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Abstract
In this paper, we construct an iterative method by a generalized viscosity explicit rule
for a countable family of strictly pseudo-contractive mappings in a q-uniformly
smooth Banach space. We prove strong convergence theorems of proposed
algorithm under some mild assumption on control conditions. We apply our results
to the common fixed point problem of convex combination of family of mappings
and zeros of accretive operator in Banach spaces. Furthermore, we also give some
numerical examples to support our main results.
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1 Introduction
In this paper, we assume that E is a real Banach space with dual space E∗ and C is a
nonempty subset of E. Let q > 1 be a real number. The generalized duality mapping
Jq : E → 2E∗ is defined by

Jq(x) =
{

x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖q,‖x̄‖ = ‖x‖q–1},

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗. In par-
ticular, Jq = J2 is called the normalized duality mapping. If E is smooth, then Jq is single-
valued and denoted by jq (see [1]). If E := H is a real Hilbert space, then J = I , where I is
the identity mapping. Further, we have the following properties of the generalized duality
mapping Jq:

• Jq(x) = ‖x‖q–2J2(x) for all x ∈ E with x �= 0.
• J(tx) = tq–1Jq(x) for all x ∈ E and t ≥ 0.
• Jq(–x) = –Jq(x) for all x ∈ E.

Let T be a self-mapping of C. We denote the fixed point set of the mapping T by F(T) =
{x ∈ C : x = Tx}. A mapping f : C → C is said to be a contraction if there exists a constant
ρ ∈ (0, 1) satisfying

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ C.
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We use �C to denote the collection of all contractions from C into itself. Recall that a
mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping T : C → C is said to be λ-strict pseudo-contraction if for all x, y ∈ C, there exist
λ > 0 and jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (1)

It is not hard to show that (1) equivalent to the following inequality:

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥q, ∀x, y ∈ C. (2)

If E := H is a Hilbert space, then (1) (and so (2)) is equivalent to the following inequality:

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ C, (3)

where k = 1 – 2λ < 1. We assume that k ≥ 0, so that k ∈ [0, 1). Note that the class of strictly
pseudo-contractive mappings include the class of nonexpansive mappings as a particular
case in Hilbert spaces. Clearly, T is nonexpansive if and only if T is a 0-strict pseudo-
contraction. Strict pseudo-contractions were first introduced by Browder and Petryshyn
[2] in 1967. They have more powerful applications than nonexpansive mappings do in
solving inverse problems (see, e.g., [3]). Therefore it is more interesting to study the theory
of iterative methods for strictly pseudo-contractive mappings. Several researchers studied
the class of strictly pseudo-contractive mappings in Hilbert and Banach spaces (see, e.g.,
[4–9] and the references therein).

Now, we give some examples of λ-strictly pseudo-contractive mappings.

Example 1.1 ([8]) Let E = R with the usual norm, and let C = (0,∞). Let T : C → C be
defined by

Tx =
x2

1 + x
, x ∈ C.

Then, T is a 1-strict pseudo-contraction.

Example 1.2 ([8]) Let E = R with the usual norm, and let C = [–1, 1]. Let T : C → C be
defined by

Tx =

⎧
⎨

⎩
x, x ∈ [–1, 0],

x – x2, x ∈ [0, 1].

Then, T is a λ-strict pseudo-contraction with constant λ > 0.

Over the last several years, the implicit midpoint rule (IMR) has become a powerful nu-
merical method for numerically solving time-dependent differential equations (in partic-
ular, stiff equations) (see [10–15]) and differential algebraic equations (see [16]). Consider
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the following initial value problem:

x′(t) = f
(
x(t)

)
, x(t0) = x0, (4)

where f : RM →R
M is a continuous function. The IMR is an implicit method given by the

following finite difference scheme [17]:

⎧
⎨

⎩
y0 = x0,

yn+1 = yn + hf ( yn+yn+1
2 ), n ≥ 0,

(5)

where h > 0 is a time step. It is known that if f : RM → R
M is Lipschitz continuous and

sufficiently smooth, then the sequence {yn} converges to the exact solution of (4) as h → 0
uniformly over t ∈ [t0, t∗] for any fixed t∗ > 0. If the function f is written as f (x) = x – g(x),
then (5) becomes

⎧
⎨

⎩
y0 = x0,

yn+1 = yn + h[ yn+yn+1
2 – g( yn+yn+1

2 )], n ≥ 0,
(6)

and the critical points of (4) are the fixed points of the problem x = g(x).
Based on IMR (5), Alghamdi et al. [18] introduced the following two algorithms for the

solution of the fixed point problem x = Tx, where T is a nonexpansive mapping in a Hilbert
space H :

xn+1 = xn – tn

[
xn + xn+1

2
– T

(
xn + xn+1

2

)]
, n ≥ 0, (7)

xn+1 = (1 – tn)xn + tnT
(

xn + xn+1

2

)
, n ≥ 0, (8)

for x0 ∈ H , with {tn}∞n=1 ⊂ (0, 1). They proved that these two schemes converge weakly to
a point in F(T).

To obtain strong convergence, Xu et al. [19] applied the viscosity approximation method
introduced by Moudafi [20] to the IMR for a nonexpansive mapping T and proposed the
following viscosity implicit midpoint rule in Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(

xn + xn+1

2

)
, n ≥ 1, (9)

where {αn} is a real control condition in (0, 1). They also proved that the sequence {xn}
generated by (9) converges strongly to a point x∗ ∈ F(T), which solves the variational in-
equality

〈
(f – I)x∗, z – x∗〉 ≤ 0, z ∈ F(T). (10)

Later, Ke and Ma [21] improved the viscosity implicit midpoint rule by replacing the mid-
point by any point of the interval [xn, xn+1]. They introduced the so-called generalized vis-
cosity implicit rules to approximating the fixed point of a nonexpansive mapping T in
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Hilbert spaces H as follows:

xn+1 = αnf (xn) + (1 – αn)T
(
snxn + (1 – sn)xn+1

)
, n ≥ 1. (11)

They also proved that the sequence {xn} generated by (11) converges strongly to a point
x∗ ∈ F(T) that solves the variational inequality (10).

In numerical analysis, it is clear that the computation by the IMR is not an easy work in
practice. Because the IMR need to compute at every time steps, it can be much harder to
implement. To overcome this difficulty, for solving (4), we consider the helpful method, the
so-called explicit midpoint method (EMR), given by the following finite difference scheme
[22, 23]:

⎧
⎪⎪⎨

⎪⎪⎩

y0 = x0,

ȳn+1 = yn + hf (yn),

yn+1 = yn + hf ( yn+ȳn+1
2 ), n ≥ 0.

(12)

Note that the EMR (12) calculates the system status at a future time from the currently
known system status, whereas IMR (5) calculates the system status involving both the
current state of the system and the later one (see [23, 24]).

In 2017, Marino et al. [25] combined the generalized viscosity implicit midpoint rules
(11) with the EMR (12) for a quasi-nonexpansive mapping T and introduced the following
so-called generalized viscosity explicit midpoint rule in Hilbert spaces H as follows:

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Txn,

xn+1 = αnf (xn) + (1 – αn)T(snxn + (1 – sn)x̄n+1), n ≥ 1.
(13)

They also showed that, under certain assumptions imposed on the parameters, the se-
quence {xn} generated by (13) converges strongly to a point x∗ ∈ F(T), which solves the
variational inequality (10).

The above results naturally bring us to the following questions.

Question 1 Can we extend the generalized viscosity explicit midpoint rule (13) to higher
spaces other than Hilbert spaces? Such as a 2-uniformly smooth Banach space or, more
generally, in a q-uniformly smooth Banach space.

Question 2 Can we obtain a strong convergence result of generalized viscosity explicit
midpoint rule (13) for finding the set of common fixed points of a family of mappings?
Such as a countable family of strict pseudo-contractions.

The purpose of this paper is to give some affirmative answers to the questions raised.
We introduce an iterative algorithm for finding the set of common fixed points of a count-
able family of strict pseudo-contractions by a generalized viscosity explicit rule in a q-
uniformly smooth Banach space. We prove the strong convergence of the proposed al-
gorithm under some mild assumption on control conditions. We apply our results to the
common fixed point problem of a convex combination of a family of mappings and ze-
ros of an accretive operator in Banach spaces. Furthermore, we also give some numerical
examples to support our main results.
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2 Preliminaries
Let E be a real Banach space with norm ‖ · ‖ and dual space E∗ of E. The symbol 〈x, x∗〉
denotes the pairing between E and E∗, that is, 〈x, x∗〉 = x∗(x), the value of x∗ at x. The
modulus of convexity of E is the function δ : (0, 2] → [0, 1] defined by

δ(ε) = inf

{
1 –

‖x + y‖
2

: x, y ∈ E,‖x‖ = ‖y‖ = 1,‖x – y‖ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. For p > 1, we
say that E is said to be p-uniformly convex if there is cp > 0 such that δE(ε) ≥ cpε

p for all
ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ := [0,∞) →R
+ defined by

ρE(τ ) = sup

{‖x + τy‖ + ‖x – τy‖
2

– 1 : ‖x‖,‖y‖ ≤ 1
}

.

A Banach space E is said to be uniformly smooth if ρE(τ )
τ

→ 0 as τ → 0. For q > 1, a Banach
space E is said to be q-uniformly smooth if there exists cq > 0 such that ρE(τ ) ≤ cqτ

q for
all τ > 0. If E is q-uniformly smooth, then q ≤ 2, and E is also uniformly smooth. Further,
E is p-uniformly convex (q-uniformly smooth) if and only if E∗ is q-uniformly smooth
(p-uniformly convex), where p ≥ 2 and 1 < q ≤ 2 satisfy 1

p + 1
q = 1. It is well known that

Hilbert spaces Lp and lp (p > 1) are uniformly smooth (see [26]). More precisely, the spaces
Lp and lp are min{p, 2}-uniformly smooth for every p > 1.

Definition 2.1 Let C a be nonempty closed convex subsets of E, and let Q be a mapping
of E onto C. Then Q is said to be:

• sunny if Q(Qx + t(x – Qx)) = Qx for all x ∈ C and t ≥ 0.
• retraction if Qx = x for all x ∈ C.
• a sunny nonexpansive retraction if Q is sunny, nonexpansive, and a retraction from E

onto C.

It is known that if E := H is a real Hilbert space, then a sunny nonexpansive retraction Q
coincides with the metric projection from E onto C. Moreover, if E is uniformly smooth
and T is a nonexpansive mapping of C into itself with F(T) �= ∅, then F(T) is a sunny
nonexpansive retraction from E onto C (see [27]). We know that in a uniformly smooth
Banach space, a retraction Q : C → E is sunny and nonexpansive if and only if 〈x–Qx, jq(y–
Qx)〉 ≤ 0 for all x ∈ E and y ∈ C (see [28]).

Lemma 2.2 ([29]) Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E. Let S : C → C be a nonexpansive self-mapping such that F(S) �= ∅ and f ∈ �C . Let
{zt} be the net sequence defined by

zt = tf (zt) + (1 – t)Szt , t ∈ (0, 1).

Then:
(i) {xt} converges strongly as t → 0 to a point Q(f ) ∈ F(S), which solves the variational

inequality

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ F(S).
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(ii) Suppose that {xn} is a bounded sequence such that limn→∞ ‖xn – Sxn‖ = 0. If
Q(f ) := limt→0 xt exists, then

lim sup
n→∞

〈
(f – I)Q(f ), jq

(
xn – Q(f )

)〉 ≤ 0.

Lemma 2.3 ([30]) Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space E. Let T : C → C be a λ-strict pseudo-contraction. For all x ∈ C, we define
Tθ x := (1 – θ )x + θTx. Then, as θ ∈ (0, δ], δ = min{1, ( qλ

κq
)

1
q–1 }, where κq is the q-uniform

smoothness constant, and Tθ : C → C is nonexpansive such that F(Tθ ) = F(T).

Using the concept of subdifferentials, we have the following inequality.

Lemma 2.4 ([31]) Let q > 1, and let E be a real normed space with the generalized duality
mapping Jq. Then, for any x, y ∈ E, we have

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x + y)

〉
, (14)

where jq(x + y) ∈ Jq(x + y).

Lemma 2.5 ([32]) Let p > 1 and r > 0 be two fixed real numbers, and let E be a uniformly
convex Banach space. Then, for all x, y ∈ Br and t ∈ [0, 1],

∥∥tx + (1 – t)y
∥∥p ≤ t‖x‖p + (1 – t)‖y‖p – t(1 – t)c‖x – y‖p,

where c > 0.

Lemma 2.6 ([33]) Suppose that q > 1. Then

ab ≤ 1
q

aq +
(

q – 1
q

)
b

q
q–1

for positive real numbers a, b.

Lemma 2.7 ([34]) Let {an} be a sequence of nonnegative real numbers, {γn} be a sequence of
(0, 1) with

∑∞
n=1 γn = ∞, {cn} be a sequence of nonnegative real number with

∑∞
n=1 cn < ∞,

and let {bn} be a sequence of real numbers with lim supn→∞ bn ≤ 0. Suppose that

an+1 = (1 – γn)an + γnbn + cn

for all n ∈N. Then, limn→∞ an = 0.

Lemma 2.8 ([35]) Let {sn} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that sni < sni+1 for all i ∈ N. Then there exists an increasing sequence
{mk} ⊂ N such that limk→∞ mk = ∞ and the following properties are satisfied by all suffi-
ciently large numbers k ∈N:

smk ≤ smk +1 and sk ≤ smk +1.

In fact, mk := max{j ≤ k : sj ≤ sj+1}.
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Definition 2.9 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Let {Tn}∞n=1 be a family of mappings of C into itself. We say that {Tn}∞n=1 satisfies the AKTT-
condition if

∞∑

n=1

sup
w∈C

‖Tn+1w – Tnw‖ < ∞. (15)

Lemma 2.10 ([34]) Let C be a nonempty closed convex subset of a real Banach space E.
Suppose that {Tn}∞n=1 satisfies the AKTT-condition. Then, for each x ∈ C, {Tnx} converges
strongly to some point of C. Moreover, let T be the mapping of C into itself defined by Tx =
limn→∞ Tnx for all x ∈ C. Then, limn→∞ supw∈C ‖Tw – Tnw‖ = 0.

In the following, we will write that ({Tn}, T) satisfies the AKTT-condition if {Tn} satisfies
the AKTT-condition and T is defined by Lemma 2.10 with F(T) =

⋂∞
n=1 F(Tn).

3 Main results
Theorem 3.1 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all

x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(16)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the following conditions:
(C1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(C2) lim infn→∞ βn(1 – βn)(1 – tn) > 0.
Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then, {xn} defined by
(16) converges strongly to x∗ = Q(f ) ∈ , which solves the variational inequality

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ , (17)

where Q is a sunny nonexpansive retraction of C onto .

Proof First, we show that {xn} is bounded. From Lemma 2.3 we have that Sn is non-
expansive such that F(Sn) = F(Tn) for all n ≥ 1. Put zn := tnxn + (1 – tn)x̄n+1. For each
z ∈  :=

⋂∞
n=1 F(Tn), we have

‖zn – z‖ =
∥∥tn(xn – z) + (1 – tn)(x̄n+1 – z)

∥∥

≤ tn‖xn – z‖ + (1 – tn)‖x̄n+1 – z‖
≤ tn‖xn – z‖ + (1 – tn)

(
βn‖xn – z‖ + (1 – βn)‖Snxn – z‖)

≤ tn‖xn – z‖ + (1 – tn)βn‖xn – z‖ + (1 – tn)(1 – βn)‖xn – z‖
= ‖xn – z‖. (18)
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It follows that

‖xn+1 – z‖ =
∥∥αnf (xn) + (1 – αn)Snzn – z

∥∥

=
∥∥αn

(
f (xn) – f (z)

)
+ αn

(
f (z) – z

)
+ (1 – αn)(Snzn – z)

∥∥

≤ αn
∥∥f (xn) – f (z)

∥∥ + αn
∥∥f (z) – z

∥∥ + (1 – αn)‖Snzn – z‖

≤ (
1 – (1 – ρ)αn

)‖xn – z‖ + (1 – ρ)αn
‖f (z) – z‖

1 – ρ

≤ max

{
‖xn – z‖,

‖f (z) – z‖
1 – ρ

}
.

By induction we have

‖xn – z‖ ≤ max

{
‖x1 – z‖,

‖f (z) – z‖
1 – ρ

}
, n ≥ 1.

Hence {xn} is bounded. Consequently, we deduce immediately that {f (xn)} and {Sn(tnxn +
(1 – tn)x̄n+1)} are bonded. Let x∗ = Q(f ). By the convexity of ‖ · ‖q and Lemma 2.5 we have

∥∥Snzn – x∗∥∥q ≤ ∥∥zn – x∗∥∥q

=
∥∥tn

(
xn – x∗) + (1 – tn)

(
x̄n+1 – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥x̄n+1 – x∗∥∥q

= tn
∥∥xn – x∗∥∥q + (1 – tn)

∥∥βn
(
xn – x∗) + (1 – βn)

(
Snxn – x∗)∥∥q

≤ tn
∥∥xn – x∗∥∥q + (1 – tn)

[
βn

∥∥xn – x∗∥∥q + (1 – βn)
∥∥Snxn – x∗∥∥q

– βn(1 – βn)c‖xn – Snxn‖q]

≤ ∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q. (19)

It follows from Lemma 2.4 and (19) that

∥∥xn+1 – x∗∥∥q

=
∥∥αn

(
f (xn) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

=
∥∥αn

(
f (xn) – f

(
x∗)) + αn

(
f
(
x∗) – x∗) + (1 – αn)

(
Snzn – x∗)∥∥q

≤ ∥∥αn
(
f (xn) – f

(
x∗)) + (1 – αn)

(
Snzn – x∗)∥∥q + qαn

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

∥∥Snzn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ αn
∥∥f (xn) – f

(
x∗)∥∥q + (1 – αn)

[∥∥xn – x∗∥∥q – βn(1 – βn)(1 – tn)c‖xn – Snxn‖q]

+ qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉

≤ (
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q – (1 – αn)βn(1 – βn)(1 – tn)c‖xn – Snxn‖q

+ qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (20)

The rest of the proof will be divided into two cases:
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Case 1. Suppose that there exists n0 ∈N such that {‖xn – x∗‖}∞n=n0 is nonincreasing. This
implies that {‖xn – x∗‖}∞n=1 is convergent. From (20) we see that

(1 – αn)βn(1 – βn)(1 – sn)c‖xn – Snxn‖q ≤ ∥∥xn – x∗∥∥q –
∥∥xn+1 – x∗∥∥q + αnM,

where c > 0 and M = supn≥1{q‖f (x∗) – x∗‖‖xn+1 – x∗‖q–1, (1 – ρ)‖xn – x∗‖q} < ∞. From (C1)
and (C2) we get that

lim
n→∞‖xn – Snxn‖ = 0. (21)

We observe that

sup
x∈{xn}

‖Sn+1x – Snx‖

= sup
x∈{xn}

∥∥(1 – θn+1)x + θn+1Tn+1x – (1 – θn)x – θnTnx
∥∥

≤ |θn+1 – θn| sup
x∈{xn}

‖x‖ + θn+1 sup
x∈{xn}

‖Tn+1x – Tnx‖ + |θn+1 – θn| sup
x∈{xn}

‖Tnx‖

≤ |θn+1 – θn|
(

sup
x∈{xn}

‖x‖ + sup
x∈{xn}

‖Tnx‖
)

+ sup
x∈{xn}

‖Tn+1x – Tnx‖.

Since {Tn}∞n=1 satisfies the AKTT-condition and
∑∞

n=1 |θn+1 – θn| < ∞, we have

∞∑

n=1

sup
x∈{xn}

‖Sn+1x – Snx‖ < ∞,

that is, {Sn}∞n=1 satisfies the AKTT-condition. From this we can define the nonexpansive
mapping S : C → C by Sx = limn→∞ Snx for all x ∈ C. Since {θn} is bounded, there exists a
subsequence {θni} of {θn} such that θni → θ as i → ∞. It follows that

Sx = lim
i→∞ Sni x = lim

i→∞
[
(1 – θni )x + θni Tni x

]
= (1 – θ )x + θTx, x ∈ C.

This shows that F(S) = F(T) =
⋂∞

n=1 F(Tn) := . By (21) and Lemma 2.10 we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖
≤ ‖xn – Snxn‖ + sup

x∈{xn}
‖Snx – Sx‖ → 0 as n → ∞. (22)

Let {zt} be a sequence defined by

zt = f (zt) + (1 – t)Szt , t ∈ (0, 1).

From Lemma 2.2(i) we know that {xt} converges strongly to x∗ = Q(f ), which solves the
variational inequalities

〈
(I – f )Q(f ), jq

(
Q(f ) – z

)〉 ≤ 0, z ∈ .
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Moreover, we obtain that

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn – x∗)〉 ≤ 0. (23)

Note that

‖Snzn – xn‖ ≤ ‖Snzn – Snxn‖ + ‖Snxn – xn‖
≤ ‖zn – xn‖ + ‖Snxn – xn‖
= (1 – sn)(1 – βn)‖Snxn – xn‖ + ‖Snxn – xn‖
≤ 2‖xn – Snxn‖.

From (21), we get that

lim
n→∞‖Snzn – xn‖ = 0. (24)

It follows that

‖xn+1 – xn‖
≤ ∥∥αn

(
f (xn) – xn

)
+ (1 – αn)(Snzn – xn)

∥∥

≤ αn
∥∥f (xn) – xn

∥∥ + (1 – αn)‖Snzn – xn‖ → 0 as n → ∞. (25)

We also have

lim sup
n→∞

〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉 ≤ 0. (26)

Again from (20), we have

∥∥xn+1 – x∗∥∥q (27)

≤ (
1 – (1 – ρ)αn

)∥∥xn – x∗∥∥q + qαn
〈
f
(
x∗) – x∗, jq

(
xn+1 – x∗)〉. (28)

Apply Lemma 2.7 and (26) to (27), we obtain that xn → x∗ as n → ∞.
Case 2. There exists a subsequence {ni} of {n} such that

∥∥xni – x∗∥∥ ≤ ∥∥xni+1 – x∗∥∥

for all i ∈ N. By Lemma 2.8, there exists a nondecreasing sequence {mk} ⊂ N such that
mk → ∞ as k → ∞ and

∥∥xmk – x∗∥∥ ≤ ∥∥xmk +1 – x∗∥∥ and
∥∥xk – x∗∥∥ ≤ ∥∥xmk+1 – x∗∥∥ (29)

for all k ∈N. From (20) we have

(1 – αmk )βmk (1 – βmk )(1 – smk )c‖xmk – Smk xmk ‖q

≤ ∥∥xmk – x∗∥∥q –
∥∥xmk+1 – x∗∥∥q + αmk M

≤ αmk M,
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where c > 0 and M < ∞. This implies by (C1) and (C2) that

‖xmk – Smk xmk ‖ → 0 as k → ∞. (30)

Since

sup
x∈{xmk }

‖Smk +1x – Smk x‖

= sup
x∈{xmk }

∥∥(1 – θmk +1)x + θmk +1Tmk +1x – (1 – θmk )x – θmk Tmk x
∥∥

≤ |θmk +1 – θmk | sup
x∈{xmk }

‖x‖ + θmk +1 sup
x∈{xmk }

‖Tmk +1x – Tmk x‖

+ |θmk +1 – θmk | sup
x∈{xmk }

‖Tmk x‖

≤ |θmk +1 – θmk |
(

sup
x∈{xmk }

‖x‖ + sup
x∈{xmk }

‖Tmk x‖
)

+ sup
x∈{xmk }

‖Tmk +1x – Tmk x‖ < ∞,

that is, {Smk }∞k=1 satisfies the AKTT-condition. Then, by (30) and Lemma 2.10, we get that

‖xmk – Sxmk ‖
≤ ‖xmk – Smk xmk ‖ + ‖Smk xmk – Sxmk ‖
≤ ‖xmk – Smk xmk ‖ + sup

x∈{xmk }
‖Smk x – Sx‖ → 0 as k → ∞. (31)

By the same argument as in Case 1, we can show that

lim sup
k→∞

〈
f
(
x∗) – x∗, j

(
xmk – x∗)〉 ≤ 0. (32)

It follows from (31) that

‖Smk zmk – xmk ‖ ≤ ‖Smk zmk – Smk xmk ‖ + ‖Smk xmk – xmk ‖
≤ ‖zmk – xmk ‖ + ‖Smk xmk – xmk ‖
= (1 – smk )(1 – βmk )‖Smk xmk – xmk ‖ + ‖Smk xmk – xmk ‖
≤ 2‖xmk – Smk xmk ‖ → 0 as k → ∞,

and hence

‖xmk +1 – xmk ‖ ≤ ∥∥αmk

(
f (xmk ) – xmk

)
+ (1 – αmk )(Smk zmk – xmk )

∥∥

≤ αmk

∥∥f (xmk ) – xmk

∥∥ + (1 – αmk )‖Smk zmk – xmk ‖ → 0 as k → ∞.

Then, we also have

lim sup
k→∞

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉 ≤ 0. (33)
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Again from (27) we have

∥∥xmk +1 – x∗∥∥q

≤ (
1 – (1 – ρ)αmk

)∥∥xmk – x∗∥∥q + qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉, (34)

which implies that

(1 – ρ)αmk

∥∥xmk – x∗∥∥q ≤ ∥∥xmk – x∗∥∥q –
∥∥xmk +1 – x∗∥∥q

+ qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉

≤ qαmk

〈
f
(
x∗) – x∗, jq

(
xmk +1 – x∗)〉. (35)

Since αmk > 0, we get limk→∞ ‖xmk – x∗‖ = 0. So, we have

∥∥xk – x∗∥∥ ≤ ∥∥xmk +1 – x∗∥∥

=
∥∥xmk – x∗∥∥ +

∥∥xmk+1 – x∗∥∥ –
∥∥xmk – x∗∥∥

≤ ∥∥xmk – x∗∥∥ + ‖xmk +1 – xmk ‖ → 0 as k → ∞,

which implies that xk → x∗ as k → ∞. This completes the proof. �

Applying Theorem 3.1 to a 2-uniformly smooth Banach space, we obtain the following
result.

Corollary 3.2 Let C be a nonempty closed convex subset of a real uniformly convex
and 2-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let
{Tn}∞n=1 : C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅.

For all x ∈ C, define the mapping Snx = (1 – θ )x + θTnx, where 0 < θ ≤ δ, δ = min{1, λ

K2 },
and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be a sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(36)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying the conditions (C1) and (C2)
of Theorem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = Q(f ) ∈ , which solves the variational inequality

〈
(I – f )Q(f ), j

(
Q(f ) – z

)〉 ≤ 0, ∀z ∈ , (37)

where Q is a sunny nonexpansive retraction of C onto .

Utilizing the fact that a Hilbert space H is uniformly convex and 2-uniformly smooth
with the best smooth constant κ2 = 1, we obtain the following result.

Corollary 3.3 Let C be a nonempty closed convex subset of a Hilbert space H . Let f ∈
�C with coefficient ρ ∈ (0, 1), and let {Tn}∞n=1 : C → C be a family of λ-strict pseudo-
contractions with λ ∈ [0, 1) such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all x ∈ C, define the mapping
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Snx = (1 –θn)x +θnTnx, where 0 < θn ≤ δ, δ = min{1, 2λ}, and
∑∞

n=1 |θn+1 –θn| < ∞. For given
x1 ∈ C, let {xn} be a sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(38)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Suppose, in addition, that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then
{xn} converges strongly to x∗ = P(f ) ∈ , which solves the variational inequality

〈
(I – f )P(f ), P(f ) – z

〉 ≤ 0, z ∈ , (39)

where P is a metric projection of C onto .

4 Application
4.1 The generalized viscosity explicit rules for convex combination of family of

mappings
In this subsection, we apply our main result to convex combination of a countable family
of strict pseudo-contractions. The following lemmas can be found in [36, 37].

Lemma 4.1 ([36, 37]) Let C be a closed convex subset of a smooth Banach space E.
Suppose that {Tn}∞n=1 : C → C is a family of λ-strictly pseudo-contractive mappings with
⋂∞

n=1 F(Tn) �= ∅ and {μn}∞n=1 is a real sequence in (0, 1) such that
∑∞

n=1 μn = 1. Then the
following conclusions hold:

(i) A mapping G : C → E defined by G :=
∑∞

n=1 μnTn is a λ-strictly pseudocontractive
mapping.

(ii) F(G) =
⋂∞

n=1 F(Tn).

Lemma 4.2 ([37]) Let C be a closed convex subset of a smooth Banach space E. Suppose
that {Tk}∞k=1 : C → C is a countable family of λ-strictly pseudocontractive mappings with
⋂∞

k=1 F(Sk) �= ∅. For all n ∈ N, define Sn : C → C by Snx :=
∑n

k=1 μk
nTkx for all x ∈ C, where

{μk
n} is a family of nonnegative numbers satisfying the following conditions:
(i)

∑n
k=1 μk

n = 1 for all n ∈N;
(ii) μk := limn→∞ μk

n > 0 for all k ∈N;
(iii)

∑∞
n=1

∑n
k=1 |μk

n+1 – μk
n| < ∞.

Then:
(1) Each Tn is a λ-strictly pseudocontractive mapping.
(2) {Tn} satisfies the AKTT-condition.
(3) If T : C → C is defined by Tx =

∑∞
k=1 μkSkx for all x ∈ C,

then, Tx = limn→∞ Tnx and F(T) =
⋂∞

n=1 F(Tn) =
⋂∞

k=1 F(Sk).

Using Theorem 3.1 and Lemmas 4.1 and 4.2, we obtain the following result.

Theorem 4.3 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let f ∈ �C with coefficient ρ ∈ (0, 1), and let {Tk}∞k=1 :
C → C be a countable family of λk-strict pseudo-contractions with inf{λk : k ∈ N} = λ > 0.
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For all x ∈ C, define a mapping Snx := (1–θn)x+θn
∑n

k=1 μk
nTkx such that  :=

⋂∞
k=1 F(Tk) �=

∅, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn}

be a sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αnf (xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(40)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of Theo-
rem 3.1, and {μk

n} is a real sequence satisfying (i)–(iii) of Lemma 4.2. Then {xn} converges
strongly to a x∗ ∈ .

4.2 The generalized viscosity explicit rules for zeros of accretive operators
In this subsection, we apply our main result to problem of finding a zero of an accretive
operator. An operator A ⊂ E×E is said to be accretive if for all (x1, y1) and (x2, y2) ∈ A, there
exists jq ∈ Jq(x1 – x2) such that 〈y1 – y2, jq〉 ≥ 0. An operator A is said to satisfy the range
condition if D(A) = R(I + λA) for all λ > 0, where D(A) is the domain of A, R(I + λA) is the
range of I + λA, and D(A) is the closure of D(A). If A is an accretive operator that satisfies
the range condition, then we can defined a single-valued mapping JA

λ : R(I +λA) → D(A) by
Jλ = (I + λA)–1, which is called the resolvent of A. We denote A–10 by the set of zeros of A,
that is, A–10 = {x ∈ D(A) : 0 ∈ Ax}. It is well known that Jλ is nonexpansive and F(Jλ) = A–10
(see [38]). We also know the following [39]: For all λ,μ > 0 and x ∈ R(I + λA) ∩ R(I + μA),
we have

‖Jλx – Jμx‖ ≤ |λ – μ|
λ

‖x – Jλx‖.

Lemma 4.4 ([34]) Let C be a nonempty closed convex subset of a Banach space E. Let
A ⊂ E × E be an accretive operator such that A–10 �= ∅, which satisfies the condition
D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that {λn} ⊂ (0,∞) such that inf{λn : n ∈ N} > 0 and
∑∞

n=1 |θn+1 – θn| < ∞. Then, {Jλn} satisfies the AKTT-condition. Consequently, for each
x ∈ C, {Jλn x} converges strongly to some point of C. Moreover, let Jλ : C → C be defined
by Jλx = limn→∞ Jλn x for all x ∈ C and F(Jλ) =

⋂∞
n=1 F(Jλn ), where λn → λ as n → ∞. Then,

limn→∞ supx∈C ‖Jλx – Jλn x‖ = 0.

Utilizing Theorem 3.1 and and Lemma 4.4, we obtain the following result.

Theorem 4.5 Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E. Let f ∈ �C with coefficient ρ ∈ (0, 1) and let A ⊂ E × E be an accretive operator
such that A–10 �= ∅ which satisfies the condition D(A) ⊂ C ⊂ ⋂

λ>0 R(I + λA). Suppose that
{λn} ⊂ (0,∞) is such that inf{λn : n ∈ N} > 0 and

∑∞
n=1 |λn+1 – λn| < ∞. For given x1 ∈ C,

let {xn} be the sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Jλn xn,

xn+1 = αnf (xn) + (1 – αn)Jλn (tnxn + (1 – tn)x̄n+1), n ≥ 1,
(41)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfying conditions (C1) and (C2) of
Theorem 3.1. Then {xn} converges strongly to x∗ ∈ A–10.
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4.3 The generalized viscosity explicit rules with weak contraction
In this subsection, we apply our main result to the viscosity approximation method with
weak contraction.

Definition 4.6 ([40–42]) Let C be a closed and convex subset of a real Banach space E.
A mapping g : C → C is said to be weakly contractive if there exists a continuous strictly
increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and limt→∞ ψ(t) = ∞ such that

∥∥g(x) – g(y)
∥∥ ≤ ‖x – y‖ – ψ

(‖x – y‖), x, y ∈ C.

As a particular case, if ψ(t) = (1 – ρ)t for all t ≥ 0, where ρ ∈ (0, 1), then the weakly con-
tractive mapping is contraction with coefficient ρ .

In 2001, Rhoades [42] first proved Banach’s contraction principle for the weakly con-
tractive mapping in complete metric space.

Lemma 4.7 ([42]) Let (E, d) be a complete metric space, and let g be a weakly contractive
mapping on E. Then g has a unique fixed point in E.

Lemma 4.8 ([43]) Assume that {an} and {bn} are sequences of nonnegative real number,
and {λn} is a sequence of a positive real number satisfying the conditions

∑∞
n=1 λn = ∞ and

limn→∞ bn
λn

= 0. Suppose that

an+1 ≤ an – λnψ(an) + bn, n ≥ 1,

where ψ(t) is a continuous strictly increasing function on R with ψ(0) = 0. Then,
limn→∞ an = 0.

Utilizing Theorem 3.1, we obtain the following result.

Theorem 4.9 Let C be a nonempty closed convex subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let g : C → C be a weak contraction, and let {Tn}∞n=1 :
C → C be a family of λ-strict pseudo-contractions such that  :=

⋂∞
n=1 F(Tn) �= ∅. For all

x ∈ C, define the mapping Snx = (1 – θn)x + θnTnx, where 0 < θn ≤ δ, δ = min{1, ( qλ

κq
)

1
q–1 }, and

∑∞
n=1 |θn+1 – θn| < ∞. For given x1 ∈ C, let {xn} be the sequence generated by

⎧
⎨

⎩
x̄n+1 = βnxn + (1 – βn)Snxn,

xn+1 = αng(xn) + (1 – αn)Sn(tnxn + (1 – tn)x̄n+1), n ≥ 1,
(42)

where {αn}, {βn}, and {tn} are sequences in (0, 1) satisfy conditions (C1) and (C2) of The-
orem 3.1. Suppose in addition that ({Tn}∞n=1, T) satisfies the AKTT-condition. Then {xn}
converges strongly to x∗ ∈ .

Proof By the smoothness of E there exists a sunny nonexpansive retraction Q from C
onto . Moreover, Q(g) is a weakly contractive mapping of C into itself. For all x, y ∈ C,
we have

∥∥Q
(
g(x)

)
– Q

(
g(y)

)∥∥ ≤ ∥∥g(x) – g(y)
∥∥ ≤ ‖x – y‖ – ψ

(‖x – y‖).
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Lemma 4.7 guarantees that Q(g) has a unique fixed point x∗ ∈ C such that x∗ = Q(g). Now,
we define a sequence {yn} and y1 ∈ C as follows:

⎧
⎨

⎩
ȳn+1 = βnyn + (1 – βn)Snyn,

yn+1 = αng(yn) + (1 – αn)Sn(tnyn + (1 – tn)ȳn+1), n ≥ 1.

Then, by Theorem 3.1 with a constant f = g(x∗), we have that {yn} converges strongly to
x∗ = Q(g)) ∈ . Next, we show that xn → x∗ as n → ∞. Since

‖x̄n+1 – ȳn+1‖ ≤ βn‖xn – yn‖ + (1 – βn)‖Snxn – Snyn‖ ≤ ‖xn – yn‖,

it follows that

‖xn+1 – yn+1‖
=

∥∥αn
(
g(xn) – g

(
x∗)) + (1 – αn)

(
Sn

(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

))∥∥

≤ αn
∥∥g(xn) – g

(
x∗)∥∥ + (1 – αn)

∥∥Sn
(
tnxn + (1 – tn)x̄n+1

)
– Sn

(
tnyn + (1 – tn)ȳn+1

)∥∥

≤ αn
∥∥g(xn) – g(yn)

∥∥ + αn
∥∥g(yn) – g

(
x∗)∥∥

+ (1 – αn)
(
tn‖xn – yn‖ + (1 – tn)‖x̄n+1 – ȳn+1‖

)

≤ αn‖xn – yn‖ – αnψ
(‖xn – yn‖

)
+ αn

∥∥yn – x∗∥∥

– αnψ
(∥∥yn – x∗∥∥)

+ (1 – αn)‖xn – yn‖
≤ ‖xn – yn‖ – αnψ

(‖xn – yn‖
)

+ αn
∥∥yn – x∗∥∥. (43)

Since {yn} converges strongly to x∗, applying Lemma 4.8 to (43), we obtain that
limn→∞ ‖xn – yn‖ = 0. Therefore xn → x∗. This completes the proof. �

5 Numerical examples
In this section, we present a numerical example of our main result.

Example 5.1 Let E = �4 and C = {x = (x1, x2, x3, x4, . . .) ∈ �4 : xi ∈ R for i = 1, 2, 3, . . .} with
norm ‖x‖�4 = (

∑∞
i=1 |xi|4)1/4. Let f : C → C be the contraction defined by f (x) = 1

3 x. Let
{Tn}∞n=1 : C → C be the strictly pseudo-contractive mapping defined by

Tnx =

⎧
⎨

⎩

1
n (1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) – 2x if x �= 0,

0 if x = 0,

where 0 = (0, 0, 0, 0, 0, 0, 0, . . .) is the null vector on �4.
• We show that Tn is strictly pseudo-contractive. For each n ≥ 1, if x, y �= 0, then

〈
(I – Tn)x – (I – Tn)y, j2(x – y)

〉
=

〈
3x – 3y, j2(x – y)

〉

= 3‖x – y‖2
�4

=
1
3
‖3x – 3y‖2

�4

≥ λ
∥∥(I – Tn)x – (I – Tn)y

∥∥2
�4
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for λ ≤ 1
3 . Then, we can choose λ = 1

3 . Thus, Tn is 1
3 -strictly pseudo-contractive with

⋂∞
n=1 F(Tn) = {0}. Further, we observe that Tn is not nonexpansive.

• We show that ({Tn}∞n=1, T) satisfies the AKTT-condition. Since

sup
x∈�4

‖Tn+1x – Tnx‖�4

= sup
x∈�4

∥∥∥∥
1

n + 1

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

– 2x –
1
n

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

+ 2x
∥∥∥∥

�4

=
∥∥∥∥

1
n + 1

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)

–
1
n

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

=
(

1
n

–
1

n + 1

)∥∥∥∥

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

.

So we have

∞∑

n=1

sup
x∈�4

‖Tn+1x – Tnx‖�4 = lim
n→∞

n∑

k=1

sup
x∈�4

‖Tk+1x – Tkx‖�4

=
∥∥∥∥

(
1,

1
2

,
1
3

,
1
4

, 0, 0, 0, . . .
)∥∥∥∥

�4

< ∞,

that is, ({Tn}∞n=1, T) satisfies the AKTT-condition, where T : C → C is defined by

Tx = lim
n→∞ Tnx = –2x, x ∈ C.

Since in �4, q = 2 and κ2 = 3, we can choose θn = 1
9n + 1

9 . Define the mapping {Sn}∞n=1 : C → C
by

Snx =

⎧
⎨

⎩
( 2

3 – 1
3n )x + ( 1

9n2 + 1
9n )(1, 1

2 , 1
3 , 1

4 , 0, 0, 0, . . .) if x �= 0,

0 if x = 0.

Since ({Tn}∞n=1, T) satisfies the AKTT condition, we also have that ({Sn}∞n=1, S) satisfies the
AKTT condition, where S : C → C is defined by

Sx = lim
n→∞ Snx =

2
3

x, x ∈ C.

Then, we have F(S) = F(T) =
⋂∞

n=1 F(Tn) = {0}. Let αn = 1
32n+1 , βn = 1

100n+3 + 0.32, and tn =
n

2n+1 . So our algorithm (16) has the following form:

⎧
⎨

⎩
x̄n+1 = ( 1

100n+3 + 0.32)xn + (0.68 – 1
100n+3 )Snxn,

xn+1 = 1
32n+2 f (xn) + 32n

32n+1 Sn( n
2n+1 xn + n+1

2n+1 x̄n+1), n ≥ 1.
(44)

Let x1 = (1, –0.25, 1.46, 1.85, 0, 0, 0, . . .) be the initial point. Then, we obtain numerical
results in Table 1 and Fig. 1.
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Table 1 The values of the sequences {xn}
n xn ‖xn+1 – xn‖�4

1 (1.000000, –0.250000, 1.460000, 1.850000, 0, 0, 0,. . . ) 1.459e+00
50 (0.007006, 0.003503, 0.002335, 0.001751, 0, 0, 0,. . . ) 1.471e–04
100 (0.003416, 0.001708, 0.001139, 0.000854, 0, 0, 0,. . . ) 3.531e–05
150 (0.002258, 0.001129, 0.000753, 0.000565, 0, 0, 0,. . . ) 1.549e–05
200 (0.001687, 0.000843, 0.000562, 0.000422, 0, 0, 0,. . . ) 8.657e–06
...

...
...

400 (0.000838, 0.000419, 0.000279, 0.000210, 0, 0, 0,. . . ) 2.143e–06
450 (0.000745, 0.000372, 0.000248, 0.000186, 0, 0, 0,. . . ) 1.692e–06
500 (0.000670, 0.000335, 0.000223, 0.000167, 0, 0, 0,. . . ) 1.369e–06

Figure 1 The behavior of errors

6 Conclusion
In this work, we introduce an algorithm by a generalized viscosity explicit rule for finding
a common fixed point of a countable family of strictly pseudo-contractive mappings in a
q-uniformly smooth Banach space. We obtain some strong convergence theorem for the
sequence generated by the proposed algorithm under suitable conditions. However, we
should like remark the following:

(1) We extend the results of Ke and Ma [21] and Marino et al. [25] from a one
nonexpansive mapping in Hilbert spaces to a countable family of strictly
pseudo-contractive mappings in a q-uniformly smooth Banach space.

(2) Our result is proved with a new assumption on the control conditions {βn} and {tn}.
(3) The method of proof of our result is simpler in comparison with the results of [19,

21, 44, 45]). Moreover, we remove the conditions
∑∞

n=1 |αn+1 – αn| < ∞ and
0 < ε ≤ sn ≤ sn+1 < 1 in Theorem 3.1 of [21].

(4) We give a numerical example that shows the efficiency and implementation of our
main result in the space �4, which is a uniformly convex and 2-uniformly smooth
Banach space but not a Hilbert space.
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