
Yang and Ren Journal of Inequalities and Applications  (2018) 2018:172 
https://doi.org/10.1186/s13660-018-1765-0

R E S E A R C H Open Access

Some results of Heron mean
and Young’s inequalities
Changsen Yang1* and Yonghui Ren1

*Correspondence:
yangchangsen0991@sina.com
1College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, China

Abstract
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1 Introduction
For two positive numbers a, b and v ∈ [0, 1], the quantity

Fv(a, b) = (1 – v)
√

ab + v
a + b

2
(1.1)

is called Heron mean. And the inequality

avb1–v ≤ va + (1 – v)b, a, b > 0 and 0 ≤ v ≤ 1 (1.2)

is called Young’s inequality. Even though these inequalities look very simple, they have
attracted many researchers in this field, where adding a positive term to refine the in-
equalities is possible.

Heron mean is the interpolation between arithmetic and geometric means for a, b ≥ 0
and v ∈ [0, 1]. We can see papers [1, 2], and [3] for some new results about Heron mean
and arithmetic–geometric mean.

The first refinements of Young’s inequality is the squared version proved in [4]

(
avb1–v)2 + min{v, 1 – v}2(a – b)2 ≤ (

va + (1 – v)b
)2. (1.3)

Later, the authors in [5] obtained the other interesting refinement

avb1–v + min{v, 1 – v}(√a –
√

b)2 ≤ va + (1 – b). (1.4)

A common fact about refinements (1.2) and (1.3) is having one refining term.
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In the recent paper [6], some reverses and refinements of Young’s inequality were pre-
sented. It was proved that

⎧
⎨

⎩
avb1–v + v(

√
a –

√
b)2 + r1( 4√ab –

√
b)2 ≤ va + (1 – v)b, 0 ≤ v ≤ 1

2 ,

avb1–v + (1 – v)(
√

a –
√

b)2 + r1( 4√ab –
√

a)2 ≤ va + (1 – v)b, 1
2 ≤ v ≤ 1,

(1.5)

where r1 = min{2r, 1 – 2r} for r = min{v, 1 – v}. In the same paper, the following reversed
versions were proved:

⎧
⎨

⎩
va + (1 – v)b + r1( 4√ab –

√
a)2 ≤ avb1–v + (1 – v)(

√
a –

√
b)2, 0 ≤ v ≤ 1

2 ,

va + (1 – v)b + r1( 4√ab –
√

b)2 ≤ avb1–v + v(
√

a –
√

b)2, 1
2 ≤ v ≤ 1,

(1.6)

where r1 = min{2r, 1 – 2r} for r = min{v, 1 – v}.
In this paper, our main results are to give refinements of Heron mean for scalars and

matrices in Sect. 2; and in Sect. 3, in a different way, to get an operator version of (1.5),
which is the refinement of (1.4). Besides, in the same section, the refinements of Young’s
inequalities for the Hilbert–Schmidt norm will be presented using the same technology
as in Sect. 2.

For our convenience, we firstly give some denotations.
Throughout the paper, H is a Hilbert space and B(H) denotes the set of all bounded lin-

ear operators on a complex Hilbert space H . An operator A ∈ B+(H) is positive invertible if
(Ax, x) > 0 for every vector x ∈ H \ {0}. Mn denotes the space of all n×n complex matrices.
The Hilbert–Schmidt norm of A = [aij] ∈ Mn is defined by

‖A‖2 =

√√√
√

n∑

i,j=1

|aij|2.

It is well known that the Hilbert–Schmidt norm is unitarily invariant in the sense that
‖|UAV‖| = ‖|A‖| for all unitary matrices U , V ∈ Mn. What is more, we define

A∇vB = (1 – v)A + vB, v ∈ [0, 1],

A�vB = A
1
2
(
A– 1

2 BA– 1
2
)vA

1
2 , v ∈ R

denoted by A∇B and A�B, respectively, when v = 1
2 .

2 Main results
2.1 Refinements of Heron mean
Heron mean is defined by

Fv(a, b) = (1 – v)
√

ab + v
a + b

2
. (2.1)

It is easy to see that Fv(a, b) is an increasing function in v on [0, 1] and

√
ab = F0(a, b) ≤ Fv(a, b) ≤ F1(a, b) =

a + b
2

. (2.2)
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Our purpose of this section is to give refinements of Heron mean for a scalar and some
other auxiliary results.

Theorem 2.1 For a, b ≥ 0, and v ∈ [0, 1], we have

1
2

v(1 – v)(
√

a –
√

b)2 +
√

ab ≤ Fv(a, b), (2.3)

Fv(a, b) ≤ a + b
2

–
1
2

v(1 – v)(
√

a –
√

b)2, (2.4)

where Fv(a, b) = (1 – v)
√

ab + v a+b
2 .

Proof Firstly,

Fv(a, b) –
1
2

v(1 – v)(
√

a –
√

b)2

=
1
2

(va + vb + 2
√

ab – 2v
√

ab) –
1
2
(
va + vb – 2v

√
ab – v2a – v2b + 2v2

√
ab

)

= v2
(

a + b
2

–
√

ab
)

+
√

ab

≥ √
ab.

Next, we also have

a + b
2

–
1
2

v(1 – v)(
√

a –
√

b)2 – Fv(a, b)

=
1
2
(
a + b – va – vb + 2v

√
ab + v2a + v2b – 2v2

√
ab – va – vb – 2

√
ab + 2v

√
ab

)

=
1
2
[
(1 – 2v)a + (1 – 2v)b – 2(1 – 2v)

√
ab + v2(a + b – 2

√
ab)

]

=
1
2

(1 – v)2(
√

a –
√

b)2

≥ 0. �

It is clear that 1
2 v(1 – v)(

√
a –

√
b)2 ≥ 0, so (2.3) and (2.4) are refinements of (2.2).

With Theorem 2.1 in hand, we will give refinements of Heron mean for operators by the
monotonicity property of operator functions.

Lemma 2.2 Let X ∈ B(H) be self-adjoint, and let f and g be continuous real functions such
that f (t) ≥ g(t) for all t ∈ Sp(X) (the spectrum of X). Then f (X) ≥ g(X).

For more details about this property, the reader is referred to [7].

Theorem 2.3 Let A, B ∈ B+(H) be positive invertible operators, I be the identity operator,
and v ∈ [0, 1], then we have

v(1 – v)(A � B – A�B) + A�B ≤ Fv(A, B) (2.5)
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and

Fv(A, B) ≤ A � B – v(1 – v)(A � B – A�B), (2.6)

where Fv(A, B) = vA � B + (1 – v)A�B.

Proof Let b = 1 in (2.3) and expand the summand to get

1
2

v(1 – v)(a + 1 – 2
√

a) +
√

a ≤ 1
2

v(a + 1) + (1 – v)
√

a. (2.7)

Note that the operator X = A– 1
2 BA– 1

2 has a positive spectrum, and by Lemma 2.2 and (2.7)
we have

1
2

v(1 – v)
(
X + I – 2X

1
2
)

+ X
1
2 ≤ 1

2
v(X + I) + (1 – v)X

1
2 . (2.8)

Finally, multiplying inequality (2.8) by A 1
2 on the left- and right-hand sides, we can get

1
2

v(1 – v)(A + B – 2A�B) + A�B ≤ 1
2

v(A + B) + (1 – v)A�B,

which is equivalent to (2.5).
Using the same technique in (2.4), we can get (2.6). So we completed the proof. �

Next, we will present the refinements of Heron mean for the Hilbert–Schmidt norm.

Theorem 2.4 Suppose A, B, X ∈ Mn such that A, B are two positive definite matrices for
0 ≤ v ≤ 1, then we have

1
2

v(1 – v)‖|AX – XB‖|22 +
∥
∥
∣
∣A

1
2 XB

1
2
∥
∥
∣
∣2
2

≤ 1
2

v‖|AX + XB‖|22 + (1 – 2v)
∥
∥
∣
∣A

1
2 XB

1
2
∥
∥
∣
∣2
2

≤ 1
2
‖|AX + XB‖|22 –

1
2

v(1 – v)‖|AX – XB‖|22 –
∥
∥
∣
∣A

1
2 XB

1
2
∥
∥
∣
∣2
2. (2.9)

Proof Replace a, b by a2, b2 in (2.3) and (2.4), then we have

1
2

v(1 – v)(a – b)2 +
(
a

1
2 b

1
2
)2

≤ 1
2

v(a + b)2 + (1 – 2v)
(
a

1
2 b

1
2
)2

≤ 1
2

(a + b)2 –
1
2

v(1 – v)(a – b)2 –
(
a

1
2 b

1
2
)2. (2.10)

Since A and B are positive definite, it follows by the spectral theorem that there exist uni-
tary matrices U , V ∈ Mn such that

A = U�1U∗, B = V�2V ∗,

where �1 = diag(λ1,λ2, . . . ,λn), �2 = diag(ν1,ν2, . . . ,νn), λi,νi > 0, i = 1, 2, . . . , n.
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Let Y = U∗XV = [yil], then

AX – XB = U
[
(λi – νl)yil

]
V ∗;

A
1
2 XB

1
2 = U

[(
λ

1
2
i ν

1
2

l
)
yil

]
V ∗;

and

AX + XB = U
[
(λi + νl)yil

]
V ∗.

Now, by (2.10) and the unitary invariance of the Hilbert–Schmidt norm, we have

1
2

v(1 – v)‖|AX – XB‖|22 +
∥
∥
∣
∣A

1
2 XB

1
2
∥
∥
∣
∣2
2

=
n∑

i,l=1

{
1
2

v(1 – v)(λi – νl)2 +
(
λ

1
2
i ν

1
2

l
)2

}
|yil|2

≤
n∑

i,l=1

{
1
2

v(λi + νl)2 + (1 – 2v)
(
λ

1
2
i ν

1
2

l
)2

}
|yil|2

=
1
2

v‖|AX + XB‖|22 + (1 – 2v)
∥∥∣∣A

1
2 XB

1
2
∥∥∣∣2

2

≤
n∑

i,l=1

{
1
2

(λi + νl)2 –
1
2

v(1 – v)(λi – νl)2 –
(
λ

1
2
i ν

1
2

l
)2

}
|yil|2

=
1
2
‖|AX + XB‖|22 –

1
2

v(1 – v)‖|AX – XB‖|22 –
∥∥∣∣A

1
2 XB

1
2
∥∥∣∣2

2.

So we finished the proof. �

2.2 Refinements of Young’s inequalities
It is well known that

a1–vbv ≤ (1 – v)a + vb, a, b > 0 and v ∈ [0, 1] (2.11)

with equality if and only if a = b is called Young’s inequality.
An operator version of (2.11) in [7] says that

A�vB ≤ A∇vB (2.12)

for A, B ∈ B+(H) and v ∈ [0, 1]. Kittaneh and Manasrah [5] gave a different type of improve-
ment of Young’s matrix inequalities:

2r(A∇B – A�B) ≤ A∇vB – A�vB ≤ 2s(A∇B – A�B) (2.13)

for A, B ∈ B+(H), v ∈ [0, 1], r = min{v, 1 – v}, and s = max{v, 1 – v}.
Here, we give the first inequalities’ refinements of (2.13). Before that, we need a lemma.
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Lemma 2.5 ([8])

A∇μ(A�νB) = A∇μνB – μ(A∇νB – A�νB)

for 0 ≤ μ,ν ≤ 1 and A, B are positive operators.

Proof

A∇μ(A�νB)

= (1 – μ)A + μA�νB

= A + μνB – μνA – μ
[
(1 – ν)A + νB – A�νB

]

= A∇μνB – μ(A∇νB – A�νB). �

Theorem 2.6
(1) If 0 ≤ ν ≤ 1

2 , then

2r1(A∇ 1
4

B – A� 1
4

B) + (2r – r1)(A∇B – A�B) ≤ A∇vB – A�vB. (2.14)

(2) If 1
2 ≤ ν ≤ 1, then

2r1(A∇ 3
4

B – A� 3
4

B) + (2r – r1)(A∇B – A�B) ≤ A∇vB – A�vB, (2.15)

where r = min{ν, 1 – ν} and r1 = min{2r, 1 – 2r}.

Proof For 0 ≤ ν ≤ 1
2 , then we have 0 ≤ 2ν ≤ 1. Substituting B by A�B and ν by 2ν in the

first inequality (2.13), we have

2 min{2r, 1 – 2r}(A∇(A�B) – A�(A�B)
) ≤ A∇2v(A�B) – A�2v(A�B). (2.16)

By computing directly with Lemma 2.5, then we have

2r1(A∇ 1
4

B – A� 1
4

B) + (2r – r1)(A∇B – A�B) ≤ A∇vB – A�vB. (2.17)

Exchanging A for B and ν for 1 – ν in (2.17) for 1
2 ≤ ν ≤ 1, we get

2r1(A∇ 3
4

B – A� 3
4

B) + (2r – r1)(A∇B – A�B) ≤ A∇vB – A�vB. (2.18)

So we completed the proof. �

Remark 2.7 Our inequalities (2.14) and (2.15) are stronger than the first inequality (2.13),
that is,

(1) for 0 ≤ ν ≤ 1
2 ,

2r(A∇B – A�B) ≤ 2r1(A∇ 1
4

B – A� 1
4

B) + (2r – r1)(A∇B – A�B); (2.19)
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(2) for 1
2 ≤ ν ≤ 1,

2r(A∇B – A�B) ≤ 2r1(A∇ 3
4

B – A� 3
4

B) + (2r – r1)(A∇B – A�B), (2.20)

where ν ∈ [0, 1], r = min{ν, 1 – ν} and r1 = min{2r, 1 – 2r}.

Proof For 0 ≤ ν ≤ 1
4 , then r = ν , r1 = 2ν . So (2.19) is equivalent to

4ν(A∇ 1
4

B – A� 1
4

B) ≥ 2ν(A∇B – A�B), (2.21)

that is,

3
2

A +
1
2

B – 2A
1
2
(
A– 1

2 BA– 1
2
) 1

4 A
1
2 ≥ A + B

2
– A

1
2
(
A– 1

2 BA– 1
2
) 1

2 A
1
2 . (2.22)

So we only need to prove

I +
(
A– 1

2 BA– 1
2
) 1

2 ≥ 2
(
A– 1

2 BA– 1
2
) 1

4 , (2.23)

which is clearly true for A, B are positive definite operators.
For 1

4 ≤ ν ≤ 1
2 , then r = ν , r1 = 1 – 2ν . Equation (2.19) is equivalent to

2(1 – 2v)(A∇ 1
4

B – A� 1
4

) + (2v – 1 + 2v)(A∇B – A�B) ≥ 2ν(A∇B – A�B), (2.24)

that is,

2(A∇ 1
4

B – A� 1
4

B) ≥ (A∇B – A�B). (2.25)

By (2.21), we can prove (2.25) directly.
Similarly, we can prove (2.20).
For 3

4 ≤ ν ≤ 1, then r = 1 – ν , r1 = 2 – 2ν . So (2.20) is equivalent to

(4 – 4v)(A∇ 3
4

B – A� 3
4

B) ≥ 2(1 – v)(A∇B – A�B), (2.26)

that is,

B + A
1
2
(
A– 1

2 BA– 1
2
) 1

2 A
1
2 ≥ 2A

1
2
(
A– 1

2 BA– 1
2
) 3

4 A
1
2 . (2.27)

Multiplying by A– 1
2 on both sides and dividing by (A– 1

2 BA– 1
2 ) 1

2 , we get

(
A– 1

2 BA– 1
2
) 1

2 + I ≥ 2
(
A– 1

2 BA– 1
2
) 1

4 , (2.28)

which is clearly true for A, B are positive definite operators.
For 1

2 ≤ ν ≤ 3
4 , then r = 1 – ν , r1 = 2ν – 1. So (2.20) is equivalent to

(4v – 2)(A∇ 3
4

B – A� 3
4

B) ≥ (2ν – 1)(A∇B – A�B), (2.29)
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that is,

2(A∇ 3
4

B – A� 3
4

B) ≥ (A∇B – A�B), (2.30)

which can be got directly from (2.26). �

Here, we should remind the readers that the reverse of Theorem 2.6 is stronger than
(2.13) and only holds for 0 ≤ ν ≤ 1

4 and 3
4 ≤ ν ≤ 1 in Zhao and Li [8]. We also can see

Zhao and Wu [6] for a different method to get Theorem 2.6.
Next, we will present refinements of Young’s inequalities (2.14) and (2.15) for the

Hilbert–Schmidt norm. Firstly, we give their scalar type inequalities. That is to say, for
0 ≤ ν ≤ 1

2 , we have

a1–vbv + v(
√

a –
√

b)2 + r1
( 4√ab –

√
a
)2 ≤ (1 – v)a + vb, (2.31)

where ν ∈ [0, 1], r = min{ν, 1 – ν}, and r1 = min{2r, 1 – 2r}.
Substituting a by a2 and b by b2 in (2.31) respectively, we get

(
a1–vbv)2 + v(a – b)2 + r1(

√
ab – a)2 ≤ (1 – v)a2 + vb2, (2.32)

that is,

(
a1–vbv)2 + v(a – b)2 + r1(

√
ab – a)2 + 2v(1 – v)ab ≤ (

(1 – v)a + vb
)2. (2.33)

Similarly, for 1
2 ≤ ν ≤ 1, we have

(
a1–vbv)2 + (1 – v)(a – b)2 + r1(

√
ab – b)2 + 2v(1 – v)ab ≤ (

(1 – v)a + vb
)2. (2.34)

Using the same method with Theorem 2.4 in (2.33) and (2.34), we can have the following
results.

Corollary 2.8 Suppose A, B, X ∈ Mn such that A, B are two positive definite matrices, for
0 ≤ ν ≤ 1

2 , we have

∥
∥A1–vXBv∥∥2

2 + r‖AX – XB‖2
2 + r1

∥
∥A

1
2 XB

1
2 – AX

∥
∥2

2 + 2v(1 – v)
∥
∥A

1
2 XB

1
2
∥
∥2

2

≤ ∥
∥(1 – v)AX – vXB

∥
∥2

2; (2.35)

for 1
2 ≤ ν ≤ 1, we have

∥∥A1–vXBv∥∥2
2 + r‖AX – XB‖2

2 + r1
∥∥A

1
2 XB

1
2 – XB

∥∥2
2 + 2v(1 – v)

∥∥A
1
2 XB

1
2
∥∥2

2

≤ ∥∥(1 – v)AX – vXB
∥∥2

2. (2.36)

3 Discussion
In the theory of operators, the operator means and operator inequalities are two key con-
cepts. An effective method to study operators is to find some refinements among some
operator means, and these inequalities are usually based on scalars or matrices.
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4 Conclusion
In order to better estimate the Heron mean, a refinement inequality about the classical
interpolation between arithmetic mean and geometric mean by Heron mean is obtained,
which is also applicable to establishing the inequalities for operators and matrices. Next an
operator version refinement inequality about Young’s inequality is also established, which
is a generalization on the results obtained previously by Kittaneh and Manasrah [5]. It is
worth noting that the inequality mentioned can also give the refinement inequality about
Young’s inequality, which was presented by Zhao and Wu [6].
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