ν
k

∫ 1

0

(
1 – t2) ν

k– 1
2

∞∑

r=0

(–c)r

(2r)!

(
xt√
k

)2r

dt. (2.23)

Finally, for c = ±α2, α ∈R, representation (2.23) respectively leads to

Wk
ν,α2 (x) =

2
√
k√

π�k(ν + k
2 )

(
x
2

) ν
k

∫ 1

0

(
1 – t2) ν

k– 1
2 cos

(
αxt√
k

)
dt (2.24)
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and

Wk
ν,–α2 (x) =

2
√
k√

π�k(ν + k
2 )

(
x
2

) ν
k

∫ 1

0

(
1 – t2) ν

k– 1
2 cosh

(
αxt√
k

)
dt. (2.25)

Example 2.1 If ν = k/2, then from (2.24) computations give the relation between sine and
generalized k-Bessel functions by

sin

(
αx√
k

)
=

α

k

√
πx
2
Wkν

k ,α2 (x).

Similarly, the relation

sinh

(
αx√
k

)
=

α

k

√
πx
2
Wkν

k ,–α2 (x)

can be derived from (2.25).

3 Monotonicity and log-convexity properties
This section is devoted to discuss the monotonicity and log-convexity properties of the
modified k-Bessel function Wkν,–1 = Ikν . As consequences of those results, we derive several
functional inequalities for Ikν .

The following result of Biernacki and Krzyż [7] will be required.

Lemma 3.1 ([7]) Consider the power series f (x) =
∑∞

k=0 akxk and g(x) =
∑∞

k=0 bkxk , where
ak ∈ R and bk > 0 for all k. Further, suppose that both series converge on |x| < r. If the
sequence {ak/bk}k≥0 is increasing (or decreasing), then the function x 	→ f (x)/g(x) is also
increasing (or decreasing) on (0, r).

The lemma still holds when both f and g are even or both are odd functions.
We now state and prove our main results in this section. Consider the functions

Ikν (x) :=
(

2
x

) ν
k

�k(ν + k)Ikν (x) =
∞∑

r=0

fr(ν)x2r, (3.1)

where

Ikν (x) = Wkν,–1(x) =
∞∑

r=0

1
�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

and

fr(ν) =
�k(ν + k)

�k(rk + ν + k)4rr!
.

(3.2)

Then we have the following properties.

Theorem 3.1 Let k > 0. The following results are true for the modified k-Bessel functions:
(a) If ν ≥ μ > –k, then the function x 	→ Ikμ(x)/Ikν (x) is increasing on R.
(b) The function ν 	→ Ikν+k(x)/Ikν (x) is increasing on (–k,∞), that is, for ν ≥ μ > –k,

Ikν+k(x)Ikμ(x) ≥ Ikν (x)Ikμ+k(x) (3.3)
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for any fixed x > 0 and k > 0.
(c) The function ν 	→ Ikν (x) is decreasing and log-convex on (–k,∞) for each fixed x > 0.

Proof (a) From (3.1) it follows that

Ikν (x)
Ikμ(x)

=
∑∞

r=0 fr(ν)x2r
∑∞

r=0 fr(μ)x2r .

Denote wr := fr(ν)/fr(μ). Then

wr =
�k(ν + k)�k(rk + μ + k)
�k(μ + k)�k(rk + ν + k)

.

Now, using the property �k(y + k) = y�k(y), we can show that

wr+1

wr
=

�k(rk + ν + k)�k(rk + μ + 2k)
�k(rk + μ + k)�k(rk + ν + 2k)

=
rk + μ + k
rk + ν + k

≤ 1

for all ν ≥ μ > –k. Hence, conclusion (a) follows from the Lemma 3.1.
(b) Let ν ≥ μ > –k. It follows from part (a) that

d
dx

(Ikν (x)
Ikμ(x)

)
≥ 0

on (0,∞). Thus

(
Ikν (x)

)′(Ikμ(x)
)

–
(
Ikν (x)

)(
Ikμ(x)

)′ ≥ 0. (3.4)

It now follows from (2.8) that

x
2
(
Ikν+k(x)Ikμ(x) – Ikμ+k(x)Ikν (x)

) ≥ 0,

whence Ikν+k/Ikν is increasing for ν > –k and for some fixed x > 0, which concludes (b).
(c) It is clear that, for all ν > –k,

fr(ν) =
�k(ν + k)

�k(rk + ν + k)4rr!
> 0.

A logarithmic differentiation of fr(ν) with respect to ν yields

f ′
r (ν)
fr(ν)

= �k(ν + k) – �k(rk + ν + k) ≤ 0

since �k are increasing functions on (–k,∞). This implies that fr(ν) is decreasing.
Thus, for μ ≥ ν > –k, it follows that

∞∑

r=0

fr(ν)x2r ≥
∞∑

r=0

fr(μ)x2r ,
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which is equivalent to say that the function ν 	→ Ikν is decreasing on (–k,∞) for some
fixed x > 0.

The twice logarithmic differentiation of fr(ν) yields

∂2

∂ν2 (log
(
fr(ν)

)
= � ′

k(ν + k) – � ′
k(rk + ν + k)

=
∞∑

n=0

(
1

(nk + ν + k)2 –
1

(nk + rk + ν + k)2

)

=
∞∑

n=0

rk(2nk + rk + 2ν + 2k)
(nk + ν + k)2(nk + rk + ν + k)2 ≥ 0

for all k > 0 and ν > –k. Since, a sum of log-convex functions is log-convex, it follows that
ν → Ikν is log-convex on (–k,∞) for each fixed x > 0. �

Remark 3.1 One of the most significance consequences of the Theorem 3.1 is the Turán-
type inequality for the function Ikν . From the definition of log-convexity it follows from
Theorem 3.1(c) that

Ikαν1+(1–α)ν2 (x) ≤ (
Ikν1

)α(x)
(
Ikν2

)1–α(x),

for α ∈ [0, 1], ν1,ν2 > –k, and x > 0. For any a ∈ R and ν ≥ –k, by choosing α = 1/2,ν1 =
ν – a, and ν2 = ν + a, this inequality yields the reverse Turán-type inequality

(
Ikν (x)

)2 – Ikν–a(x)Ikν+a(x) ≤ 0 (3.5)

for any ν ≥ |a| – k.

Our final result is based on the Chebyshev integral inequality [26, p. 40], which states
the following: suppose f and g are two integrable functions and monotonic in the same
sense (either both decreasing or both increasing). Let q : (a, b) → R be a positive integrable
function. Then

(∫ b

a
q(t)f (t) dt

)(∫ b

a
q(t)g(t) dt

)
≤

(∫ b

a
q(t) dt

)(∫ b

a
q(t)f (t)g(t) dt

)
. (3.6)

Inequality (3.6) is reversed if f and g are monotonic in the opposite sense.
The following function is required:

J k
ν (x) :=

(
2
x

) ν
k

�k(ν + k)Jkν (x) =
∞∑

r=0

gr(ν)x2r, (3.7)

where

Jkν (x) = Wkν,1(x) =
∞∑

r=0

(–1)r

�k(rk + ν + k)r!

(
x
2

)2r+ ν
k

and

gr(ν) =
(–1)r�k(ν + k)

�k(rk + ν + k)4rr!
.

(3.8)
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Theorem 3.2 Let k > 0. Then, for ν ∈ (–3k/4, –k/2] ∪ [k/2,∞),

Ikν (x)Ik
ν+ k

2
(x) ≤

√
k

x
sin

(
x
k

)
Ik2ν+ k

2
(x) (3.9)

and

J k
ν (x)J k

ν+ k
2

(x) ≤
√
k

x
sinh

(
x
k

)
J k

2ν+ k
2

(x). (3.10)

Inequalities (3.9) and (3.10) are reversed if ν ∈ (–k/2,k/2).

Proof Define the functions q, f , and g on [0, 1] as

q(t) = cos

(
xt√
k

)
, f (t) =

(
1 – t2) v

k– 1
2 , g(t) =

(
1 – t2) v

k+ 1
2 .

Then, for any x ≥ 0,

∫ 1

0
q(t) dt =

∫ 1

0
cos

(
xt√
k

)
dt =

√
k

x
sin

(
x√
k

)
,

∫ 1

0
q(t)f (t) dt =

∫ 1

0
cos

(
xt√
k

)(
1 – t2) v

k– 1
2 dt = Ikν (x) if ν ≥ –k,

∫ 1

0
q(t)g(t) dt =

∫ 1

0
cos

(
xt√
k

)(
1 – t2) v

k+ 1
2 dt = Ikν+k(x) if ν ≥ –2k,

∫ 1

0
q(t)f (t)g(t) dt =

∫ 1

0
cos

(
xt√
k

)(
1 – t2) 2v

k dt = Ik2ν+ k
2

(x) if ν ≥ –
3k
4

.

Since the functions f and g both are decreasing for ν ≥ k/2 and both are increasing for
ν ∈ (–3k/4, –k/2], inequality (3.6) yields (3.9). On the other hand, if ν ∈ (–k/2,k/2), then
the function f is increasing, but g is decreasing, and hence inequality (3.9) is reversed.

Similarly, inequality (3.10) can be derived from (3.6) by choosing

q(t) = cosh

(
xt√
k

)
, f (t) =

(
1 – t2) v

k– 1
2 , g(t) =

(
1 – t2) v

k+ 1
2 . �

4 Conclusion
It is shown that the generalized k-Bessel functions W k

ν,c are solutions of a second-order
differential equation, which for k = 1 is reduced to the well-known second-order Bessel
differential equation. It is also proved that the generalized modified k-Bessel function Ikν
is decreasing and log-convex on (–k,∞) for each fixed x > 0. Several other inequalities,
especially the Turán-type inequality and reverse Turán-type inequality for Ikν are estab-
lished.

Furthermore, we investigate the pattern for zeroes of Wk,1
ν in two ways: (i) with respect

to fixed k and variation of ν and (ii) with respect to fixed ν and variation of k.
From the data in Table 1 and Table 2, we can observe that the zeroes of Wkν,1 are increasing

in in both cases. However, we have no any analytical proof for this monotonicity of the
zeroes of W k

ν,1. As there are several works on the zeroes of the classical Bessel functions,
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Table 1 Positive zeroes of Wkν ,1 for fixed ν and different k

k 0.5 1 1.5 2 2.5

ν = –0.4 and c = 1

1st zero 0.662422 1.75098 2.42334 2.95334 3.40423
2nd zero 2.96686 4.87852 6.24148 7.3588 8.32849

3rd zero 5.2018 8.01663 10.0812 11.7913 13.2836

ν = 0.5 and c = 1

1st zero 2.70943 3.14159 3.55493 3.93277 4.28026

2nd zero 4.96077 6.28319 7.38858 8.35255 9.21757

3rd zero 7.19373 9.42478 11.2315 12.7879 14.1752

Table 2 Positive zeroes of Wkν ,1 for different ν and k

ν –0.4 –0.3 0 0.5 1 1.5 2 2.5

k = 0.5 and c = 1
1st zero 0.662422 0.97534 1.70047 2.70943 3.63143 4.51146 5.36577 6.20238

2nd zero 2.96686 3.21271 3.90328 4.96077 5.95189 6.90209 7.82393 8.72471

3rd zero 5.2018 5.43751 6.11911 7.19373 8.21647 9.20314 10.1629 11.1017

k = 1 and c = 1

1st zero 1.75098 1.92285 2.40483 3.14159 3.83171 4.49341 5.13562 5.76346

2nd zero 4.87852 5.04213 5.52008 6.28319 7.01559 7.72525 8.41724 9.09501

3rd zero 8.01663 8.17785 8.65373 9.42478 10.1735 10.9041 11.6198 12.3229

k = 1.5 and c = 1

1st zero 2.42334 2.55767 2.9453 3.55493 4.13426 4.69286 5.2362 5.76774

2nd zero 6.24148 6.37291 6.76069 7.38858 7.9979 8.5923 9.1744 9.74613

3rd zero 10.0812 10.2116 10.5986 11.2315 11.8513 12.4599 13.0587 13.6488

k = 2 and c = 1

1st zero 2.95334 3.06754 3.40094 3.93277 4.44288 4.93703 5.41885 5.8908

2nd zero 7.3588 7.47176 7.80657 8.35255 8.88577 9.40825 9.92154 10.4269

3rd zero 11.7913 11.9037 12.2382 12.7879 13.3286 13.8616 14.3875 14.907

the zeroes of Wkν,1 would be an interesting topic for future investigations. The monoto-
nicity of the zeroes of Wkν,c with respect to c and fixed k, ν will be another open problem
for further studies.
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