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Abstract
The distance-sum-connectivity matrix of a graph G is expressed by δ(i) and δ(j) such
that i, j ∈ V . δ(i) and δ(j) are represented by a sum of the distance matrices for i < v and
j < v, respectively.
The purpose of this paper is to give new inequalities involving the eigenvalues, the

graph energy, the graph incidence energy, and the matching energy. So, we have
some results in terms of the edges, the vertices, and the degrees.
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1 Introduction
Let G be a simple, finite, connected graphs with the vertex set V (G) and the edge set E(G).
By di we denote the degree of a vertex. Throughout this paper, the vertex degrees are
assumed to be ordered non-increasingly. The maximum and the minimum vertex degrees
in a graph are denoted by � and δ, respectively. If any vertices i and j are adjacent, then
we use the notation i ∼ j.

The distance-sum-connectivity matrix is defined by the displacement of the vertex de-
grees and the distance sum. This matrix is denoted by δX and represented in [1–18] by

δX =

⎧
⎨

⎩

(δ(i)δ(j)) –1
2 if i ∼ j,

0 otherwise.

The distance sum is δ(i) =
∑v

j=1(vDij) such that D is the distance matrix. The distance-
sum-connectivity matrix is an interesting matrix, and this paper deals with bounds of
this matrix. We find some upper bounds and these bounds contain the edge num-
bers, the vertex numbers, and the eigenvalues. The eigenvalues of this matrix are
λ1(δX),λ2(δX), . . . ,λn(δX) such that λ1(δX) ≥ λ2(δX) ≥ · · · ≥ λn(δX). We will accept λ1(δX)
as the spectral radius of the graph δX(G), and we will take λ1(δX) as λ1 for convenience.
Basic properties of λi are

∑n
i=1 λi = 0,

∑n
i=1 λ2

i = 2m, and det(δX) =
∏n

i=1 λi. G is a reg-
ular graph with order n if and only if λ1 ≥ 2m

n [3]. The energy of (δX) is described as
E(δX) =

∑n
i=1 |λi(G)|. Some properties about the graph energy may be found [7, 10]. The

incidence energy IE of G is introduced by Joojondeh et al. [13] as the sum of singular
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values of the incidence matrix of G. The incidence matrix of a graph G is defined as

I(G) =

⎧
⎨

⎩

1 if vi is incident with vj,

0 otherwise.

The singular values are q1(δX), q2(δX), . . . , qn(δX) such that q1(δX) ≥ q2(δX) ≥ · · · ≥
qn(δX). We use qi(δX) as qi for brevity. The incidence energy of a graph is represented
by IE = IE(G) =

∑n
i=1

√
qi(G). See [8] and [9].

The number of k-matchings of a graph G is denoted by m(G, k). The matching polyno-
mial of a graph is described by α(G) = α(G,λ) =

∑
k≥0(–1)km(G, k)λn–2k (see [6]).

The matching energy of a graph G is defined as

ME = ME(G) =
2
pi

∫ ∞

o

1
x2 ln

[∑

k≥0

m(G, k)x2k
]

dx (see [11]).

The paper is planned as follows. In Sect. 2, we explain previous works. In the next sec-
tion, we give a survey on upper bound for the first greatest eigenvalue λ1 and the sec-
ond greatest eigenvalue λ2 using the edge number, the vertex number, and the degree. In
Sect. 3.2, we focus on the upper bound for energy of δX(G) and are concerned with the
vertex number, the distance matrix, and the determinant of δX. In addition, we deal with
some results for the incidence energy of δX(G), and we find sharp inequalities of IE(δX(G)).
In Sect. 3.3, we determine different results for the matching energy of a graph with some
fixed parameters.

2 Preliminaries
In order to achieve our plan, we need the following lemmas and theorems.

Lemma 2.1 ([12]) Let λ1(A) be a spectral radius and A = (aij) be an irreducible nonnegative
matrix with Ri(A) =

∑m
j=1 aij. Then

(
min Ri(A) : 1 ≤ i ≤ n

) ≤ λ1(A) ≤ (
max Ri(A) : 1 ≤ i ≤ n

)
. (2.1)

Lemma 2.2 ([4]) If G is a simple, connected graph and mi is the average degree of the
vertices adjacent to vi ∈ V , then

λ1(G) ≤ max(√mimj : 1 ≤ i, j ≤ n, vi, vj ∈ E). (2.2)

Ozeki established Ozeki’s inequality in [16]. This inequality holds some bounds for our
graph energy. This inequality is as follows.

Theorem 2.3 (Ozeki’s inequality) If ai, bi ∈ R+, 1 ≤ i ≤ n, then

n∑

i=1

a2
i

n∑

i=1

b2
i –

( n∑

i=1

aibi

)2

≤ n2

4
(M1M2 – m1m2)2,

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai, and m2 = max1≤i≤n bi.
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Polya–Szego found an interesting inequality in [17]. This inequality is set as follows.

Theorem 2.4 (Polya–Szego inequality) If si, ti ∈ R+ for 1 ≤ i ≤ n, then

n∑

i=1

s2
i

n∑

i=1

t2
i ≤ 1

4

(√
K1K2

k1k2
+

√
k1k2

K1K2

)2
( n∑

i=1

siti

)2

,

where K1 = max1≤i≤n si, K2 = max1≤i≤n ti, k1 = min1≤i≤n si, and k2 = max1≤i≤n ti.

Let G be a simple graph and X and Y be any real symmetric matrices of G. Let us consider
eigenvalues of these matrices. These eigenvalues hold in the following lemma.

Lemma 2.5 ([5]) Let M and N be two real symmetric matrices and 1 ≤ � ≤ n, then

�∑

i=1

λi(M + N) ≤
�∑

i=1

λi(M) +
�∑

i=1

λi(N).

Let x1, x2, . . . , xs be positive real numbers for 1 ≤ t ≤ s. Mt is defined as follows:

M1 =
x1 + x2 + · · · + xs

s
,

M2 =
x1x2 + x1x3 + · · · + x1xs + x2x3 + · · · + xs–1xs

1
2 s(s – 1)

,

· · ·
Ms–1 =

x1x2 + · · · + xs–1 + x1x2 + · · · + xs–2xs + · · · + x2x3 + · · · + xs–1xs

s
,

Ms = x1x2 · · ·xs.

Lemma 2.6 (Maclaurin’s symmetric mean inequality [2]) Let x1, x2, . . . , xs be real nonneg-
ative numbers, then

M1 ≥ M
1
2
2 ≥ M

1
3
3 ≥ · · · ≥ M

1
s

s .

This equality holds if and only if x1 = x2 = · · · = xs.

Theorem 2.7 Let G be a simple graph. Let zeros of the matching polynomial of this graph
be μ1,μ2, . . . ,μn. Then

ME(G) =
n∑

i=1

|μi|.

The zeros of the matching polynomial provide the equations
∑n

i=1 μ2
i = 2m and

∑
i<j μiμj =

–m.
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3 Main results
3.1 Upper bounds on eigenvalues
A lot of bounds for the eigenvalues have been found. We now establish further bounds
for λ1 and λ2 involving the n, m and d. Firstly we give some known bounds about graph
theory.

In the reference [14] a lower bound is given:

E(G) ≥ 2
√

m

if and only if G consists of a complete bipartite graph Kx,y. In this note, xy = m.
Indeed, McClelland’s famous bound is [15] E(G) ≤ √

2mn.
We now will give an upper bound for the eigenvalues of δX(G).

Theorem 3.1 If G is a simple, connected graph and D is the distance matrix of G, then

λ1(G) ≤ 1
4
√

DinDjn
.

Proof Let X = (x1, x2, . . . , xn)T be an eigenvector of D(G)–1(δX(G))D(G). Let one eigen-
component xi = 1 and the other eigencomponent 0 < xk ≤ 1 for every k. Let xj =
maxk(xk : vivk ∈ E, i ∼ k). We know (D(G)–1(δX(G))D(G))X = λ1(G)X. If we take the ith
equation of this equation, we obtain

λ1(G)xi =
∑

k

(
δ(i)δ(k)

) –1
2 xk (3.1)

=
∑

k

( v∑

j=1

(vDij
)

v∑

t=1

(vDkt
)
) –1

2

xk (3.2)

=
∑

k

(
1

√∑v
j=1(vDij)

1
√∑v

t=1(vDkt)

)

xk . (3.3)

We can take each Dij ’s as Din. So,

λ1(G)xi ≤
(

1√
nDin

∑

k

(
1

√∑v
t=1(vDkt)

))

xk . (3.4)

Using the Cauchy–Schwarz inequality,

λ1(G)xi =
(

1√
nDin

)(
n√
n

)

xk (3.5)

=
(

1√
Din

)

xk . (3.6)

From Lemmas 2.1 and 2.2, we have

λ1(G) ≤
√

1√
Din

1
√

Djn
(3.7)
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≤ 1
4
√

DinDjn
. (3.8)

�

Theorem 3.2 Let G be a simple, connected graph with m edges and n vertices. Let
λ1,λ2, . . . ,λn be eigenvalues of the distance-sum-connectivity matrix δX and E(G) be an
energy of δX, then

λ2(G) ≤
√

2m(
√

2mn – d1)
n3d1

–
4m2

n6d2
1

+ m,

where λ2 is the second greatest eigenvalue of δX.

Proof λ2 is the second largest eigenvalue of δX. Firstly, we show that λ1 ≥ 2m
n3d1

. We know

that (D(G)–1(δX(G))D(G))X = λ1(G)X. So, λ1(G)xi =
∑

k((δ(i)δ(j)) –1
2 dk

d1
)xk . Similar to The-

orem 3.1, if we take the ith equation of this equation, we obtain

λ1(G)xi =

(
∑

k

( v∑

m=1

(vDim
)

v∑

s=1

(vDjs
)
) –1

2 dk

d1

)

xk (3.9)

=
(∑

k

(
1

√∑v
m=1(vDim)

)(
1

√∑v
s=1(vDjs)

)
dk

d1

)

xk (3.10)

Using the Cauchy–Schwarz inequality and calculating the distance matrices of δX, we ob-
tain

λ1(G)xi ≥
(

1
n
√

n
1

n
√

n

)(∑

k

(
dk

d1

))

xk . (3.11)

We know that
∑n

k=1 = 2m. Hence,

λ1(G) ≥ 2m
d1n3 . (3.12)

Secondly, we will show that λ2(G) ≤
√

2m(
√

2mn–d1)
n3d1

– 4m2

n6d2
1

+ m.

We know that
∑n

i=1 λi = 0 and
∑n

i=1(λi)2 = 2m. So, λ1 + λ2 = –
∑n

i=3 λi. Hence,

λ2 ≤ |λ1| +

∣
∣
∣
∣
∣

n∑

i=3

λi

∣
∣
∣
∣
∣
.

If we take the square of both sides, we obtain

(λ2)2 ≤ (λ1)2 + 2|λ1|
∣
∣
∣
∣
∣

n∑

i=3

λi

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

n∑

i=3

λi

∣
∣
∣
∣
∣

2

.

By the Cauchy–Schwarz inequality with the above result, we have

(λ2)2 ≤ (λ1)2 + 2|λ1|
n∑

i=3

|λi| +
n∑

i=3

(λi)2
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≤ (λ1)2 + 2|λ1|
(
E(G) – |λ1| – |λ2|

)
+ 2m – (λ1)2 – (λ2)2.

If we make necessary calculations, we have

(λ2)2 ≤ |λ1|
(
E(G)

)
– |λ1|2 – |λ1||λ2| + m.

Since λ1 ≥ λ2 and λ1 ≤ d1, then d1 ≥ λ1 ≥ λ2. So,

(λ2)2 ≤ |λ1|
(
E(G)

)
– |λ1|2 – |λ1|d1 + m

≤ |λ1|
(
E(G) – d1

)
– λ2

1 + m.

Since E(G) ≤ √
2mn and λ1 ≥ 2m

n3d1
, then

λ2 ≤
√

2m
n3d1

(
E(G) – d1

)
+ m –

(
2m

n3d1

)2

≤
√

2m(
√

2mn – d1)
n3d1

–
4m2

n6d2
1

+ m. �

3.2 Upper and lower bounds on incidence energy
In the sequel of this paper, we expand bounds under the energy of δX(G) with n, D and
det(δX(G)).

Theorem 3.3 Let G be a regular graph of order n with m edges. Let IE(G) be an incidence
energy of δX(G) and σ1,σ2, . . . ,σn be singular values of δX(G). Then

IE
(δX1

)
(G) + IE

(δX2
)
(G) ≤ 2

√
� +

√

(n – 1)
(

2
√

2mn –
4m
n

)

+ 2
∣
∣
∣
∣

√
2mn –

2m
n

∣
∣
∣
∣).

Proof Let σi and σj be singular values of (δX1)(G) and (δX2)(G), respectively. We will use
that

∑n
i=2(σi)2 =

∑n
i=2 |λi| = E(G) – |λ1|.

By Lemma 2.5,

k∑

i=1

σi
(δX1 +δ X2

) ≤
k∑

i=1

σi
(δX1

)
+

k∑

i=1

σi
(δX1

)
.

So,

n∑

i=2,j=2

(σi + σj) ≤
n∑

i=2

σ 2
i +

n∑

i=2

σ 2
j + 2

√
√
√
√

n∑

i=2

σ 2
i

n∑

i=2

σ 2
j

= E
(δX1

)
– λ1 + E

(δX2
)

– λ1 + 2
√

(
E
(δX1

)
– λ1

)(
E
(δX2

)
– λ1

)
.

Since λ1 ≥ 2m
n and E(G) ≤ √

2mn, we get

n∑

i=2,j=2

(σi + σj) ≤ 2
√

2mn –
4m
n

+ 2
∣
∣
∣
∣

√
2mn –

2m
n

∣
∣
∣
∣.
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Since λ1 ≤ �,

IE
(δX1

)
(G) + IE

(δX2
)
(G) = σ1 + σ1 +

n∑

i=2,j=2

(σi + σj)

= 2
√

λ1 +

√
√
√
√(n – 1)

n∑

i=2,j=2

(σi + σj)2.

Hence,

IE
(δX1

)
(G) + IE

(δX2
)
(G) ≤ 2

√
� +

√

(n – 1)
(

2
√

2mn –
4m
n

)

+ 2
∣
∣
∣
∣

√
2mn –

2m
n

∣
∣
∣
∣).

�

Theorem 3.4 Let G be a graph with n nodes and m edges. Let the smallest and the largest
positive singular values σ1 and σn of δX, respectively, and det(δX) be a determinant of the
distance-sum-connectivity matrix δX of G. For n > 1,

E(G) ≤ n2

2(n – 1)

(
1

4
√

DinDjn
–

√
det(δX)
∏n–1

i=2

)

, (3.13)

where E(G) is the energy of δX.

Proof Suppose ai = 1 and bi = σi, 1 ≤ i ≤ n. Apply Theorem 2.3 to show that

n∑

i=1

12
n∑

i=1

σ 2
i –

( n∑

i=1

σi

)2

≤ n2

4
(σn – σ1)2. (3.14)

Thus, it is readily seen that

nE(G) ≤ n2

4
(σn – σ1)2 +

( n∑

i=1

σi

)2

. (3.15)

By the Cauchy–Schwarz inequality, we can express that

nE(G) ≤ n2

4
(σn – σ1)2 +

n∑

i=1

σ 2
i (3.16)

≤ n2

4
(σn – σ1)2 + E(G). (3.17)

Then it suffices to check that

E(G) ≤ n2

4(n – 1)
(σn – σ1)2 (3.18)

≤ n2

4(n – 1)
(
σ 2

n – 2σnσ1 + σ 2
1
)

(3.19)

≤ n2

4(n – 1)
(λn – 2

√
λn

√
λ1 + λ1) (3.20)
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≤ n2

4(n – 1)

(

λn – 2

√
det(δX)
∏n–1

i=2
+ λ1

)

. (3.21)

Since λ1 ≥ λ2 ≥ · · · ≥ λn and using Theorem 3.1, we obtain

E(G) ≤ n2

2(n – 1)

(
1

4
√

DinDjn
–

√
det(δX)
∏n–1

i=2

)

. (3.22)
�

3.3 Upper and lower bounds for matching energy
We determine an upper bound for the matching energy applying the Polya–Szego inequal-
ity, and we give some results using Maclaurin’s symmetric mean inequality.

Theorem 3.5 Let G be a connected graph and ME(G) be a matching energy of G, then

ME(G) ≥
√

8mns1sn

|s1| + |sn| , (3.23)

where μi is the zero of its matching polynomial.

Proof Let μ1,μ2, . . . ,μnbe the zeros of their matching polynomial. We suppose that si =
|μi|, where s1 ≤ s2 ≤ · · · ≤ sn and ti = 1, 1 ≤ i ≤ n. By Theorem 2.4, we obtain

n∑

i=1

|μi|2
n∑

i=1

12 ≤ 1
4

(√
|μn|
|μ1| +

√
|μ1|
|μn|

)2
( n∑

i=1

|μi|
)2

. (3.24)

Since
∑n

i=1 μ2
i = 2m,

n
n∑

i=1

|μi|2 ≤ 1
4

(√
|μn| + |μ1|

|μ1μn|
)2

( n∑

i=1

|μi|
)2

. (3.25)

It is easy to see that

ME(G) ≥
√

8mn|μ1μn|
|μ1| + |μn| . (3.26)

We can assume that the maximum |μi| is sn and the minimum |μi| is s1. So the bound can
be sharpened, that is,

ME(G) ≥
√

8mns1sn

|s1| + |sn| . (3.27)
�

Corollary 3.6 Let G be a k-regular graph. Then

ME(G) ≥ 2nk√s1

|s1| + k
. (3.28)
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Proof Since G is a k-regular graph, we can take sn = k and 2m = nk. By Theorem 3.5,

ME(G) ≥
√

4n2k2s1

|s1| + k
. (3.29)

Hence,

ME(G) ≥ 2nk√s1

|s1| + k
. (3.30)

�

Theorem 3.7 Let G be a connected graph with n vertices and m edges. Then

ME(G) ≥ n
√

2m
n – 1

(3.31)

if and only if μ1 = μ2 = · · · = μn.

Proof Let us consider s = n and xi = |μi| for i = 1, 2, . . . , n. Setting that in Lemma 2.6, we
get

M1 =
∑n

i=1 |μi|
n

=
ME(G)

n
. (3.32)

Also,

M2 =
1

n(n – 1)

n∑

i=1

n∑

j=1,j �=i

|μi||μj|. (3.33)

Since
∑n

i=1 μ2
i = 2m and

∑
i<j |μi||μj| = –m, then

M2 =
1

n(n – 1)

n∑

i=1

m2 =
m2

n(n – 1)
. (3.34)

We know that M1 ≥ M
1
2
2 . So,

ME(G) ≥ mn
n – 1

. (3.35)

The above equality holds if and only if μ1 = μ2 = · · · = μn. �

Theorem 3.8 Let G be a connected graph with n vertices and m edges. Then

ME(G) ≤2�

√
√
√
√(2m)� – n(n – 1)

n∏

i=1

|μi| 2�
n (3.36)

if and only if μ1 = μ2 = · · · = μn.
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Proof Let us consider s = n and xi = |μi|� for i = 1, 2, . . . , n. By Lemma 2.6, we determine

M2 =
1

n(n – 1)

n∑

i=1

n∑

j=1,j �=i

|μi|�|μj|� (3.37)

=
1

n(n – 1)

(( n∑

i=1

|μi|�|
)2

–
n∑

i=1

(|μj|�
)2

)

. (3.38)

Using the Cauchy–Schwarz inequality, we have

M2 ≤ 1
n(n – 1)

(( n∑

i=1

|μi|�
)2

–

( n∑

i=1

|μj|
)2�)

. (3.39)

It is clear that the above equality gives

M2 =
1

n(n – 1)
(
(2m)� –

(
ME(G)

)2�). (3.40)

Thus, it is pointed out that (ME(G))2� ≤ (2m)� – n(n – 1)M2. Since M
1
2
2 ≥ M

1
n
n and Mn =

∏n
i=1 |μi|�, then

(
ME(G)

)2� ≤ (2m)� – n(n – 1)

( n∏

i=1

|μi|�
) 2

n

. (3.41)

Hence,

ME(G) ≤2�

√
√
√
√(2m)� – n(n – 1)

n∏

i=1

|μi| 2�
n . (3.42)

The above result holds if and only if μ1 = μ2 = · · · = μn. �

4 Conclusions
The main goal of this work is to examine distance-sum-connectivity matrix δX. We find
some upper bounds for the distance-sum-connectivity matrix of a graph involving its
degrees, its edges, and its eigenvalues. We also give some results for the distance-sum-
connectivity matrix of a graph in terms of its energy, its incidence energy, and its matching
energy.
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