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Abstract

In this paper, we give Leibniz-type estimates of bilinear pseudodifferential operators
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1 Introduction

The theory of bilinear pseudodifferential operators with symbols in the Hormander classes
has been extensively studied by many authors. Different from their linear counterparts
52,5: 0 <8 < p < 1, whose corresponding pseudodifferential operators are bounded on
L*(R"), the classes BSS, s (its definition is in Sect. 2) contain symbols for which the corre-
sponding bilinear pseudodifferential operators do not map any product L1 (R") x LP2(R"),
into any LP(R") with 1/P = 1/P; + 1/Py; see [6]. Moreover, BS}, contains symbols for
which the corresponding bilinear operators are unbounded from any L1 (R”) x LP2(R")
into any L (R") with 1/P = 1/P; + 1/P,. Nevertheless, the operators with symbols in BS);
are proved to be bounded on products of Sobolev spaces with positive smoothness in [8].
However, the classes BSS,S with 0 < § < 1, like their linear setting, the corresponding bi-
linear pseudodiffer ential operators are bilinear Calderén—Zygmund operators. In [7], the
properties of symbols, and boundedness properties of bilinear pseudodifferential opera-
tors in Lebesgue spaces were given. For pseudodifferential operators with symbols in the
bilinear Hormander classes of sufficiently negative order, their boundedness properties in
Lebesgue spaces, weak-type spaces, BMO and Sobolev spaces are established in [6]. In [8],
by establishing a symbolic calculus for the transposes of a class of bilinear pseudodiffer-
ential operators, Benyi and Torres proved that these operators are bounded on products
of Lebesgue spaces. In [24], Herbert and Naibo showed that bilinear pseudodifferential
operators with symbols in Besov spaces are bounded on products of Lebesgue spaces. In
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[36], Miyachi and Tomita determined the order m for which all the bilinear pseudodiffer-
ential operators with symbols in the Hérmander class BS, are bounded among Lebesgue
spaces, local Hardy spaces, and bmo spaces. In [35], Michalowski, Rule and Staubach ob-
tained the boundedness of multilinear pseudodifferential operators with symbols which
are only measurable in the spatial variables in Lebesgue spaces and the boundedness of bi-
linear pseudodifferential operators with symbols in the Hérmander classe BS;. In [42],
Rodriguez-Lépez and Staubach obtained the boundedness of rough Fourier integral and
pseudodifferential operators. As applications, then they considered boundedness results
for Hormander class bilinear pseudodifferential operators, certain classes of bilinear (as
well as multilinear) Fourier integral operators, and rough multilinear operators. Recently,
in [37] Naibo obtained boundedness properties on the scales of inhomogeneous Triebel—
Lizorkin and Besov spaces of positive smoothness for pseudodifferential operators with
symbols in certain bilinear Hormander classes.

Since variable exponent function spaces have widely used in many fields such as elec-
trorheological fluid [43], differential equations [19, 23, 41] and image restoration [9, 22,
29, 34, 46], many classical constant exponent function spaces have been generalized to
variable exponent setting, such as variable exponent Bessel potential spaces [4, 21], vari-
able Hajtasz—Sobolev spaces [5], variable exponent Besov and Triebel-Lizorkin spaces [3,
13, 16, 27, 30, 31, 49], variable exponent Hardy spaces [38, 56], variable exponent Mor-
rey spaces [2], variable exponent Herz spaces [1, 26, 44], variable exponent Herz-type
Hardy spaces [18, 28, 48], variable exponent Herz—Morrey Hardy spaces [50], variable
exponent Herz-type Besov and Triebel-Lizorkin spaces [14, 17, 45, 52], variable expo-
nent Morrey-type Besov and Triebel-Lizorkin spaces [20], Herz—Morrey-type Besov and
Triebel-Lizorkin spaces with variable exponents [15], Triebel-Lizorkin-type spaces with
variable exponents [57], variable weak Hardy spaces [53], Besov-type spaces with vari-
able smoothness and integrability [58], variable integral and smooth exponent Triebel—
Lizorkin spaces associated with a non-negative self-adjoint operator [51], variable expo-
nent Hardy spaces associated with operators [55], and variable Hardy spaces associated
with operators [54, 59, 60]. For the boundedness of integral operators in variable function
spaces, we recommend [32] and [33]. In [39], Noi gave Fourier multiplier theorems for
Besov and Triebel-Lizorkin spaces with variable exponents. Motivated by the mentioned
work, we shall present the boundedness of the bilinear pseudodifferential operator asso-
ciated to bilinear Hérmander classes in Besov and Triebel-Lizorkin spaces with variable
exponents. Indeed, by using the embedding properties of the Besov and Triebel-Lizorkin
spaces with variable exponents, we shall establish corresponding Leibnitz-type inequali-
ties for the Besov and Triebel-Lizorkin spaces with variable exponents.

The plan of the paper is as follows. In Sect. 2, we shall state notions, preliminary results.
In particular, we give the approximation characterizations of Triebel-Lizorkin spaces with
variable exponents. In Sect. 3, we present the proofs of the main results.

2 Preliminaries

We denote by S(R”) the usual Schwartz space of rapidly decreasing complex-valued func-
tions and S’(R”) the dual space of tempered distributions. As usual, we denote byf or
F(f) the Fourier transform of f € S'(R"). In particular, we use the formula

NG /Rnf(x)e‘””‘"é dx iff e L'(R").
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We denote by F~1(f) or jvf the inverse Fourier transform of f. Given a real number r > 0,
the homogeneous derivative of order r, D', is defined by

Df(&) = EIF(£), &eR™

Letm € Rand 0 < § < p < 1. A function o on R?", is an element of the bilinear Hérmander
class BS7; if for all multi-indices y,«, B € Nj there exist some positive constants C, 4,
such that

Sly|-p(le
19702000 (5, 8,m)| < Cypap (1 + (8] + )17

for all x,&,n € R”, where |y| denotes the sum of its components, |«| and |8| are similar.
The bilinear pseudodifferential operator associated to o is defined by

T, (f,g)(x) := / L owE, N (E)Fm)e €N de dy, xeR"f,geS(R").

R

Let o € BS)’s and N, M € Ny := NU {0}. Define

llollna = sup sup ]a;agafa,’k,@(x,g,n”(l +1E+ |n|)—m-5\y\+o(la\+\ﬂ|).
[VI=N,|e]+|B|<M x,£,neR”

Then BS]’s becomes a Fréchet space with the family of norms {||o [|xa : N, M € No}.

Ifa < cband b < ca we will write a ~ b. C is always a positive constant but it may change
from line to line.

For a measurable function p on R”, we denote p~ := essinf,cprp(x) and p* :=
ess sup,.gn p(x). We denote by Py the subset of measurable functions on R” with values
in (0, 0o] such that p~ > 0, and by P the subset of measure functions with values in [1, co].
For p(-) € Py, the function p, is defined as follows:

t?  if p € (0,00),
ppt):=40 ifp=ocoandt<]l,
oo ifp=ocoandt>1.

The convention 1°° = 0 is adopted in order for p, to be left-continuous. The variable ex-
ponent modular is defined by

pp(~)(f) = /I‘Qn pp(x)(V(?C)D dx.

The variable exponent Lebesgue space L”) consists of measurable functions f : R” — R,
with p,()(Af) < oo for some A > 0. The Luxemburg (quasi)-norm on this space is defined
by the formula

I llp) = inf{X > 0: py(y (f/2) < 1}.

Let p,q € P,. For a sequence of L”")-functions (f,),, we define the modular

1
peao oy ((f)v) = > _{infa, > 0: o (f/287) <1,

v



Xu and Zhu Journal of Inequalities and Applications (2018) 2018:169 Page 4 of 21

where we use the convention A% = 1. Then the norm in the mixed Lebesgue-sequence
space £90)(L71)) is defined by

1
Il = it 02 s (80 ) <1}

If g* < oo, then

inf{A >0 py() (f/x%)<1}_||[f|q I »0)

q(

Since the above right-hand side expression is much simpler, we use this notation to rep-

resent the above left-hand side even when g* = 00, and that means

Pty wron ((Fi)v) ZHW 20

q()
for the modular.

Let (f,),en, be a sequence of measurable functions on R”, then the norm of (f;),en, in
the space 171 (£4V)) is defined by

.\
69 o = H (Zw»rf“)
v=0

)

In the development of the variable exponent function spaces, the concept of log-Hélder

continuity is the cornerstone, which was introduced in [10, 11].

Definition 2.1 Let g be a real function on R”".
(i) The function g is called locally log-Hoélder continuous, abbreviated g € C, % if there

loc?

exists Cjog > 0 such that

Clog

lg@®) —g)] < st

1
— = xyeR’|x—yl<=.
1/]x —yl) Y =1l 2

(ii) The function g is called globally log-Hélder continuous, abbreviated g € Ciqg, if it is
locally log-Holder continuous and there exists g, € R such that

Clog
0 —= VxeR"
80 —el < sy €

The notation P'°2 is used for those variable exponents p € P w1th € Ciog- The class
’POO‘g is defined analogously. Let f, g be in L!(R"). Define the convolutlon f*gby

(f * g)(x) = /Rnf(x -8 dy.

If p € P'°¢, then convolution with a radially decreasing L'-function is bounded on L0
lle *fllpey < cllelllf llpe-
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Definition 2.2 Let v be a function in S(R”) satisfying ¥ (x) = 1 for |x| <1 and ¥/(x) =0
for |x| > 2. We let @o(x) := ¥ (%), $(2x) := ¥ (x) — ¥ (2x) and ¢;(x) := 2"¢(2x) for j € N and
forallx € R”. Then } ;. &k = 1.

Thus we obtain the Littlewood-Paley decomposition f = Y o2 ¢, * f for all f € S'(R")
(convergence in S'(R")).
We also put 1&0 = @ + ¢1 and @k = Qr-1 + @k + Ps1 for k € N. It is easy to see that
PrVrk = @x for k € Ng and
supp(i’ﬁ\k) C {S eR": 22 < g < 2’”2} fork > 2,

supp(¥x) C {£ € R":1§| <2%2} fork =0, 1.

For an appropriate function /, /(D) will stand for the multiplier operator given /(D)f =
hf for f € S'(R™).

Definition 2.3 Let ¢, be as in Definition 2.2. For s : R” — R and p,q € P,.
(i) Letp,ge P(])Og(R”) and lets e Cllof(R”). Then

(o]

E R = {f S (R"): |[f||§(,)) < oo},

p()al)

where
”f”z«m =2V« f )/ | ety
P()al)

(ii) Letp,qe ’P(],Og(R”) and let s € Clog(R”).

loc

By a0 (R") = {f € S'(R") : llf“Z;‘(.)) o e

where

”f”ZS ) = ” (sz(.)(pk *f)k”M(-)(Lp(-))'
p(-)a()

The key tool will be the Peetre maximal operators, which were introduced by Peetre in
[40]. Let a be a positive number and a system (®y)ken, in S(R”). Then the Peetre maximal
operators associated to (®)ken, are defined by for each distribution f € S'(R”)

O
D := sup (@i %O x€R” and k € Ny

yern 1+ |2k(y —x)| '
We start with two given functions ¢y, ¢; € S(R"). We define
¢j(x) = ¢1(2_j+1x) forx e R" andje N.

Moreover, for each j € Ny, we denote ®; = qgj. We shall use the following result.
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Lemma 2.4 (Theorem 14 in [31]) Let p,q € P(l)og(R”) with p*,q" < 00, and s € Cllgf(R”).
Let R € No with R > s* and let ¢y, ¢1 belong to S(R") with

DP$1(0)=0 for0<|B|<R,

and

|po(x)| >0 on{xeR":|x|<e},

‘q)l(x)’ >0 on {xe R":e/2 < |x| < 28}

for some ¢ > 0.
(i) Ifa> nCiog(1/9) | Ciog(s), then, for all f € S'(R"), we have

I
”f”B;((‘.))'q(J ~ ” {sz(')(CDk *f)}iio ”eq(-)(w(-)) ~ ” {ZkS(.)q)ltaf}/io ||M(‘)(Ll’(’))' @

(i) Ifa> m + Ciog(5), then, for all f € S'(R"), we have

If1 BN 2@ %N} oo eaony = 25V PE ol oo eaoy- 2

Denote 1, := 2"(1 + 2"|x])™", for v € Ny, m € R and x € R".

Lemma 2.5 (Lemma A.3 in [13]) Let vy, v > 0 and m > n. Then

nvo,m * nvl,m ~ nmin{vo,vl],m-
Here the implicit constant depends only on m and n.

Lemma 2.6 (Lemma A.6in [13]) Letr >0, v > 0 and m > n. Then there exists ¢ > 0, which
depends only on m, n and r, such that, for all g € S'(R") with suppg C {€ e R" : |§| < 2"*1},

1
-

|g(x)| = C(nv,m * Iglr(x)) , xeR"

Lemma 2.7 (Theorem 3.2 in [13]) Let p,q € PR with1 <p  <p*<ocoand1<q <
q* < 0o. Then the inequality

||(’7v,m *f)5%0 ”yﬂ(&(zq(d) = C“(ﬁ))ﬁo||l}7(-)(zq(-))
holds for every sequence (f,),en, of locally integrable functions and m > n.

Lemma 2.8 (Lemma 4.7 in [3]) Letp,q e PO(R") withl<p~ <p*<ocandl<q <q*<

00. For m > n, there exists ¢ > 0 such that

”(WZW! *fov ||eq(->(1,p(-)) = C” )y “zq(-)(u’(-))'
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In Lemmas 2.7 and 2.8, we required that p~,g~ > 1. This restriction can often be over-
come by using Lemma 2.6 and the following identity:

0,20,

” (f")v ”gq(-)(Lp(-)) = “ (lfv |r)v

S 5=

and

”(fv)v HLP<->(M<->) = H (Iﬂ\r»)u

1
r

0
L5

X

“

() *
)

Lemma 2.9 (Lemma 6.1 in [13]) Ifs(:) € cloe

\ocr then there exists t € (n,00) such that if m > t,
then

20 o = ) < €2, (x - 9),

with ¢ > 0 independent of x,y € R" and v € Ny. Therefore,

25O 2 # f (%) <y * (27°OF) ().

Lemma 2.10 (Lemma 9 in [31]) Let p,q € Po(R") and § > 0. Let (gk)rez be a sequence of
non-negative measurable functions on R" and define

G,(x):= Z 2"”_k‘5gk(x), xeR",veR”.
keZ

Then there exist constants cy,c, > 0, depending on p(-), q(-) and 8, such that
G, ||gq(-)(Lp(-)) < ||gk||gq(-)(uz(-)),
1Go Il 1p0) ea0ry < €allgrll o0 a0y

Lemma 2.11 (Theorem 3.6 in [3]) Let p,q € P. If either }7 +
constant, then ||- ||M(A)(Lp(.)) is a norm.

é <1 pointwise, or q is a

Lemma 2.12 (Theorem 6.1 in [3]) Let s,so,s1 € L and p,q0,q1 € Po

. s(-) s(-)

() Ifqo < qu then B, ‘(_)’ Bp(-»ql(»)'()

) ) . -
(ii) If (so — 1) >0, then ?);(z-),qo(-) s Bpl(.)’qlgi. ,
L 4 o "
(i) Ifp*,q* <00, then By vty an = Fpinaty = Bpmaxipra

Remark 2.13 If p € P'°¢(R") with 1 < p~ < p* < 0o, then Theorem 12.5.7 in [12] says that
Fyiya (B = 10,

We shall use characterizations of B;((‘,)), q(,)(R”) and F;((',))‘ q(_)(R") by approximation, which
are a generalization of the classical Besov and Triebel-Lizorkin spaces. For the latter, see
[47].

Let

Qi (R") = {(,), € S'(R") N LPO(R") s supp s, C &2 €] 2"}, v € No}.
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Lemma 2.14 (Theorem 8.1 in [3]) Let p,q € ’Péog(R”) and s € Cllgf NL*® with s~ > 0. Let

feSR"). Then f is in B;(('?),q(_) if and only if there exists w = (w)); € Qpy(R”) such that
f =limg_, 00 w in S'(R") and

ks(-
”f”;;s(') = llwollpe) + H (2 O - wk))keN ”M')(lﬁ(')) < o0 ®)
p()a()
Furthermore,
|lf||*~(») = inf”f”ws(-) ’
By0q0) Bptrat)

where the infimum is taken over all admissible systems w € Q,()(R"), is an equivalent quasi-

. ns(e)
norm in Bp(_)'q(.).

Theorem 2.15 Let p,q € P(l)og(]R”) with p* < oo and s € C\% N L™ with s > 0. Then f €

loc
S'(R") belongs to F;((:))yq(A)(R”) if and only if there exists w = (w)); € 2p()(R") such that f =

lim;_, o w; in S'(R") and
k(-
llf”;(('i %) = lloollpo + [ 25V - 00) o0 eatry < 00 (4)
pi)gl
Furthermore,

sy =inflf1%,
f;(.),q(.) F;(‘)

4()

where the infimum is taken over all admissible systems w € Qp,()(R"), is an equivalent quasi-

o ps()
norm in Fp(,)’q(_).
Proof First we show that there is a constant C independent of f such that
%  =Clflls0 - (5)
F;((‘)),q(-) [;(-),q(-)

Let (¢)); be functions in R” as defined in Definition 2.2, then

j
wj = Z(pk*f—>f in §'(R") as j — oo.
k=0

Thus (w)); € Q2,()(R") and

(st(')(f _ wj))j _ Z k() (2(/+k)s(.)§0].+k *f)l

k>0
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in S'(R"). Notice that 2750 < 27%" and that s~ > 0 by assumption. If g(x) € [1,00], by

Minkowski’s inequality, we have

IA

k=0

Z 21s(x)q(x) lf _p_ |q(x) Z 2—ks(x) Z 2(1+k)s(x)q(x) |(‘/’j+k *f)(x) |q
j=0 j=0

M

o q(lx)

j=0

=
Il

0
o a

< C(Z 2fs(x)q(x)|((pj *f)(x)|4(x)> 6)
j=0

(modification if g(x) = 00). If g(x) € (0,1), since g~ > 0, we have

o0 o0 o0
Z 9Js(®)q(x) If - w/,|q(x) < Z 9-ks(*)q(x) Z 9 (i+k)s(x)q(x) ’((/7,4 % f) (x)‘q(x)
j=0 k=0 j=0
o0 o0
< Z o~ksq(x) Z 2 (+k)s(x)q(x) |( Dk * f) (x) |q(X)
k=0 j=0

) 00
< Z 2—ks’q’ Z 2(j+k)s(x)q(x) | ((ﬂj+k *f) (x) |q(x)
k=0 j=0

< C )P0 (gy 5 f)(x) 79, )

j=0
Thus from (6) and (7), for g € Py, we have
1
x qx) >
(Z 9js(x)q() If - wjlq(x)) <C Z 9js(x)q(x) ‘ (%, % f)(%) ‘Q(")'
j=0 j=0

Taking the L”")(R")-quasi-norm on the above inequality, we obtain (5) since
lwoll oo = llgo * fll o) < Cllfll sty
p()q()

Now we show the opposite inequality of (5). Let (wi)x € Q,)(IR") such that f =
limg_, o0 i and ||f | < co. Then ¢ * f = Y po_; @5 * (Wksj — Wisjo1), j € No (with w_; = 0).
Since

o0 oo
lgj *f| = Z‘Pj * (Wryj — Wrejo1)| < ZM * (Wksj — Osjo1) |-
k—1 k—1

Let r € (0,min{p~, 47, 1}). By the definition of ¢;, there exists a constant C > 0 such that

lgjl <C 12, and using Lemma 2.6, then we conclude that

~I—=

| (@rsj — Wrsjo1)| < Cnj2m * |0y — @ja| < Crpjom * (Msjiam * lwksj — Wperjoal”) "
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By Minkowski’s integral inequality (with exponent % > 1) and Lemma 2.5 we obtain

r l r
|§0j * (Whej — wk+j—1)\ =< C[”j,%"’ * ’I;:+j,2m] * |Wpaj — Wkaje1|” < C0jjom * |Wpaj — Wpaje1 |

Hence, by Lemma 2.9,

~I=

00
|2j5(')¢1' *f(x)‘ = C Z (nj,m * 2}’S(')rlwkﬂ' — Wij-1 |r)
k=-1

(x)

o0
- . 1
<C Z 27k (1 * 20RO gy — gy )" (%),
k=-1

Since 250) < 20+hs()2-k" So we have

1
r

() q()
Lpr (¢ qr )

00
(Z 2—krs_ (nj,m * 2(]H.]()S(‘)r|w/<+j — Wi4j-1 |r))
k=-1

| @0 %1) | o eary = 1127055,

1
r

<C

J

s - , 1
<C Z 2757 (#2990, — wk+j71|r),'||£m( q0)
k=—1 "
*° — .
<C Z ks ” (2(/+k)s(')(a)k+1' - a)k+j_1))], ”U,(A)(Zq(‘)),
k=-1

where the last inequality is due to Lemma 2.7. Now using |wij — @ksjo1] < |f — @)l +
If — @ksj-1l, we find that

[(2*Vg; 5 f )j“LP(-)(M(-)) =C Z 275 [ (2090 - “)k+f))/||w<')<w(')>
k>-1

j+k)s(-)
= C” (2(] (f - wk*i))}' ”LP(')(M(-))'
Since the sequence space is invariant with respect to shifts, we arrive at that the left-hand
side can be estimated by a constant times ||f||“. Taking the infimum over w, we conclude
that |Ifll s = CIfII* u
P)at)

The following generalized Holder inequality will often be used in the sequel. It is Theo-
rem 2.3 in [25].

. 1 1 1
Lemma 2.16 Let p,p;,p2 € Po(R") with p}, p5 < oo such that @ = e T e Then there

exists a constant C,,, independent of the functions f and g such that

Wzl o0 < Cop I o0 g0y

holds for every f € L"'") and g € 1720,
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Lemma 2.17 Let p,p1, p2 € Po(R") with pi, p3 < 00 such that — x) 1711< S+ 1#()' Then there

is a constant C > 0 such that, for each {f;}32, € £1(LP1V)), h e LP2V),

” {fkh}l?;o HM(‘)(U’(')) = CH {fk}/tio ”zrz(«)(z,ﬂ1(~)) 1721l 1o -

Proof By a scaling argument, it suffices to consider the case [[{fi}72,ll;q0 210y = 1o
4]l pp¢» = 1. Let C is the constant in Lemma 2.16 for exponents 2 20 - pil) 192 ) So by

q()’ q() q()
Lemma 2.1.14 in [12], we have > ;2 A ||p1<> =1 and [||1]79] 5y = 1. Using the gen-
T

eralized Holder inequality (Lemma 2.16), then we have

[ee]

1
Peat 11 ( {ihyie 0) Z—Illfkhlq("ll%

k=0

o0

<3 Ay 11199 o
q(-) q()

k=0

<1
Thus [[{fih}72oll gt r0ry < C. O

3 Main results
Theorem 3.1 Letp P1,P2,9 € P(])Og(]R”) such that1 < p~,p1,p;,and pi,p3,p*,q" < 0o and

ﬁ = pll( ; pz( ) .Letse Clog NL*® withs~ > 0,and N,M € Ny be even numbers with N > s*
and M > W + Ciog(8) + 1. Then there exists a positive constant C depending on N,

M, n, p, q, s such that

1T (.0 0 < Cllolnam(If s lglpo + Ilfllpo ||g|| ) (8)
P()q() P1()4() p20)1 (1)
foreveryf,g € S(R") and o € BSY,. Moreover,
| 7o) 0 < CllolnaliFll 0 ligll o 9)
P()q() r10)4() p20)4()

foreveryf,g € S(R") and o € BSY,.

Theorem 3.2 Letp pl,pz,qepo PE(R™) such that 1 < p~,p1,p3, and p},p3,p*,q* < 00 and

ﬁ = pll( ) }72( ) .Letse Cll% NL*® with s~ > 0,and N,M € Ny be even numbers with N > s*
Cioa(1/q)
and M > % + Ciog(5) + n. Then there exists a positive constant C depending on N, M,

n, p, q, s such that

|1T5(f,8)

0 < Clolnm(Ifll g0 IIgIIF0 +”f||130 IIgII O ) (10)
p()a() p1()q() pal )

9,q(-

foreveryf,g € S(R") and o € BSY,. Moreover,

|7, (f.9)

#)  SClolval Ny, gy (11)
p()a() P1().q( 17 ()

2 )

foreveryf,g € S(R") and o € BSY,.
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To prove Theorems 3.1 and 3.2, we shall decompose the symbol function ¢ as usual,
indeed, we shall follow the method in [37].
Letf,g € S(R") and {@x}ken, be functions in R” as Definition 2.2. We write

T, (f,9)(x) /;w o (%, €, n)f ()2 (1)e™ ™€ gt dn

3 / o (£, ) E)P T E R E i

JjkeNg

Z / n/n ; &- n 27nx5 d{wk(f)fﬂ;( )f(g:) ( ) 27nx§+n)d§dn

jkeNg

=L (x) + Ir(x),

where 61(., -, -) stands for the Fourier transform of o (-, -, -) with respect to the first variable
and

i Y[ [ 8 enen depenarerunen s s n

jkeNg,j<k

f N / GleE e dc (&)@ ()f (€)g(m)e™ ™ € de dn.

]keNo k<j

Now we need only to estimate I3, since the estimate for I, will follow from the one for I;
by interchanging the roles of k and j, f and g, and £ and 7. Using a partition of unity with
respect to the variable ¢ we write

h(x)—z > Tou (0, (12)

LeNy j,keNg,j<k

where the symbols are given by

Oiko(x%,E,1) = / (Z(pu ) (¢, &)™ dg,

oioc (0. 51) 1= PP () [ (5 (P dr, 021

R7

for j < k. For oy, we use the following estimates.

Lemma 3.3 (Lemma 3.1 in [37]) If N,M € Ny, with N even, and multi-indices o, € N}
satisfy || + |B| < M, then there is a constant C depending only on M, N and n such that

|0g 92 0,03, €, )| < Cllor |y a2 HI71AL,
forall x,&,n €R", j,k,t €Ny, j <k, o € BS},
Lemma 3.4 (Lemma 3.2 in [37]) Let

Qikt (%, 3:2) 1= (Fan0jne (%)) 002), %9,z € R, (13)
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where F5,0 (%, -, -) denotes the Fourier transform in R of 0j ke (X, -, ) with respect to the
last two variables. If a > 0 and N, M € Ny are even with M > a + n, then there is a constant

C depending only on M, N, a and n such that
/ Qi@ 32| (1+ 201 + 212)" dydz < Cllo 2™,
R n

forall x e R", j,k,€ € Ng withj <k, o € BS),.

Lemma 3.5 Let s € Cllgcg N L*®. Let p,p1,p2,q € P(I)Og(]R”) such that 1 < p~,p1,p;, and
pLps,ptq <ooand -~ = 21— + L Let N,M € Ny be even numbers.

1

P T piw | Paw

(@) IfM > 7+ Ciog(s) + 1, then there exists a positive constant C depending on
N, M, n, p, q, s such that

n
min(py,p5,q~

forall € € Ny, f,g € S(R") and o € BSY,.

n+Clog(1/9)
(b) I M > ey
nand p, q, s such that

forall € € Ny, f,g € S(R") and o € BSY,.

k
:st(» Z| Toes 3] }
j=0

<Clolnm2MNIfll 0 lgleo  (14)
M lf Fp00q0) SUED )1

keNg 11 LPO) (40))

+ Ciog(8) + n, then there exists a constant C depending only on N, M,

. (15)

k
{stm Z| oo 3] }
kENO

j=0

—(N
= Cllolnw2 f g lellg
240 (L)) P1(),q() P2

Proof Let {@k}ken, and {\ilk}keNo be functions in R” as Definition 2.2 and put f; := lifk(D)f
and gj := \ilj(D)g for j,k € Ny, j < k. Then

0100 (6,6, M (E)E) = 000 (%, &, MF ENGM Wi (&) T (0) = 0.6 (%, &, M (E)G (),

and we write
T 200 = [ | et G0 0 d .
R n

From (13), for a > 0 with M > a + n, we have

‘/}Rzn Uj,k,z(X,g,n)f,:(g)(’g;(n)ez:rix(gm) d dn’

- ’Az;« Q/'k’i(x’ - _Z)ﬁ<(x—y)g/(x—z) dydz
(1+25yl + 2|zl

[fi(x — y)lIgi(x — 2)]
(1+2Ky))2 (1 + 2|z])3

= Vz Qike(x—y,~2) (1 + 28|yl + 2/]z])
]R n

< /Rz” |Qike (v, —y, ~2)| (1 + 28 |y| + 2/]z1)*

< Cllo w2 N W 2 f (x) ] 2 g()
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for all x € R”. In the last inequality we used Lemma 3.4 and the definition of the Peetre
maximal operator. Thus, we obtain, for all x € R”,

[ Toye, (.00 = Clloloan ;)0 gt

To prove (14), after adding in j < k, multiplying by 2X¢), we obtain
k a k a
2N T, (9@ < Cllo lnm2 N25PW 2 £ () Y W2 (). (16)
j=0 j=0

Then taking the £4)-norm in k we obtain

) N
(Z <2ks(x) Z|T6/_M(f,g)(x)|> )

keNg j=0

%4

scnanN,Mz-KN(Z(zks () ) Yo g

keNp j€No
. " L "
Since M —n > mn e Ciog(s) by the assumption in item (a), we choose a > mn )
Ciog(s) such that M — n > a. Using the generalized Holder inequality and Lemma 2.4, we

have

j=0

k
{2](5(') Z| Tﬂj,k,zz (f,9) | }
keNo

10 (¢a())

"\
< Cllo|Inm2

(Zeutn )

‘ ()

keNg jeNg
a0
- Ja*5 a0
< Cllo w2 ™ (Z(zk“)w?f)q ) v g‘
keNg OlgN, 20

N
= Cllolnm2 s liglpo
P1040)

This is the inequality (14).

To prove (b), from above inequality (16), taking £7°)(L*"))-norm in k, we have

k
{21(5(') Z‘ T‘Tj,k,é (f,9) | }
k

j=0

£40)(Lp0))

NI&

"\
< Cllo|Inm2

<2ks ZfZ\I,

>k £40)(2p0)

[

< Cllo a2z ™ | 2092 0) [ oo

1720)

—(N
<Cllollnm2 I llgo  llglg
p1()4() P21
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;f1+C1Dg l/q)
min(py ,p3)

+ Ciog(s) by the hypothesis of (b). O

where we used Lemma 2.17 and Lemma 2.4 by choosing a > + Ciog(s) such that

n+Clog(1/q)

M—-n>asince M —n>
min(p7,p5)

Lemma 3.6 Letp P1,P2q € P(I)Og(R”) such that 1 < p~,p1,p5, and pi,ps,p*,q" < 00 and
1 1

P(x) T P pz( )’
IfseClOgﬂLoo withs~ >0, s* < o0, M>W
a constant C depending only on N, M, n and p, pa, q, s such that

be even numbers.

+ Ciog(8) + 1, then there exists

F_N)L
Z To;,(f>8) H g = CllolInm2® ™ |[f||ps(~)() o ”g”ng(A)l
jkeNo,j<k Fog0) o

forall € € Ny, f,g € S(R") and o € BSY,.
log n+Clog(1/g)
b) Ifse C . NL*® withs™ >0,s* <ooand N > Wg}pg)
a constant C depending only on N, M, n and p1, pa, q, s such that
< Cllo w2 N f 1| s IIgIIFO

Z leZ(fg‘ (- 10):4()

JokeNo,j<k ()q()

+ Ciog(8) + n, then there exists

forall € € No,f,g € S(R") and o € BSY;.

Proof Letf,g € S(R"). We shall use the characterizations of Besov and Triebel-Lizorkin
spaces with variable exponents by approximation as described in Lemma 2.14 and Theo-

rem 2.15, which require the condition s € Clgf N L*>. For each fixed ¢ € Ny, we put

hy = Z oo (F-8).

j-keNog,j<k

It is enough to estimate ||/, ||;if(_> and ||/, ||w‘ (see (3) and (4)) for an appropriate se-
p()a() ( )q( )
quence of functions ;. To do so, we define the sequence wy := {wx ¢}xen, as follows:

0 ifk<t-1,
Wi 1= - v .
Zﬁ:é 20 Toy, (frg) ifk=L.

Then we have

wiey € LPY (R”) N S/(]R”) and <1£rolo wre =hy in S’(R”).
We claim that

supp(@ie) C {¢ e R":]¢| <23}, k£ eN.
This inclusion is induced by the fact that

supp(T. ,kz(fg)) {{eR”:|§|§2”*“3} forallj,v,€ € Ny,j <v,

which is easy to check; see [37].
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For s~ > 0, by the generalized Holder inequality, we have

lhelpo = | Y To,,k,[(f,g>H
jkeNo i<k o
a0\ 7
ks~
= (z 2 (Dmva) )
keNp ()
k ON!
C <Z 2/(S(~)q(') <Z|Taj,k,€(f’g)|> )
keNg j=0 0
<C 2N : , 17
<Cllolnm ILICII;;(I)(M(A)IIgIIF;;Z(A)’1 (17)

where in the last inequality we used Lemma 3.5. Similarly, we obtain

Z chj,k,g f.2) H
)

jikeNg,j<k

Z Taj,k,g (f,8) ‘

(
jkeNo,j<k By)q)

k
c (21@(4) Z Tojr (f, g))
k

Jj=0

72ell o) =

<C

040)(LP0))

<Clolnm2MIfl0  lglpo (18)
4 B;I(-xq(«) £ Fpyon

where the first inequality follows from Bj;('?)’q(_) < IV if s~ > 0 by Lemma 2.12 and Re-
mark 2.13, and the last inequality follows from Lemma 3.5.
Notice that the wg, = 0if £ € N, wog = Ty, (f,g) and that (17) implies that

| Too00 F>0) | ) < Clollnamlfll 0 lIgllgo
p10).a() p2(),1
Thus we have
N
lwoell oty < Cllollnm2™ I ll s Ngllpo
p10)4() p2()1
for all £ € Ny. Using (18), we have
lwoell o < Cllollnm2 NIfIlLso  llgllzo
w By0g0) © Em0n

for all £ € Ny. We now estimate [|{250|4, — Wr ¢ [tkeng l| o0 ¢a)) Dy breaking the sum in k
into k < ¢ —1and k > . Since wy, =0 if k < £ — 1, for the first part we obtain

-1 %
(Z (2501 1)* )
k=0

<C
)

-1 %
(Z(zmes(.)zw 1he |)q(»))

k=0

)

st (st =N
< C2° |l oo < Clio w2 ™MIf sy lgllpo
p10)al) r2()1
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where the second inequality follows from Lemma 2.10 and the last inequality follows from

(17). Now, we turn to an estimate of the second part (that is, when k > ¢). Since

oo k—L+v

oo v
he—wge= Y Y T, (6= D Toy ()
v=k—{+1 j=0 v=1 ;=0
we have
s (- 00
H {2 : )lhl - wk:’f'}k:e Huf(')(eq('))
oo k—l+v 0
Jes(-
o B9 sEAONEY
v=1 ;=0 k=¢ 1l 2C) (ga())
o0 k—C+v o]
= ' {Zz(Z—u)s(.)z(k—e+u)s(~) Z \Tg. et f g)|}
juk—L+v, 4
v=1 j=0 k=e 11 LPC) (£40))
oo k—0+v ©
< Zz(l—v)s@ {Z(k—uv)s(-) Z |T<7j,k—13+u,e (f, g)|}
v=1 j=0 k=¢ 1l PC) (ga())
o0
<CY 2oy a2 N If s llgll
UX:; ’ U For00.40 £ By
o0
<CY 2o lnar2MIf 0 gl
UZZI: M lf F;1(~),q(-) g Fl(f)z('),l

L(sT-N
< Clollnm2™ ™ Iflls0  lglp
p1()q() p2()1

where the third inequality follows from Lemma 3.5.

Then we estimate

kes(- 00 +_
{201 = el o gy < Cllo a2 ™ lf o ligleo .
P1()a() p2()1

Since wy¢ = 0 if k < £ — 1, for the first part we obtain

-1 -1 -1
Z 2k py, = szlk—f\s(»)zis(-)h[ <ot Zz"k"'s(')hg.
k=0 k=0 k=0

Then by Lemma 2.10, we have

-1 -1
Z 2/(5(')}1Z S 2€S+ Z 2—‘/(—“5(')}1Z
k=0 0 k=0 0

< C2%" | el o

L(sT-N
< Clollnm2™ ™ Ifllpo  lglo
p1()a() p2()1
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where the last inequality follows from (18). Since

o0
(zks(-)(he _ wk,[))k — <2ks() Z ng,kflﬂhf (f1g)>

k

T”j,k—£+v,/é (f.g ))

k

k—C+v
- Z 2((3 v)s(- (2(/( L+v)s(-) Tf’j,k—uv,lf (f,g)) .
V=1 =0 k

Letre (0 min{p~,q~,2}), by using Lemma 2.11, we obtain

12590 = 010 | oo

~ k—£+v
_ ZZ([,V)S(.) <2(kl+v)s(-) Z glkwj(f,g))
k

v=1

\)

Z k ¥4
v)s(-) < +1)s(-) Uj,k—ew,/z (f’ g))

J k
r
)k
,
)k

1Z010520))

240 (Lp())

r

7

0 p0
v

+U

IA

Uj,k—£+v,l (f’ g)
q() p()
(L)

0

1

7
le L)

k—+v

K v)rs(-) <2(k L+v)rs(-

k—¢ .
(2( +v)rs(-) Z T"/,kfz»fu,l(f’g)
j=0

k
<2ks(-) Z{ To, (f,g)|>
k

J=0

IA

00
(Z 2(K—v)rsJr

o(st =N
<C2" o lnulfllgo  lglpo
p1()q() p2()1
where in the last inequality we used Lemma 3.5. Thus, we obtain

ks(-
el = Clnell + {25t = oxel o oo

< C o 2[5 —N)
o2 W gy gl

and
ks(-
Vel = Cllowellor + [{25Mhe = oxel g Laoramor
.
< Cllo a2 Mfll 0 llgllzo
lf B, 040) EE, 0
as desired. O

After these preparation, we now complete the proofs of Theorems 3.1 and 3.2.
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Proofs of Theorems 3.1 and 3.2 We firstly conclude the proofs of (8) and (10). Since

hx)=Y Y Ty, (9,

LeNp j,keNg,j<k

by choosing N > s*, part (a) of Lemma 3.6, we obtain

Millps) = Cliolnallf 1l pst
P0a0)

) gl
p1()q() Fn0a

By interchanging the roles of j and k, f and g, £ and n, we have

L.y =<Clo 0 )
g < Cllollflss | gl
Hence the proof of (8) is complete. Similarly, we obtain the inequality (10) by using part
(b) of Lemma 3.6.

By Lemma 2.12, the inequalities (9) and (11) follow from (8) and (10), respectively, since

s(-) () 0 0
Foy140) = Bpamaxtpn (a1 = Bpayminparan = Emy10
s(-) s(-) 0 0
Ep10a0) 7 Bpiomaxipa0g0) T Bprominipaatn > Fpro1r
and
() 0 0
B, 00400 = Bpy(minipa(1,1) = Fpy),17
() 0 0
By 0a0) = Bpruminip )1y = Fpyo1-
Thus the proof finishes. d
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