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Abstract
Let L = –� + |x|2 be a Hermite operator, where � is the Laplacian on R

d . In this paper
we define a new version of Carleson measure associated with Hermite operator,
which is adapted to the operator L. Then, we will use it to characterize the dual spaces
and predual spaces of the Hardy spaces Hp

L (R
d) associated with L.
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1 Introduction
In recent years, the study of function spaces associated with Hermite operators has in-
spired great interest. Dziubański [7] introduced the Hardy space Hp

L (Rd), 0 < p ≤ 1,
by using the heat maximal function and established its atomic characterization. Dzi-
ubański et al. [8] and Yang et al. [20] introduced and studied some BMO spaces and
Morrey–Campanato spaces associated with operators. Deng et al. [5] introduced the space
VMOL(Rd) and proved that (VMOL(Rd))∗ = H1

L(Rd). Moreover, recently, Jiang et al. in [14]
defined the predual spaces of Banach completions of Orlicz–Hardy spaces associated with
operators. Bui et al. [3] considered the Besov and Triebel–Lizorkin spaces associated with
Hermite operators.

One of the main purposes of studying the function spaces is to give the equivalent char-
acterizations of them, for example, square functions characterizations for Hardy spaces
[10], Carleson measure characterizations for BMO spaces [8] or Morry–Campanato
spaces [6]. The aim of this paper is to give characterizations of the dual spaces and pred-
ual spaces of the Hardy spaces Hp

L (Rd) by a new version of Carleson measure. Now, let us
review some known facts about the function spaces for L.

Let L be the basic Schrödinger operator in R
d , d ≥ 1, the harmonic oscillator L = –� +

|x|2. Let {TL
t }t>0 be a semigroup of linear operators generated by –L and KL

t (x, y) be their
kernels. The Feynman–Kac formula implies that

0 ≤ KL
t (x, y) ≤ ˜Tt(x, y) = (4π t)– d

2 exp

(

–
|x – y|2

4t

)

. (1)
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Dziubański [7] defined Hardy space Hp
L (Rd), 0 < p ≤ 1 as

Hp
L
(

R
d) =

{

f ∈ S ′(
R

d) : Mf ∈ Lp(
R

d)},

where

Mf (x) = sup
t>0

∣

∣TL
t f (x)

∣

∣.

The norm of Hardy space Hp
L (Rd) is defined by ‖f ‖Hp

L
= ‖Mf ‖Lp .

Remark 1 For simplicity, we just consider the case of d
d+1 < p ≤ 1 in this paper. But all of

our results hold for 0 < p ≤ 1.

Let ρ(x) = 1
1+|x| be the auxiliary function defined in [17]. This auxiliary function plays

an important role in the estimates of the operators and in the description of the spaces
associated with L. Then, for d

d+1 < p ≤ 1 and 1 ≤ q ≤ ∞, a function a is an Hp,q
L -atom for

the Hardy space Hp
L (Rd) associated with a ball B(x0, r) if

(1) supp a ⊂ B(x0, r),

(2) ‖a‖Lq ≤ ∣

∣B(x0, r)
∣

∣

1
q – 1

p ,

(3) if r < ρ(x0), then
∫

a(x) dx = 0.

The atomic quasi-norm in Hp
L (Rd) is defined by

‖f ‖L-atom,q = inf
{(

∑

|cj|p
)1/p}

,

where the infimum is taken over all decompositions f =
∑

cjaj and aj are Hp,q
L -atoms.

The atomic decomposition for Hp
L (Rd) is as follows (see [7]).

Proposition 1 Let d
d+1 < p ≤ 1, we have that the norms ‖f ‖Hp

L
and ‖f ‖L-atom,q are equiva-

lent, that is, there exists a constant C > 0 such that

C–1‖f ‖Hp
L

≤ ‖f ‖L-atom,q ≤ C‖f ‖Hp
L
,

where 1 ≤ q ≤ ∞.

We define Campanato space associated with L as (cf. [1] or [20]).

Definition 1 Let 0 ≤ α < 1, a locally integrable function g on R
d belongs to �L

α if and only
if ‖g‖�L

α
< ∞, where

‖g‖�L
α

= sup
B⊂Rd

{

|B|– α
d

(∫

B

∣

∣g – g(B, x0)
∣

∣

2 dx
|B|

)1/2}
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and

g(B, x0) =

⎧

⎨

⎩

1
|B(x0,r)|

∫

B(x0,r) g(y) dy, if r < ρ(x0),

0, if r ≥ ρ(x0).

The duality of Hp
L (Rd) and �L

d(1/p–1) can be found in [12] or [20].
In order to give the Carleson measure characterization of �L

d(1/p–1), we need some nota-
tions of the tent spaces (cf. [4]).

Let 0 < p < ∞ and 1 ≤ q ≤ ∞. Then the tent space Tp
q is defined as the space of functions

f on R
d+1
+ so that

(∫

�(x)

∣

∣f (y, t)
∣

∣

q dy dt
td+1

)1/q

∈ Lp(
R

d), when 1 ≤ q < ∞,

and

sup
(y,t)∈�(x)

∣

∣f (y, t)
∣

∣ ∈ Lp(
R

d), when q = ∞,

where �(x) is the standard cone whose vertex is x ∈R
d , i.e.,

�(x) =
{

(y, t) : |y – x| < t
}

.

Assume that B(x0, r) is a ball in R
d , its tent ̂B is defined by ̂B = {(x, t) : |x – x0| ≤ r – t}. A

function a(x, t) that is supported in a tent ̂B, B is a ball in R
d , is said to be an atom in the

tent space Tp
2 if it satisfies

(∫

̂B

∣

∣a(x, t)
∣

∣

2 dx dt
t

)1/2

≤ |B|1/2–1/p.

The atomic decomposition of Tp
2 is stated as follows.

Proposition 2 When 0 < p ≤ 1, then every f ∈ Tp
2 can be written as f =

∑

λkak , where ak

are atoms and
∑ |λk|p ≤ C‖f ‖p

Tp
2

.

Let

Tp,∞
2 =

{

f (x, t) : measurable on R
d+1
+ and ‖f ‖Tp,∞

2
< ∞}

,

where

‖f ‖Tp,∞
2

= sup
B⊂Rd

1
|B|1/p–1/2

(∫

̂B

∣

∣f (x, t)
∣

∣

2 dx dt
t

)1/2

.

Assume 0 < p ≤ 1, we say a function f ∈ Tp,∞
2 belongs to the space Tp,∞

2,0 if f satisfies η1(f ) =
η12(f ) = η3(f ) = 0, where

η1(f ) = lim
r→0

sup
B⊂RdrB<r

1
|B|1/p–1/2

(∫

̂B

∣

∣f (x, t)
∣

∣

2 dx dt
t

)1/2

;
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η2(f ) = lim
r→∞ sup

B⊂RdrB≥r

1
|B|1/p–1/2

(∫

̂B

∣

∣f (x, t)
∣

∣

2 dx dt
t

)1/2

;

η3(f ) = lim
r→∞ sup

B⊂B(0,r)c

1
|B|1/p–1/2

(∫

̂B

∣

∣f (x, t)
∣

∣

2 dx dt
t

)1/2

.

Let ˜Tp
2 = {F(x, t) =

∑

i λiai(x, t) : ai(x, t)are Tp
2 atoms and

∑

i |λi|p < ∞} and ‖F‖
˜Tp

2
=

inf{(∑i |λi|p)1/p : F(x, t) =
∑

i λiai(x, t)}. Then ˜Tp
2 is a Banach space. In fact, it is the com-

pleteness of Tp
2 . Especially, ˜T1

2 = T1
2 .

In [19], the author proved the following result.

Proposition 3 Let 0 < p ≤ 1. Then

(

Tp,∞
2,0

)∗ = ˜Tp
2 ,

(

Tp
2
)∗ = Tp,∞

2 .

Let {PL
t }t>0 be the semigroup of linear operators generated by –

√
L and DL

t f (x) =
t|∇PL

t f |(x), where ∇ = (∂t , ∂x1 , . . . , ∂xd ). The Carleson measure characterization of the Cam-
panato space �L

d(1/p–1) as (cf. [6]).

Proposition 4 Let d
d+1 < p ≤ 1. Then, for any f ∈ L2

loc(Rd), we have:
(a) If f ∈ �L

d(1/p–1), then DL
t f ∈ Tp,∞

2 ; moreover, we have

∥

∥DL
t f

∥

∥

Tp,∞
2

≤ C‖f ‖�L
d(1/p–1)

.

(b) Conversely, if f ∈ L1((1 + |x|)–(d+1) dx) and DL
t f ∈ Tp,∞

2 , then f ∈ �L
d(1/p–1) and

‖f ‖�L
d(1/p–1)

≤ C
∥

∥DL
t f

∥

∥

Tp,∞
2

.

The predual space of the classical Hardy space has been studied in [19] and [16].

Definition 2 Let α > 0, we will say a function f of �L
α is in λL

α if it satisfies γ1(f ) = γ2(f ) =
γ3(f ) = 0, where

γ1(f ) = lim
r→0

sup
B⊂RdrB<r

1
|B|α/d+1/2

(∫

̂B

∣

∣f – f (B, V )
∣

∣

2 dx dt
t

)1/2

;

γ2(f ) = lim
r→∞ sup

B⊂RdrB≥r

1
|B|α/d+1/2

(∫

̂B

∣

∣f – f (B, V )
∣

∣

2 dx dt
t

)1/2

;

γ3(f ) = lim
r→∞ sup

B⊂B(0,r)c

1
|B|α/d+1/2

(∫

̂B

∣

∣f – f (B, V )
∣

∣

2 dx dt
t

)1/2

.

The dual space of λL
d(1/p–1) is Bp

L(Rd), which is the completeness of Hp
L (Rd) (cf. [14]).

We can give a Carleson measure characterization of λL
d(1/p–1) as follows (see [14]).

Proposition 5 Let d
d+1 < p ≤ 1. Then, for any f ∈ L2

loc(Rd), we have:
(a) If f ∈ λL

d(1/p–1), then DL
t f ∈ Tp,∞

2 ; moreover, we have

∥

∥DL
t f

∥

∥

Tp,∞
2

≤ C‖f ‖λL
d(1/p–1)

.
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(b) Conversely, if f ∈ L1((1 + |x|)–(d+1) dx) and DL
t f ∈ Tp,∞

2 , then f ∈ λL
d(1/p–1) and

‖f ‖λL
d(1/p–1)

≤ C
∥

∥DL
t f

∥

∥

Tp,∞
2

.

Let Aj = ∂xj + xj and A–j = ∂xj – xj for j = 1, 2, . . . , d. Then

L =
d

∑

j=1

AjA–j + A–jAj.

Therefore, in the harmonic analysis associated with L, the operators Aj play the role of the
classical partial derivatives ∂xj in the Euclidean harmonic analysis (see [2, 11, 18]). Now, it
is natural to consider the derivatives Ai other than ∂xj . In [13], the author defined the Lusin
area integral operator by Aj and characterized the Hardy space H1

L(Rd). As a continuous
study of the function spaces associated with L, in this paper we will define the Carleson
measure by Aj and characterize the dual spaces and predual spaces of Hp

L (Rd). Moreover,
let QL

t f (x) = t|∇̃PL
t f |(x), where ∇̃ = (∂t , A–1, . . . , A–d, A1, . . . , Ad). Then the main results of

this paper can be stated as follows.

Theorem 1 Let d
d+1 < p ≤ 1. Then, for every f ∈ L2

loc(Rd), we have:
(a) If f ∈ �L

d(1/p–1), then QL
t f ∈ Tp,∞

2 ; moreover, we have

∥

∥QL
t f

∥

∥

Tp,∞
2

≤ C‖f ‖�L
d(1/p–1)

.

(b) Conversely, if f ∈ L1((1 + |x|)–(d+1) dx) and QL
t f ∈ Tp,∞

2 , then f ∈ �L
d(1/p–1) and

‖f ‖�L
d(1/p–1)

≤ C
∥

∥QL
t f

∥

∥

Tp,∞
2

.

Remark 2 In [8], the authors characterize the case p = 0, i.e., BMOL, by the heat semi-
group with the classical derivatives. In [15], the authors characterize the space BMOL by
the Poisson semigroup with the classical derivatives. In this paper, we will use the new
derivatives Aj of the Poisson semigroup to characterize the space �L

d(1/p–1) for d
d+1 < p ≤ 1.

Theorem 2 Let d
d+1 < p ≤ 1. Then, for any f ∈ L2

loc(Rd), we have:
(a) If f ∈ λL

d(1/p–1), then QL
t f ∈ Tp,∞

2,0 ; moreover, we have

∥

∥QL
t f

∥

∥

Tp,∞
2,0

≤ C‖f ‖λL
d(1/p–1)

.

(b) Conversely, if f ∈ L1((1 + |x|)–(d+1) dx) and QL
t f ∈ Tp,∞

2,0 , then f ∈ λL
d(1/p–1) and

‖f ‖λL
d(1/p–1)

≤ C
∥

∥QL
t f

∥

∥

Tp,∞
2,0

.

The paper is organized as follows. In Sect. 2, we give some estimates of the kernels. In
Sect. 3, we give the proof of Theorem 1. The proofs of Theorem 2 will be given in Sect. 4.

Throughout the article, we will use A and C to denote the positive constants, which are
independent of the main parameters and may be different at each occurrence. By B1 ∼ B2,
we mean that there exists a constant C > 1 such that 1

C ≤ B1
B2

≤ C.
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2 Estimates of the kernels
In this section, we give some estimates of the kernels, which we will use in the sequel.

The proofs of these estimates can be found in [9].

Lemma 1
(a) For every N ∈N, there is a constant CN > 0 such that

0 ≤ KL
t (x, y) ≤ CN t– d

2 e–(5t)–1|x–y|2
(

1 +
√

t
ρ(x)

+
√

t
ρ(y)

)–N

. (2)

(b) There exists C > 0 such that, for every N > 0, there is a constant CN > 0 so that, for all
|h| ≤ √

t,

∣

∣KL
t (x + h, y) – KL

t (x, y)
∣

∣ ≤ CN
|h|√

t
t– d

2 e–At–1|x–y|2
(

1 +
√

t
ρ(x)

+
√

t
ρ(y)

)–N

. (3)

By subordination formula, we can give the following estimates about the Poisson kernel.

Lemma 2
(a) For every N , there is a constant CN > 0, A > 0 such that

0 ≤ PL
t (x, y) ≤ CN

t
(t2 + A|x – y|2)(d+1)/2

(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

. (4)

(b) Let |h| < |x–y|
2 . Then, for any N > 0, there exist constants C > 0, CN > 0 such that

∣

∣PL
t (x + h, y) – PL

t (x, y)
∣

∣ ≤ CN
|h|√

t
t

(t2 + A|x – y|2)(d+1)/2

(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

. (5)

Duong et al. [6] proved the following estimates about the kernel DL
t (x, y).

Lemma 3 There exist constants C such that, for every N , there is a constant CN > 0, so that

(a)
∣

∣DL
t (x, y)

∣

∣ ≤ CN t–de–Ct–2|x–y|2
(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

;

(b)
∣

∣DL
t (x + h, y) – DL

t (x, y)
∣

∣ ≤ Ck,N

( |h|
t

)δ′

t–de–Ct–2|x–y|2
(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

,

for all |h| ≤ t;

(c)
∣

∣

∣

∣

∫

Rd
DL

t (x, y) dy
∣

∣

∣

∣

≤ CN
t/ρ(x)

(1 + t/ρ(x))N .

Let t = 1
2 ln 1+s

1–s , s ∈ (0, 1). Then

KL
t (x, y) =

(

1 – s2

4πs

)d/2

exp

(

–
1
4

(

s|x + y|2 +
1
s
|x – y|2

))

.= Ks(x, y). (6)

The following estimations are very important for the proofs of the main result in this paper.
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Lemma 4 There is C > 0 for N ∈ N and |x – x′| ≤ |x–y|
2 , any j = –1, . . . , –d, 1, . . . , d, we can

find CN > 0 such that

(a)
∣

∣

√
tAjKL

t (x, y)
∣

∣ ≤ CN t– d
2 exp

(

–
|x – y|2

Ct

)(

1 +
√

t
ρ(x)

+
√

t
ρ(y)

)–N

;

(b)
∣

∣

√
tAjKL

t (x, y) –
√

tAjKL
t
(

x′, y
)∣

∣

≤ CN
|x – x′|

t
t– d

2 exp

(

–
|x – y|2

Ct

)(

1 +
√

t
ρ(x)

+
√

t
ρ(y)

)–N

;

(c)
∣

∣

∣

∣

∫

Rd

√
tAjKL

t (x, y) dy
∣

∣

∣

∣

≤ C
t/ρ(x)

(1 + t/ρ(x))N .

Proof By

∣

∣AjKL
t (x, y)

∣

∣ =
∣

∣

∣

∣

∂

∂xj
KL

t (x, y) + xjKL
t (x, y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂

∂xj
KL

t (x, y)
∣

∣

∣

∣

+
∣

∣xjKL
t (x, y)

∣

∣

.= I1 + I2,

and t = 1
2 ln 1+s

1–s ∼ s, s → 0+, for s ∈ (0, 1
2 ], we have

I2 ≤ C|xj|s– d
2 exp

(

–
1
4

s|x + y|2
)

exp

(

–
1
4

|x – y|2
s

)

≤ C|x|s– d
2 exp

(

–
1
4

s|x + y|2
)

exp

(

–
1
4

|x – y|2
s

)

.

If x · y ≤ 0, then |x| ≤ |x – y|. So

I2 ≤ Cs– d
2 |x – y| exp

(

–
1
4

|x – y|2
s

)

≤ Cs– d–1
2 exp

(

–
|x – y|2

8s

)

≤ Ct– d–1
2 exp

(

–
|x – y|2

8t

)

.

If x · y ≥ 0, then |x| ≤ |x + y|. So

I2 ≤ Cs– d
2 |x + y| exp

(

–
1
4

s|x + y|2
)

exp

(

–
1
4

|x – y|2
s

)

≤ Cs– d+1
2 exp

(

–
|x – y|2

4s

)

≤ Ct– d+1
2 exp

(

–
|x – y|2

4t

)

.

Therefore,

|√tI2| ≤ C(1 + t)t– d
2 exp

(

–
|x – y|2

8t

)

≤ Ct– d
2 exp

(

–
|x – y|2

8t

)

. (7)

Since

lim
t→∞ t2

(

1 –
(

e2t – 1
e2t + 1

)2)

= 0,

we get ( 1–s2

4πs )d/2 ≤ t–d for s ∈ [ 1
2 , 1).
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When s ∈ [ 1
2 , 1), we get t = 1

2 ln 1+s
1–s > s. Therefore

I2 ≤ C|xj| exp

(

–
1
4

(

s|x + y|2 +
|x – y|2

s

))

≤ Ct–d|x| exp

(

–
1
4

(

s|x + y|2 +
|x – y|2

s

))

≤ Ct–d(|x + y| + |x – y|) exp

(

–
1
4

(

s|x + y|2 +
|x – y|2

s

))

≤ Ct–d exp

(

–
|x – y|2

8s

)

≤ Ct–d exp

(

–
|x – y|2

8t

)

.

Then

|√tI2| ≤ Ct–d+ 1
2 exp

(

–
|x – y|2

8t

)

≤ Ct– d
2 exp

(

–
|x – y|2

8t

)

. (8)

By (6), we get

∂

∂xj
Ks(x, y) = –

1
2

(

s(xj + yj) +
1
s

(xj – yj)
)

Ks(x, y)

and

I1 ≤ C
(

s|xj + yj| +
1
s
|xj – yj|

)

Ks(x, y) ≤ C
(

s|x + y| +
1
s
|x – y|

)

Ks(x, y).

Therefore, when s ∈ (0, 1
2 ], we have

I1 ≤ Cs– d
2 (1 + s) exp

(

–
|x – y|2

8s

)

≤ Ct– d
2 exp

(

–
|x – y|2

8t

)

.

When s ∈ [ 1
2 , 1), we have

I1 ≤ Ct–d exp

(

–
|x – y|2

8s

)

≤ Ct–d exp

(

–
|x – y|2

8t

)

.

Then
∣

∣

∣

∣

√
t

∂

∂xj
KL

t (x, y)
∣

∣

∣

∣

≤ Ct– d
2 exp

(

–
|x – y|2

8t

)

. (9)

By (7)–(9), we get

∣

∣

√
tAjKL

t (x, y)
∣

∣ ≤ Ct– d
2 exp

(

–
|x – y|2

8t

)

. (10)

Similar to the proof of (10), for any N > 0, we can prove

(√
t|x|)N ∣

∣

√
tAjKL

t (x, y)
∣

∣ ≤ CN t– d
2 exp

(

–
|x – y|2

8t

)
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and

tN ∣

∣

√
tAjKL

t (x, y)
∣

∣ ≤ CN t– d
2 exp

(

–
|x – y|2

8t

)

.

Since ρ(x) = 1
1+|x| , we get

√
t

ρ(x) =
√

t(1 + |x|). Then, for N > 0,

(
√

t
ρ(x)

)N
∣

∣

√
tAjKL

t (x, y)
∣

∣ ≤ CN t– d
2 exp

(

–
|x – y|2

8t

)

. (11)

Since x and y are symmetric, we also have

(
√

t
ρ(y)

)N
∣

∣tAjKL
t (x, y)

∣

∣ ≤ CN t– d
2 exp

(

–
|x – y|2

8t

)

. (12)

Then (a) follows from (10)–(12).
(b) Note that

∣

∣

√
tAjKL

t
(

x′, y
)

–
√

tAjKL
t (x, y)

∣

∣

≤
∣

∣

∣

∣

√
t

∂

∂xj
KL

t
(

x′, y
)

–
√

t
∂

∂xj
KL

t (x, y)
∣

∣

∣

∣

+
∣

∣

√
tx′

jK
L
t
(

x′, y
)

–
√

txjKL
t (x, y)

∣

∣

.= J1 + J2.

For J2, let

ϕ(z) = ϕy,s(z) = zj exp

(

–
1
4
α(s, z, y)

)

,

where α(s, z, y) = s|z + y|2 + 1
s |z – y|2.

Then

∂ϕ

∂zk
(z) =

(

δjk –
s
2

zj(zk + yk) –
1
2s

zj(zk – yk)
)

exp

(

–
1
4
α(s, z, y)

)

.

Therefore

∣

∣

∣

∣

∂ϕ

∂zk
(z)

∣

∣

∣

∣

≤ C
(

1 + s|z||z + y| +
1
s
|z||z – y|

)

exp

(

–
1
4
α(s, z, y)

)

≤ C
(

1 + s1/2|z| +
1

s1/2 |z|
)

exp

(

–
1
8
α(s, z, y)

)

≤ C
(

1 + s1/2(|z – y| + |z + y|) +
1

s1/2

(|z – y| + |z + y|)
)

exp

(

–
1
8
α(s, z, y)

)

≤ C
(

1 + s +
1
s

)

exp

(

–
1

16s
|z – y|2

)

≤ Cs–1 exp

(

–
1

16s
|z – y|2

)

. (13)
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Let θ = λx + (1 – λ)x′, 0 < λ < 1. Then

J2 ≤ Ct–d/2∣
∣x′

jKs
(

x′, y
)

– xjKs(x, y)
∣

∣

≤ Ct–d/2∣
∣x – x′∣

∣ sup
θ

∣

∣∇ϕ(θ )
∣

∣

≤ Ct–d/2 |x – x′|
s

| sup
θ

exp

(

–
|θ – y|2

16s

)

≤ Ct–d/2 |x – x′|
t

| sup
θ

exp

(

–
|θ – y|2

16t

)

.

When |x – x′| ≤ |x–y|
2 , we can get |θ – y| ∼ |x – y|. Therefore, there exists A > 0 such that

J2 ≤ Ct–d/2 |x – x′|
t

exp

(

–
|x – y|2

At

)

. (14)

For J1,

J1 =
∣

∣

∣

∣

√
t

∂

∂xj
KL

t
(

x′, y
)

–
√

t
∂

∂xj
KL

t (x, y)
∣

∣

∣

∣

=
√

t
∣

∣

∣

∣

∂

∂xj
Ks

(

x′, y
)

–
∂

∂xj
Ks(x, y)

∣

∣

∣

∣

=
√

t
∣

∣

∣

∣

(

s(xj + yj) +
1
s

(xj – yj)
)

exp

(

–
1
4
α(s, x, y)

)

–
(

s
(

x′
j + yj

)

+
1
s
(

x′
j – yj

)

)

exp

(

–
1
4
α
(

s, x′, y
)

)∣

∣

∣

∣

.

Let

ψ(z) = ψy,s(z) =
(

s(zj + yj) +
1
s

(zj – yj)
)

exp

(

–
1
4
α(s, z, y)

)

.

Then

∂ψ

∂zk
(z) =

[(

s +
1
s

)

δjk –
1
2

(

s(zj + yj) +
1
s

(zj – yj)
)

s(zk + yk) +
1
s

(zk – yk)
]

exp

(

–
1
4
α(s, z, y)

)

.

Therefore, similar to the proofs of (13) and (14), we can prove

∣

∣

∣

∣

∂ψ

∂zk
(z)

∣

∣

∣

∣

≤ Cs–1 exp

(

–
1
4
α(s, z, y)

)

and

J1 ≤ C sup
θ

∣

∣∇ψ(θ )
∣

∣

∣

∣x – x′∣
∣

≤ Ct–d/2 |x – x′|
t

| exp

(

–
|x – y|2

At

)

. (15)
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Inequalities (13) and (15) show

∣

∣

√
tAjKL

t (x, y) –
√

tAjKL
t
(

x′, y
)∣

∣ ≤ CN
|x – x′|

t
t– d

2 exp

(

–
|x – y|2

At

)

.

Then, similar to the proof of (a), we have

∣

∣

√
tAjKL

t (x, y)–
√

tAjKL
t
(

x′, y
)∣

∣ ≤ CN
|x – x′|

t
t– d

2 exp

(

–
|x – y|2

At

)(

1+
√

t
ρ(x)

+
√

t
ρ(y)

)–N

.

(c) Noting that
∣

∣

∣

∣

∫

Rd

√
tAjKL

t (x, y) dy
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rd

√
t∂xj K

L
t (x, y) dy

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

Rd

√
txjKL

t (x, y) dy
∣

∣

∣

∣

.= I + II.

The proof of part I can be found in Lemma 3.9 of [6]. For part II , since |xj| ≤ 1 + |x| = 1
ρ(x)

and Lemma 1, we get

II ≤
√

t
ρ(x)

∫

Rd

√
t
∣

∣KL
t (x, y)

∣

∣dy ≤
√

t
ρ(x)

(1 +
√

t
ρ(x) )N

.

Therefore, part (c) holds and this completes the proof of Proposition 4. �

Lemma 4 and the subordination formula give the following.

Lemma 5 There is C > 0 for N ∈N and |x – x′| ≤ |x–y|
2 , we can find CN > 0 such that

(a)
∣

∣QL
t (x, y)

∣

∣ ≤ CN
t

(t2 + A|x – y|2)(d+1)/2

(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

;

(b)
∣

∣QL
t (x, y) – QL

t
(

x′, y
)∣

∣ ≤ CN

( |x – x′|
t

)

t
(t2 + A|x – y|2)(d+1)/2

(

1 +
t

ρ(x)
+

t
ρ(y)

)–N

;

(c)
∣

∣

∣

∣

∫

Rd
QL

t (x, y) dy
∣

∣

∣

∣

≤ CN
t/ρ(x)

(1 + t/ρ(x))N .

3 Carleson measure characterization of �L
α

Let sL denote the Littlewood–Paley g-function associated with L, i.e.,

sLf (x) =
(∫ ∞

0

∣

∣QL
t f (x)

∣

∣

2 dt
t

)1/2

,

and AL denote the Lusin area integral associated with L, i.e.,

ALf (x) =
(∫ ∞

0

∫

�(x)

∣

∣QL
t f (x)

∣

∣

2 dy dt
t

)1/2

.

Then we can prove the following.
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Lemma 6 The operators sL and AL are isometries on L2(Rd) up to constant factors. Ex-
actly,

‖sLf ‖L2 =
1
2
‖f ‖L2 , ‖ALf ‖L2 = Cd‖f ‖L2 .

The proof of Lemma 6 is standard, we omit it.
Let F(x, t) = QL

t f (x) and G(x, t) = QL
t g(x). Then we have the following lemma.

Lemma 7 If g ∈ L1((1 + |x|)–(d+1) dx) and f is an Hp,∞
L -atom, then

1
4

∫

Rd
f (x)g(x) dx =

∫

R
d+1
+

F(x, t)G(x, t)
dx dt

t
.

Lemma 8 There exists C > 0 such that, for any Hp,∞
L -atom a(x), we have ‖ALa‖Lp ≤ C.

The proofs of Lemmas 7 and 8 can be found in [8].
Now we can give the proof of Theorem 1.

Proof of Theorem 1 Let f ∈ �L
d(1/p–1), then f ∈ L1((1 + |x|)–(d+1) dx). By Lemma 5(a), we

know

QL
t f (x) =

∫

Rd
QL

t (x, y)f (y) dy

is absolutely convergent. To prove the assertion (a), we need to prove that, for any ball
B = B(x0, r),

1
|B|2/p–1

∫

̂B

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

≤ C‖f ‖2
�L

d(1/p–1)
. (16)

Set Bk = B(x0, 2kr) and

f =
(

f – f (B1)
)

χB1 +
(

f – f (B1)
)

χBc
1

+ f (B1) =˜f1 +˜f2 + f (B1).

By Lemma 6, we have

1
|B|2/p–1

∫

̂B

∣

∣QL
t
˜f1(x)

∣

∣

2 dx dt
t

≤ 1
|B|2/p–1

∫

B

∣

∣sL˜f1(x)
∣

∣

2 dx

=
1

4|B|2/p–1 ‖˜f1‖2
L2 =

1
4|B|2/p–1

∫

B1

∣

∣f (g) – f (B1)
∣

∣

2 dx

≤ C‖f ‖2
�L

d(1/p–1)
. (17)

Note that

∣

∣f (B2) – f (B1)
∣

∣ ≤ 2d 1
|B2|

∫

B2

∣

∣f (x) – f (B2)
∣

∣dx

≤ 2d 1
|B2|1/2

(∫

B2

∣

∣f (x) – f (B2)
∣

∣

2 dx
)1/2
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= 2d|B2|1/p–1 1
|B2|1/p–1/2

(∫

B2

∣

∣f (x) – f (B2)
∣

∣

2 dx
)1/2

≤ 2d|B2|1/p–1‖f ‖�L
d(1/p–1)

.

Therefore

∣

∣f (Bk+1) – f (B1)
∣

∣ ≤ Ck|Bk+1|1/p–1‖f ‖�L
d(1/p–1)

. (18)

For x ∈ B(x0, r), by Lemma 5(a) and (18),

∣

∣QL
t
˜f2(x)

∣

∣ ≤ C
∫

Rd

t
(t2 + C|x – y|2)(d+1)/2

∣

∣̃f2(y)
∣

∣dy

≤ C
∫

(B1)c

t
|x0 – y|(d+1)

∣

∣f (y) – f (B1)
∣

∣dy

≤ C
∞

∑

k=1

t
(2kr)d+1

(∫

Bk+1\Bk

∣

∣f (y) – f (Bk+1)
∣

∣dy +
(

2kr
)d∣

∣f (Bk+1) – f (B1)
∣

∣

)

≤ C
t

r1–d(1/p–1)

∞
∑

k=1

2k(d(1/p–1)–1)(1 + k)‖f ‖�L
d(1/p–1)

≤ C
t

r1–d(1/p–1) ‖f ‖�L
d(1/p–1)

.

In the last step of the above, we use the facts d
d+1 < p ≤ 1 to get d(1/p – 1) – 1 < 0.

Thus we have

1
|B|2/p–1

∫

̂B

∣

∣QL
t
˜f2(x)

∣

∣

2 dx dt
t

≤ C‖f ‖2
�L

d(1/p–1)
. (19)

It remains to estimate the constant term. Assume first that r < ρ(x0). Taking k0 such that
2k0 r < ρ(x0) ≤ 2k0+1r, we have

∣

∣f (B1)
∣

∣ ≤ ∣

∣f (Bk0+1) – f (B1)
∣

∣ +
∣

∣f (Bk0+1)
∣

∣

≤ Ck0|Bk0+1|1/p–1‖f ‖�L
d(1/p–1)

+ |Bk0+1|1/p–1‖f ‖�L
d(1/p–1)

≤ C
(

1 + log2
ρ(x0)

r

)

|Bk0+1|1/p–1‖f ‖�L
d(1/p–1)

.

Note that ρ(x) ∼ ρ(x0) > r for any x ∈ B(x0, r), by using Lemma 5(c), we get

1
|B|2/p–1

∫

̂B

∣

∣QL
t
(

f (B1)1
)

(x)
∣

∣

2 dx dt
t

=
|f (B1)|2
|B|2/p–1

∫

̂B

∣

∣

∣

∣

∫

Rd
QL

t (x, y) dy
∣

∣

∣

∣

2 dx dt
t

≤ C|f (B1)|2
|B|2/p–1

∫

̂B

(

t
ρ(x0)

)2 dx dt
t

≤ C
|Bk0+1|2/p–2

|B|2/p–2

(

1 + log2
ρ(x0)

r

)2( r
ρ(x0)

)2

‖f ‖2
�L

d(1/p–1)
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= C
(

1 + log2
ρ(x0)

r

)2( r
ρ(x0)

)2–2d(1/p–1)

‖f ‖2
�L

d(1/p–1)

≤ C‖f ‖2
�L

d(1/p–1)
. (20)

In the last step of the above, we use the fact d(1/p – 1) < 1. For r ≥ ρ(x0), we have |f (B1)| ≤
C|B1|1/p–1‖f ‖�L

d(1/p–1)
.

Note that ρ(x) ≤ Cr for any x ∈ B(x0, r), again by Lemma 5(c), we get

1
|B|2/p–1

∫

̂B

∣

∣QL
t
(

f (B1)1
)

(x)
∣

∣

2 dx dt
t

≤ |f (B1)|2
|B|2/p–1

∫ ∞

0

∫

B

∣

∣

∣

∣

∫

Rd
QL

t (x, y) dy
∣

∣

∣

∣

2 dx dt
t

≤ C|f (B1)|2
|B|2/p–1

(∫

B

∫ ρ(x)

0

(

t
ρ(x)

)2 dt
t

dx +
∫

B

∫ ∞

ρ(x)

(

t
ρ(x)

)–2 dt
t

dx
)

≤ C‖f ‖2
�L

d(1/p–1)
. (21)

Then (17) follows from (18)–(21). This proves part (a).
Let f ∈ L1((1 + |x|)–(d+1) dx) and QL

t f (x) ∈ Tp,∞
2 . We want to prove that f ∈ �L

d(1/p–1). By
�L

d(1/p–1) is the dual space of Hp
L (Rd), it is sufficient to prove that

Hp
L � g �→Lf (g) :=

∫

Rd
f (x)g(x) dx

defined on finite linear combinations of Hp,∞
L -atoms satisfies the estimate

∣

∣Lf (g)
∣

∣ ≤ C
∥

∥QL
t f

∥

∥

Tp,∞
2

‖g‖Hp
L

.

By Lemma 7, Lemma 8, and Proposition 3, we get

∣

∣Lf (g)
∣

∣ =
∣

∣

∣

∣

∫

Rd
f (x)g(x) dx

∣

∣

∣

∣

= 4
∣

∣

∣

∣

∫

R
d+1
+

QL
t f (x)QL

t g(x)
dx dt

t

∣

∣

∣

∣

≤ C
∥

∥QL
t f

∥

∥

Tp,∞
2

∥

∥QL
t g

∥

∥

Tp
2

≤ C
∥

∥QL
t f

∥

∥

Tp,∞
2

‖g‖Hp
L
.

This gives the proof of part (b) and then Theorem 1 is proved. �

4 The predual space of Hardy space Hp
L (Rd)

In this section, we give a Carleson measure characterization of the space λL
d(1/p–1)(R

d).

Proof of Theorem 2 Let f ∈ λL
d(1/p–1), then f ∈ �L

d(1/p–1). By Theorem 1, we know f ∈ L1((1 +
|x|)–(d+1) dx). To prove QL

t f ∈ Tp,∞
2,0 , we first prove that there exists a constant C > 0 such
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that, for any ball B = B(x0, r), we have

1
|B|2/p–1

∫

̂B

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

≤
∞

∑

k=1

2–k(1–d(1/p–1))βk(f , B), (22)

where

βk(f , B) = sup
B′⊂Bk+1

1
|B′|2/p–1

∫

B′

∣

∣f (y) – f
(

B′)∣
∣

2 dy.

We first assume (22) holds, then we show that Qk
t f ∈ Tp,∞

2,0 . In fact, as f ∈ λL
d(1/p–1), we have

f ∈ �L
d(1/p–1) and there exists a constant C > 0 such that

βk(f , B) ≤ C‖f ‖�L
d(1/p–1)

.

Then, for any k ∈N, we have

lim
a→0

sup
B⊂RdrB≤a

βk(f , B) = lim
a→∞ sup

B⊂RdrB≥a
βk(f , B) = lim

a→∞ sup
B⊂RdB⊂B(0,a)c

βk(f , B) = 0. (23)

By (22), we have

1
|B|2/p–1

∫

̂B

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

≤ C
k0

∑

k=1

2–k(1–d(1/p–1))βk(f , B) + C
∞

∑

k=k0

2–k(1–d(1/p–1))‖f ‖2
�L

d(1/p–1)

≤ C
k0

∑

k=1

2–k(1–d(1/p–1))βk(f , B) + C2–k0(1–d(1/p–1))‖f ‖2
�L

d(1/p–1)
.

We can take k0 large enough such that 2–k0/2‖f ‖2
�L

d(1/p–1)
is small. This proves that

‖QL
t f ‖Tp,∞

2
< ∞ and η1(f ) = η2(f ) = η3(f ) = 0 follows from (23). Therefore QL

t f ∈ Tp,∞
2,0 .

Now we give the proof of (22). Set Bk = B(x0, 2kr) and

f =
(

f – f (B1)
)

χB1 +
(

f – f (B1)
)

χ(B1)c + f (B1) =˜f1 +˜f2 + f (B1).

By Lemma 6, we have

1
|B|2/p–1

∫

̂B

∣

∣QL
t
˜f1(x)

∣

∣

2 dx dt
t

≤ 1
|B|2/p–1

∫

B

∣

∣sL˜f1(x)
∣

∣

2 dx

=
1

4|B|2/p–1

∫

B1

∣

∣f (x) – f (B1)
∣

∣

2 dx ≤ Cβ1(f , B). (24)

By

∣

∣f (Bk+1) – f (B1)
∣

∣ ≤ C
k+1
∑

i=2

|Bi|1/p–1 1
|Bi|1/p–1/2

(∫

Bi

∣

∣f (x) – f (Bi)
∣

∣

2 dx
)1/2
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and Lemma 5(a), for x ∈ B(x0, r),

∣

∣QL
t
˜f2(x)

∣

∣ ≤ C
∫

Rd

t
|x0 – y|(d+1)

∣

∣̃f2(y)
∣

∣dy

≤ C
∫

(B1)c

t
|x0 – y|(d+1)

∣

∣f (y) – f (B1)
∣

∣dy

≤ C
∞

∑

k=1

t
(2kr)d+1

(∫

Bk+1\Bk

∣

∣f (y) – f (Bk+1)
∣

∣dy

+
(

2kr
)d∣

∣f (Bk+1) – f (B1)
∣

∣

)

≤ C
t

r1–d(1/p–1)

∞
∑

k=1

2k(d(1/p–1)–1)
(

1
|Bk+1|1/p–1/2

(∫

Bk+1

∣

∣f – f (Bk+1)
∣

∣

2 dy
)1/2

+
k+1
∑

i=2

1
|Bi|1/p–1/2

(∫

Bi

∣

∣f – f (Bi)
∣

∣

2 dy
)1/2)

≤ C
t

r1–d(1/p–1)

∞
∑

k=1

2k(d(1/p–1)–1)(1 + k)βk(f , B)1/2.

Therefore

1
|B|2/p–1

∫

̂B

∣

∣QL
t
˜f2(x)

∣

∣

2 dx dt
t

≤ C
∞

∑

k=1

2k(d(1/p–1)–1)βk(f , B). (25)

It remains to estimate the constant term. Assume first that r < ρ(x0). Taking k0 such that
2k0 r < ρ(x0) ≤ 2k0+1r, we have

∣

∣f (B1)
∣

∣ ≤ ∣

∣f (Bk0+1) – f (B1)
∣

∣ +
∣

∣f (Bk0+1)
∣

∣

≤ C
k0+1
∑

i=2

|Bi|1/p–1 1
|Bi|1/p–1/2

(∫

Bi

∣

∣f – f (Bi)
∣

∣

2 dy
)1/2

+ |Bk0+1|1/p–1 1
|Bk0+1|1/p–1/2

(∫

Bk0+1

|f |2 dy
)1/2

≤ C|Bk0+1|1/p–1(k0 + 1)β1/2
k0

(f , B).

Note that ρ(x) ∼ ρ(x0) > r for any x ∈ B(x0, r), by Lemma 5(c), we get

1
|B|2/p–1

∫

̂B

∣

∣QL
t
(

f (B1)1
)

(x)
∣

∣

2 dx dt
t

=
|f (B1)|2
|B|2/p–1

∫

̂B

∣

∣

∣

∣

∫

Rd
QL

t (x, y) dy
∣

∣

∣

∣

2 dx dt
t

≤ C|f (B1)|2
|B|2/p–1

∫

̂B

(

t
ρ(x0)

)2 dx dt
t

≤ C
|Bk0+1|2/p–2

|B|2/p–2 (1 + k0)2
(

r
ρ(x0)

)2

βk0 (f , B)
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≤ C2–2k0(1–d(1/p–1))(1 + k0)2βk0 (f , B)

≤ C2–k0(1–d(1/p–1))βk0 (f , B). (26)

For r ≥ ρ(x0), we have

∣

∣f (B1)
∣

∣ ≤ C|B1|1/p–1 1
|B1|1/p–1/2

(∫

B1

∣

∣f – f (B1)
∣

∣

2 dy
)1/2

.

Note that ρ(x) ≤ Cr for any x ∈ B(x0, r), again by Lemma 5(c),

1
|B|2/p–1

∫

̂B

∣

∣QL
t
(

f (B1)1
)

(x)
∣

∣

2 dx dt
t

≤ |f (B1)|2
|B|2/p–1

∫ ∞

0

∫

B

∣

∣

∣

∣

∫

Rd
QL

t (x, y) dy
∣

∣

∣

∣

2 dx dt
t

≤ C|f (B1)|2
|B|2/p–1

(∫

B

∫ ρ(x)

0

(

t
ρ(x)

)2 dt
t

dx +
∫

B

∫ ∞

ρ(x)

(

t
ρ(x)

)–2 dt
t

dx
)

≤ C
|B1|2/p–1

|B|2/p–1 β1(f , B) ≤ 2d(1/p–1)–1β1(f , B). (27)

Then (22) follows from (24)–(27).
For the reverse, by Theorem 1, we get f ∈ �L

d(1/p–1) from QL
t f ∈ Tp,∞

2,0 . For any ball B =
B(x0, r),

(∫

B

∣

∣f (x) – f (B)
∣

∣

2 dx
)1/2

= sup
supp g⊂B,‖g‖L2(B)≤1

∣

∣

∣

∣

∫

B

(

f (x) – f (B)
)

g(x) dx
∣

∣

∣

∣

= sup
supp g⊂B,‖g‖L2(B)≤1

∣

∣

∣

∣

∫

B
f (x)

(

g(x) – g(B)
)

dx
∣

∣

∣

∣

.

Let G(x) = (g(x) – g(B))χB. Then, by Lemma 7, we obtain

∣

∣

∣

∣

∫

Rd
f (x)G(x) dx

∣

∣

∣

∣

= 4
∣

∣

∣

∣

∫

R
d+1
+

QL
t f (x)

(

QL
t g(x) – QL

t g(B)(x)
)dx dt

t

∣

∣

∣

∣

≤ C
∫

̂B2

∣

∣QL
t f (x)

∣

∣

∣

∣QL
t G(x)

∣

∣

dx dt
t

+
∞

∑

k=2

∫

̂Bk+1\̂Bk

∣

∣QL
t f (x)

∣

∣

∣

∣QL
t G(x)

∣

∣

dx dt
t

= E1 +
∞

∑

k=2

Ek .

By Hölder’s inequality and Lemma 6, we have

E1 ≤
(∫

̂B2

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2∥
∥

∥

∥

(∫ ∞

0

∣

∣QL
t
(

g – g(B)
)

(x)
∣

∣

2 dt
t

)1/2∥
∥

∥

∥

L2(B2)

≤ C
(∫

̂B2

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

. (28)
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Now, we estimate Ek . By Hölder’s inequality again, we have that

Ek ≤ Fk · Ik ,

where

Fk =
(∫

̂Bk+1\̂Bk

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

and

Ik =
(∫

̂Bk+1\̂Bk

∣

∣QL
t g(x) – QL

t g(B)(x)
∣

∣

2 dx dt
t

)1/2

.

When r < ρ(x0), then
∫

B g(x) – g(B) dx = 0. Therefore, by Lemma 5(b),

∣

∣QL
t g(x) – QL

t g(B)(x)
∣

∣ =
∣

∣

∣

∣

∫

B

(

QL
t (x, y) – QL

t (x, x0)
)(

g(y) – g(B)
)

dy
∣

∣

∣

∣

≤ C
∫

B

t
(t + |x – y|)d+1

|x0 – y|
t

∣

∣g(y) – g(B)
∣

∣dy

≤ C
∫

B

t
(2kr)d+1

r
t
∣

∣g(y) – g(B)
∣

∣dy

≤ C
t

(2kr)d+1
r
t
‖g‖L1(B) ≤ C|B|1/2 t

(2kr)d+1
r
t

.

Therefore

I2
k ≤ C|B|

∫ 2k+1r

0

∫

Bk+1

t2

(2kr)2d+2

(

r
t

)2 dx dt
t

≤ C|B| 1
(2kr)d 2–2k .

It follows that

Ek ≤ C|B|1/2|Bk|–1/22–k
(∫

̂Bk+1

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

.

When r ≥ ρ(x0), we have ρ(y) ≤ Cr for y ∈ B(x0, r). Then, by Lemma 5(a),

∣

∣QL
t g(x) – QL

t g(B)(x)
∣

∣ =
∣

∣

∣

∣

∫

B
QL

t (x, y)g(y) dy
∣

∣

∣

∣

≤ C
∫

B

t
(2kr)d+1

ρ(y)
t

∣

∣g(y)
∣

∣dy

≤ C
t

(2kr)d+1
r
t
‖g‖L1(B) ≤ C|B|1/2 t

(2kr)d+1
r
t

.

Then we can get

Ek ≤ C|B|1/2|Bk|–1/22–k
(∫

̂Bk+1

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

. (29)
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By (28) and (29), we know

1
|B|1/p–1/2

(∫

B

∣

∣f (x) – f (B)
∣

∣

2 dx
)1/2

≤ C
|B|1/p–1

∞
∑

k=1

2–k|Bk|–1/2
(∫

̂Bk

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

= C
∞

∑

k=1

2–k |Bk|1/p–1

|B|1/p–1
1

|Bk|1/p–1/2

(∫

̂Bk

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

≤ C
∞

∑

k=1

2–k(1–α)σk(f , B),

where

σk(f , B) =
1

|Bk|1/p–1/2

(∫

̂Bk

∣

∣QL
t f (x)

∣

∣

2 dx dt
t

)1/2

.

Then we can get γ1(f ) = γ2(f ) = γ3(f ) = 0 as the proof of the first part of this theorem.
Therefore f ∈ λL

α and the proof of Theorem 2 is completed. �

5 Conclusions
This paper defines a new version of Carleson measure associated with Hermite operator,
which is adapted to the operator L. Then, we characterize the dual spaces and predual
spaces of the Hardy spaces Hp

L (Rd) associated with L. The main results of this paper are
the central problems in harmonic analysis, which can be used in PED or geometry widely.
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