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Abstract
This paper considers subsistence consumption of an economic agent both before
and after retirement in analyzing the optimal consumption, portfolio, and retirement
problem. We allow the relative risk aversion of the economic agent to make a one-off
jump at retirement. With a Cobb–Douglas utility function, we obtain explicit
expressions for the optimal policies. Numerical results show that, whereas
post-retirement subsistence consumption tends to delay retirement, pre-retirement
subsistence consumption and the magnitude of jump in relative risk aversion may
stimulate early retirement. Also, the consumption drop at retirement deepens as
post-retirement subsistence consumption increases, but it weakens as pre-retirement
subsistence consumption increases.
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1 Introduction
In the present paper, we study lifetime consumption, portfolio, and retirement of an eco-
nomic agent whose relative risk aversion changes at retirement, with the assumption that
the agent faces both pre- and post-retirement subsistence consumption. Recently, Lim et
al. [17] also considered both pre- and post-retirement subsistence consumption, but they
did not consider risk aversion change at retirement. Also, our study and that of Lim et
al. [17] are methodologically different: we use a dynamic programming method, whereas
Lim et al. [17] relied on the martingale and duality approach. Risk aversion change at re-
tirement has been well addressed in empirical studies (e.g., Yoo [23], Riley and Chow [20],
and Halek and Eisenhauer [8]). According to the results of the above studies, risk aver-
sion tends to increase substantially at retirement. Kwak et al. [13] considered risk aversion
change at retirement, but did not impose any constraints (e.g., subsistence consumption
constraint or borrowing constraint). Jang and Lee [10] investigated the combined effects
of risk aversion change at retirement and borrowing constraints on the optimal consump-
tion, portfolio, and retirement strategies. We allow the relative risk aversion of the eco-
nomic agent to make a one-off jump at retirement as in Jang and Lee [10]. In addition, we
assume a Cobb–Douglas utility function of consumption and leisure because this function
is appropriate for capturing empirical observations that consumption drops significantly
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at retirement (for the consumption retirement puzzle: see Hurd and Rohwedder [9], Haider
and Stephens [7], and Aguila et al. [1]).

This paper is an extension of consumption-portfolio choice literature that examines
quantitatively the combined effects of subsistence consumption and risk aversion change
at retirement. Merton’s [19] original problem on the optimal consumption and portfolio
was generalized by Karatzas et al. [12], who transformed the relevant Bellman equation to
a linear ordinary differential equation, which is more tractable than the original. Sethi et al.
[21] extended Karatzas et al. [12] to the case with subsistence consumption, and exploited
a different transformation to linearize the relevant Bellman equation. Shin et al. [22] used
the Martingale and duality method to explore a similar problem. Lakner and Nygren [14]
used Malliavin calculus to solve the portfolio optimization problem with subsistence con-
sumption. Labor supply flexibility was firstly incorporated into lifetime consumption and
portfolio selection problem by Bodie et al. [3]. Choi and Shim [4] and Farhi and Panageas
[6] developed a more realistic model on labor supply flexibility through investigating the
optimal retirement problem as an optimal stopping problem. Lim et al. [18] and Lee and
Shin [15] considered the disutility from labor to extend these ideas that include subsis-
tence consumption. Assuming a trade-off between income and leisure, Lee and Shin [16]
studied the optimal consumption, portfolio, and retirement problem of an economic agent
with a subsistence consumption. Most similar work to ours is by Lim et al. [17] and Lee and
Shin [16], but they did not consider risk aversion change nor investigate the consumption
drop at retirement. Restrictions on consumption level and limited access to credit market
are realistic assumptions when we investigate lifetime optimal consumption and portfolio
selection problem. Other than these constraints, individual’s uninsurable income risk or
incomplete market are of crucial importance for studying lifetime optimal strategies. For
example, Jang et al. [11] and Bensoussan et al. [2] developed optimal retirement rules of
an individual with an exogenous unemployment risk.

Our numerical results show that pre-retirement subsistence consumption may urge
early retirement, whereas post-retirement subsistence consumption may delay retirement.
The wealth accumulation for retirement is likely to decrease with the magnitude of jump in
relative risk aversion at retirement. We also investigate the effects of subsistence consump-
tion on consumption drop at retirement if the relative risk aversion changes at retirement.
Post-retirement subsistence consumption may intensify consumption drop at retirement,
whereas pre-retirement subsistence consumption may weaken it. The remainder of this
paper proceeds as follows. Section 2 introduces the financial market and constructs our
model. Section 3 solves the economic agent’s optimization problem using dynamic pro-
gramming method and obtains analytic expressions for the optimal policies. Some nu-
merical illustrations and their implications are given in Sect. 4, and Sect. 5 summarizes
the results.

2 The model
In this paper, it is assumed that an infinitely-lived economic agent faces both pre- and post-
retirement subsistence consumption. The economic agent has an option to retire (i.e., can
choose retirement time) and retirement is irreversible. Let R1 and R2 be the pre-retirement
subsistence consumption and post-retirement subsistence consumption, respectively. So,
if we denote by ct the consumption rate process at time t and by τ the retirement time,
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the following inequality for the consumption rate must hold:

ct ≥ R1 for all 0 ≤ t < τ , ct ≥ R2 for all t ≥ τ . (2.1)

An economic agent derives utility from consumption and leisure. We use a Cobb–Douglas
utility function of consumption and leisure with the form

u(ct , lt) �
1
α

· (cα
t l1–α

t )1–γ̄t

1 – γ̄t
, 0 < α < 1, γ̄t > 0 (γ̄t �= 1), (2.2)

where γ̄t is the agent’s coefficient of relative risk aversion at time t, lt is the leisure rate at
time t, and α measures the contribution of consumption to the agent’s utility. To accom-
modate the empirical fact that risk aversion tends to increase significantly at retirement,
we assume a constant relative risk aversion with a one-off jump at retirement: γ̄t = γ̄1 for
t < τ and γ̄t = γ̄2 for t ≥ τ .

As in Farhi and Panageas [6], we assume that lt = 1 for0 ≤ t < τ and lt = L > 1 for
t ≥ τ . Therefore, the post-retirement leisure, which is larger than the pre-retirement
leisure, creates an incentive for retirement. If we define γ1 � 1 – α(1 – γ̄1) and γ2 �
1 – α(1 – γ̄2) then (2.2) can be rewritten as

u(ct , lt) =
c1–γ1

t

1 – γ1
, for 0 ≤ t < τ and u(ct , lt) = Lγ2–γ̄2

c1–γ2
t

1 – γ2
, for t ≥ τ .

Suppose that the economic agent is allowed to invest in the financial market that con-
sists of two investment opportunities: a riskless asset Mt with price process dMt/Mt = r dt,
where r is the constant rate of return of the riskless asset; and a risky asset St with price
process dSt/St = μdt + σdBt , where μ is the constant rate of return of the risky asset, σ is
the constant volatility of the risky asset, and Bt is the standard Brownian motion on a prob-
ability space (�,F ,P). Denote by {Ft}t≥0 theP-augmentation of the filtration generated by
the standard Brownian motion {Bt}t≥0. Then we can define a portfolio process π � {πt}t≥0,
i.e., the amount of money invested in the risky asset, which is a measurable process that
is adapted to {Ft}t≥0 and that satisfies

∫ t
0 π2

s ds < ∞, for all t ≥ 0 a.s. A consumption rate
process c � {ct}t≥0 in (2.1) is a measurable nonnegative process that is adapted to {Ft}t≥0

and satisfies
∫ t

0 cs ds < ∞, for all t ≥ 0 a.s. The retirement time τ is an Ft-stopping time.
Denote by I1 and I2 the labor income while working andretirement income (e.g., pension

benefits), respectively. Then the agent’s wealth level process Xt at time t is given by

dXt =
[
rXt + πt(μ – r) – ct + I11{0≤t<τ } + I21{t≥τ }

]
dt + πtσdBt .

3 The optimization problems and the solutions
The purpose of our study is to examine combined effects of the subsistence consumption
and risk aversion change at retirement on the optimal policies of an economic agent. We
first obtain the value function and the optimal policies when the economic agent is retired
and then obtain those when she is working, by utilizing the smooth-pasting condition of
post-retirement value function and pre-retirement value function at the retirement wealth
level.
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Assumption 3.1 Throughout this paper, we assume that

K1 � r +
ρ – r
γ1

+
γ1 – 1
2γ 2

1
θ2 > 0, K2 � r +

ρ – r
γ2

+
γ2 – 1
2γ 2

2
θ2 > 0,

where θ � (μ – r)/σ is the market price of risk. This assumption guarantees that the eco-
nomic agent’s optimization problems are well defined.

3.1 Post-retirement optimization problem
Firstly, we investigate the value function and optimal consumption and portfolio strategies
after retirement. Let us call a pair of control (c,π ) admissible at initial capital x > (R2 –I2)/r,
if Xt > (R2 – I2)/r and ct ≥ R2 for τ < t < ∞. To guarantee ct ≥ R2 for τ < t < ∞, wealth of the
retiree needs to be larger than the discounted value of the minimum consumption stream
net of the discounted value of the income stream on an infinite horizon. Therefore, we
require Xt > (R2 – I2)/r at any t ≥ τ for the retiree. Let Ã(x) denote the set of all admissible
pairs at x. The retiree‘s optimization problem is to find the value function

Vp(x) � max
(c,π)∈Ã(x)

E

[

Lγ2–γ̄2

∫ ∞

0
e–ρt c1–γ2

t

1 – γ2
dt

]

, (3.1)

subject to

dXt =
[
rXt + πt(μ – r) – ct + I2

]
dt + πtσdBt , Xt > (R2 – I2)/r,

for t > 0. ρ > 0 is the agent’s subjective discount rate.

Definition 3.1 Let n1 and n2 be the two roots to the following equation:

1
2
θ2n2 +

(

ρ – r +
1
2
θ2

)

n – r = 0,

such that n1 > 0 and n2 < –1. Similarly, let m1 and m2 be the roots to the following equation:

rm2 –
(

ρ + r +
1
2
θ2

)

m + ρ = 0,

such that m1 > 1, 0 < m2 < 1.

Proposition 3.1 The value function Vp(x) defined (3.1) is strictly concave and strictly in-
creasing on x ∈ ((R2 – I2)/r,∞).

Proof If we follow similar lines to the proof of Proposition 2.1 in Zariphopoulou [24], we
arrive at the results. �

Using the dynamic programming method, we obtain the value function Vp(·) ∈ C2((R2 –
I2)/r,∞) and the related optimal consumption and portfolio.
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Proposition 3.2

Vp(x) = Lγ2–γ̄2

⎧
⎨

⎩
Ap(x – R2–I2

r )m2 + R1–γ2
2

ρ(1–γ2) , for (R2 – I2)/r < x < x̃2,

Bp
r– 1

2 θ2n1
ρ

ζ –γ2(n1+1) + ζ1–γ2
K2(1–γ2) , for x ≥ x̃2,

where

Bp =
( m2–1

γ2
+ 1) 1

K2
– 1

r

(m2 – 1)n1 – 1
Rγ2n1+1

2 , x̃2 = BpR–γ2n1
2 +

R2

K2
–

I2

r
,

and

Ap =
1

m2

(

x̃2 –
R2 – I2

r

)1–m2

R–γ2
2 .

For x ≥ x̃2, ζ is determined by the following algebraic equation:

x = Bpζ
–γ2n1 +

ζ

K2
–

I2

r
,

which is the relationship between the optimal consumption rate ζ and the wealth level x.
The optimal consumption and portfolio pair (cp,∗,πp,∗) for the retiree is given by

cp,∗
t =

⎧
⎨

⎩

R2, for (R2 – I2)/r < Xt < x̃2,

ζt , for Xt ≥ x̃2,

and

π
p,∗
t =

⎧
⎨

⎩

θ
σ

1
1–m2

(Xt – R2–I2
r ), for (R2 – I2)/r < Xt < x̃2,

θ
σγ2

(–γ2n1Bpζ
–γ2n1
t + ζt

K2
), for Xt ≥ x̃2,

where ζt is determined by the following algebraic equation:

Xt = Bpζ
–γ2n1
t +

ζt

K2
–

I2

r
.

Proof The relevant Bellman equation for the value function Vp(x) is given by

ρVp(x) = max
c≥R2,π

[
{

rx + π (μ – r) – c + I2
}

V ′
p(x) +

1
2
σ 2π2V ′′

p (x) + Lγ2–γ̄2
c1–γ2

1 – γ2

]

. (3.2)

If the subsistence consumption constraint ct ≥ R2 does not bind, the first order conditions
(FOCs) yield the optimal consumption c∗ = cp,∗ and portfolio π∗ = πp,∗ (to simplify the
notation we drop the superscript p) as follows:

c∗ = L
γ2–γ̄2

γ2
(
V ′

p(x)
)– 1

γ2 , π∗ = –
θ

σ

V ′
p(x)

V ′′
p (x)

.
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But due to the subsistence consumption constraint ct ≥ R2, there exists x̃2 such that

c∗ = R2, π∗ = –
θ

σ

V ′
p(x)

V ′′
p (x)

, for (R2 – I2)/r < x < x̃2, (3.3)

and

c∗ = L
γ2–γ̄2

γ2
(
V ′

p(x)
)– 1

γ2 , π∗ = –
θ

σ

V ′
p(x)

V ′′
p (x)

, for x ≥ x̃2. (3.4)

For (R2 – I2)/r < x < x̃2, plugging (3.3) into (3.2) yields

ρVp(x) = (rx – R2 + I2)V ′
p(x) –

1
2
θ2 (V ′

p(x))2

V ′′
p (x)

+ Lγ2–γ̄2
R1–γ2

2
1 – γ2

. (3.5)

We can obtain the general solution to the equation (3.5) as follows:

Vp(x) = c1

(

x –
R2 – I2

r

)m1

+ c2

(

x –
R2 – I2

r

)m2

+ Lγ1–γ R1–γ2
2

ρ(1 – γ2)
, (3.6)

for some constants c1 and c2. If c1 = 0 and c2 > 0, Vp(x) is a concave function. Therefore,
we proceed with c1 = 0 and will see that c2 > 0. The optimal portfolio is given by

π∗
t =

θ

σ

1
1 – m2

(

Xt –
R2 – I2

r

)

.

For x ≥ x̃2, by the first order conditions (FOCs) (3.4), the Bellman equation (3.2) for
Vp(x) can be rewritten as

ρVp(x) = (rx + I2)V ′
p(x) –

1
2
θ2 (V ′

p(x))2

V ′′
p (x)

+
γ2

1 – γ2
L

γ2–γ̄2
γ2

(
V ′

p(x)
)1– 1

γ2 . (3.7)

By the strict concavity of Vp(x), if we write w(x) � V ′
p(x), we can define a function F such

that F(w(x)) = x + I2/r with the identities

F ′(w)V ′′
p (x) = 1, F ′′(w)

(
V ′′

p (x)
)2 + F ′(w)V ′′′

p (x) = 0. (3.8)

By differentiating (3.7) with respect to x and using (3.8), we arrive at the following linear
ordinary differential equation:

1
2
θ2w2F ′′(w) +

(
θ2 + ρ – r

)
wF ′(w) – rF(w) = –L

γ2–γ̄2
γ2 w– 1

γ2 . (3.9)

The general solution to the equation (3.9) is given by

F(w) = d1wn1 + d2wn2 +
L

γ2–γ̄2
γ2

K2
w– 1

γ2 ,
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for some constants d1 and d2. If we write ζ � w– 1
γ2 L

γ2–γ̄2
γ2 , which is the optimal consump-

tion from (3.4), we obtain

x = F
(
w(x)

)
–

I2

r
= d̃1ζ

–γ2n1 + d̃2ζ
–γ2n2 +

ζ

K2
–

I2

r
, (3.10)

where d̃1 = d1L(γ2–γ̄2)n1 and d̃2 = d2L(γ2–γ̄2)n2 . From (3.7), the value function Vp(x) is given
by

Vp(x) =
r – 1

2θ2n1

ρ

˜̃d1ζ
–γ2(n1+1) +

r – 1
2θ2n2

ρ

˜̃d2ζ
–γ2(n2+1) +

Lγ2–γ̄2

K2(1 – γ2)
ζ 1–γ2 ,

where ˜̃d1 = d1L(γ2–γ̄2)(n1+1) and ˜̃d2 = d2L(γ2–γ̄2)(n2+1). We impose the no blow-up condition of
the value function to obtain d2 = 0. From (3.10), the wealth level x∗ corresponding to the
optimal consumption c∗ and portfolio π∗ is a function Xp(·) of the optimal consumption
c∗ such that

x∗ = Xp
(
c∗) = d̃1c∗–γ2n1 +

c∗

K2
–

I2

r
, (3.11)

for x ≥ x̃2. Then

x̃2 = Xp(R2) = d̃1R–γ2n1
2 +

R2

K2
–

I2

r
, (3.12)

V ′
p(x̃2) = m2c2

(

x̃2 –
R2 – I2

r

)m2–1

= Lγ2–γ̄2 R–γ2
2 , (3.13)

and

V ′′
p (x̃2) = m2(m2 – 1)c2

(

x̃2 –
R2 – I2

r

)m2–2

=
1

F ′(Lγ2–γ̄2 R–γ2
2 )

. (3.14)

From (3.13) and (3.14), we have

x̃2 = (m2 – 1)n1d̃1R–γ2n1
2 – (m2 – 1)

R2

γ2K2
+

R2

r
–

I2

r
. (3.15)

Combining (3.12) and (3.15) yields

d̃1 =
( m2–1

γ2
+ 1) 1

K2
– 1

r

(m2 – 1)n1 – 1
Rγ2n1+1

2 = Bp

and

c2 =
1

m2
Lγ2–γ̄2

(

x̃2 –
R2 – I2

r

)1–m2

R–γ2
2 = Lγ2–γ̄2 Ap > 0.

The optimal portfolio

π∗
t =

θ

σγ2

(

–γ2n1Bpζ
–γ2n1
t +

ζt

K2

)

is an immediate consequence of the first order condition (3.4). �
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3.2 Pre-retirement optimization problem
With the post-retirement value function Vp(x) in hand, we seek to investigate the pre-
retirement value function, optimal consumption, portfolio, and retirement policies.
A triple (c,π ,τ ) of control is called admissible at initial capital x > (R1 – I1)/r, if Xt >
(R1 – I1)/r and ct ≥ R1 for 0 ≤ t < τ . The retirement decision is discretionary, and if the
economic agent decides not to retire, then τ = ∞. Therefore, we impose the condition
Xt > (R1 – I1)/r for 0 ≤ t < τ , similarly to the case of the retiree. Let A(x) denote the set of
all admissible triples at x. Before retirement, an economic agent’s optimization problem
is to find the value function

V (x) � max
(c,π ,τ )∈A(x)

E

[∫ τ

0
e–ρt c1–γ1

t

1 – γ1
dt + e–ρτ Vp(Xτ )

]

,

with the dynamic budget constraint

dXt =
[
rXt + πt(μ – r) – ct + I1

]
dt + πtσdBt , Xt > (R1 – I1)/r.

The relevant Bellman equation for the value function V (x) is given by

ρV (x) = max
c≥R1,π

[
{

rx + π (μ – r) – c + I1
}

V ′(x) +
1
2
σ 2π2V ′′(x) +

c1–γ1

1 – γ1

]

. (3.16)

Following Choi and Shim [4] and Dybvig and Liu [5], we conjecture the existence of the
wealth accumulation for retirement, say retirement wealth level, x̄, which corresponds to
the optimal retirement time τ ∗ such that τ ∗ = inf{t ≥ 0 : Xt ≥ x̄}. The following verifica-
tion theorem enables us to find the pre-retirement value function V (x) and the optimal
consumption, portfolio, and retirement time.

Theorem 3.1 Suppose that a strictly concave and strictly increasing function v(·) ∈
C2((R1 – I1)/r, x̄) solves the Bellman equation (3.16) and satisfies the smooth-pasting (con-
tinuous differentiability) condition with Vp(x) at x = x̄. Then V (x) = v(x) and the optimal
consumption c∗ and portfolio π∗ are the maximizer of the Bellman equation (3.16) and the
optimal retirement time τ ∗ is given by τ ∗ = inf{t ≥ 0 : Xt ≥ x̄}.

Proof The proof follows similar lines to those of the proof of Theorem 4.1 in Lee and
Shin [15]. �

Theorem 3.2

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(x – R1–I1
r )m2 + R1–γ1

1
ρ(1–γ1) , for (R1 – I1)/r < x < x̃1,

r– 1
2 θ2n1
ρ

B1η
–γ1(n1+1) + r– 1

2 θ2n2
ρ

B2η
–γ1(n2+1)

+ η1–γ1
K1(1–γ1) , for x̃1 ≤ x < x̄,

(3.17)

where

x = B1η
–γ1n1 + B2η

–γ1n2 +
η

K1
–

I1

r
, for x̃1 ≤ x < x̄, (3.18)

B1 =
( m2–1

γ1
+ 1) 1

K1
– 1

r

(m2 – 1)n1 – 1
Rγ1n1+1

1 .
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Let us define

G(x) � 1
2
θ2(n2 – n1)

(
B1 – L–n1(γ2–γ̄2)Bp

)
x–γ1n1 +

(
ρ

1 – γ1
– r +

1
2
θ2n2

)
1

K1
x

–
(

ρ

1 – γ2
– r +

1
2
θ2n2

)
L

γ2–γ̄2
γ2

K2
x

γ1
γ2 +

(

r –
1
2
θ2n2

)
I1 – I2

r
, for x > 0,

and λ be the solution to the equation G(x) = 0, then we have

B2 = 2
H(λ)

θ2(n1 – n2)
,

where

H(x) � –
(

ρ

1 – γ1
– r +

1
2
θ2n1

)
xγ1n2+1

K1

+
(

ρ

1 – γ2
– r +

1
2
θ2n1

)
L

γ2–γ̄2
γ2

K2
xγ1n2+ γ1

γ2 +
(

r –
1
2
θ2n1

)
I2 – I1

r
xγ1n2 ,

x̃1 = B1R–γ1n1
1 + B2R–γ1n2

1 +
R1

K1
–

I1

r
,

x̄ = B1λ
–γ1n1 + B2λ

–γ1n2 +
λ

K1
–

I1

r
,

and

A =
1

m2

(

x̃1 –
R1 – I1

r

)1–m2

R–γ1
1 .

Proof From the first order conditions (FOCs) and due to the subsistence consump-
tion constraint ct ≥ R1, there exists x̃1 such that the optimal consumption c∗ = R1 for
(R1 – I1)/r ≤ x < x̃1 and c∗ = (V ′(x))– 1

γ1 for x̃1 ≤ x < x̄. Similar arguments to the proof of
Proposition 3.2 enable us to reach the expression for the value function V (x) in (3.17) with
(3.18) for some constants A, B1, and B2. Similarly to (3.11), we rewrite (3.18) as

x∗ = X
(
c∗) = B1c∗–γ1n1 + B2c∗–γ1n2 +

c∗

K1
–

I1

r
,

so we have

x̃1 = X(R1) = B1R–γ1n1
1 + B2R–γ1n2

1 +
R1

K1
–

I1

r
, (3.19)

V ′(x̃1) = m2A
(

x̃1 –
R1 – I1

r

)m2–1

= R–γ1
1 , (3.20)

V ′′(x̃1) = m2(m2 – 1)A
(

x̃1 –
R1 – I1

r

)m2–2

= –γ1
R–γ1–1

1
X ′(R1)

. (3.21)

From (3.19)–(3.21), we have

B1 =
( m2–1

γ1
+ 1) 1

K1
– 1

r

(m2 – 1)n1 – 1
Rγ1n1+1

1 , A =
1

m2

(

x̃1 –
R1 – I1

r

)1–m2

R–γ1
1 .
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To determine the free boundary x̄ and the remaining constants, we use the smooth-pasting
condition of V (x) with Vp(x) at x = x̄. If we define

c̄l � lim
t→τ∗–

c∗
t and c̄r � cp,∗

τ∗ , (3.22)

then we have

x̄ = X(c̄l) = Xp(c̄r) : B1c̄–γ1n1
l + B2c̄–γ1n2

l +
1

K1
c̄l –

I1

r
= Bpc̄–γ2n1

r +
c̄r

K2
–

I2

r
, (3.23)

where Bp is from Proposition 3.2. We have

V (x̄) = Vp(x̄) :
r – 1

2θ2n1

ρ
B1c̄–γ1(n1+1)

l +
r – 1

2θ2n2

ρ
B2c̄–γ1(n2+1)

l +
c̄1–γ1

l
K1(1 – γ1)

= Lγ2–γ̄2
r – 1

2θ2n1

ρ
Bpc̄–γ2(n1+1)

r + Lγ2–γ̄2
c̄1–γ2

r

K2(1 – γ2)
(3.24)

and

V ′(x̄) = V ′
p(x̄) : c̄–γ1

l = Lγ2–γ̄2 c̄–γ2
r . (3.25)

From (3.23)–(3.25), we obtain the following algebraic equation for c̄l :

1
2
θ2(n2 – n1)

(
B1 – L–n1(γ2–γ̄2)Bp

)
c̄–γ1n1

l +
(

ρ

1 – γ1
– r +

1
2
θ2n2

)
1

K1
c̄l

–
(

ρ

1 – γ2
– r +

1
2
θ2n2

)
L

γ2–γ̄2
γ2

K2
c̄

γ1
γ2
l +

(

r –
1
2
θ2n2

)
I1 – I2

r
= 0.

Given c̄l , we obtain

1
2
θ2(n1 – n2)B2

= –
(

ρ

1 – γ1
– r +

1
2
θ2n1

)
c̄γ1n2+1

l
K1

+
(

ρ

1 – γ2
– r +

1
2
θ2n1

)
L

γ2–γ̄2
γ2

K2
c̄
γ1n2+ γ1

γ2
l +

(

r –
1
2
θ2n1

)
I2 – I1

r
c̄γ1n2

l .

x̃1 and x̄ are obtained from (3.19) and (3.23), respectively. �

The following pre-retirement optimal strategies are immediate consequences of Theo-
rem 3.1 and Theorem 3.2.

Proposition 3.3 The optimal strategies (c∗,π∗,τ ∗) for the economic agent while working
are given by

c∗
t =

⎧
⎨

⎩

R1, for (R1 – I1)/r < Xt < x̃1,

ηt , for x̃1 ≤ Xt < x̄,



Lee Journal of Inequalities and Applications  (2018) 2018:165 Page 11 of 15

π∗
t =

⎧
⎨

⎩

θ
σ

· 1
1–m2

(Xt – R1–I1
r ), for (R1 – I1)/r < Xt < x̃1,

θ
σ

(–n1B1η
–γ1n1
t – n2B2η

–γ1n2
t + ηt

γ1K1
), for x̃1 ≤ Xt < x̄,

and

τ ∗ = inf{t ≥ 0 : Xt ≥ x̄},

where ηt solves the following algebraic equation:

Xt = B1η
–γ1n1
t + B2η

–γ1n2
t +

ηt

K1
–

I1

r
.

4 Numerical examples
In this section, we use reasonable parameters to explore some numerical results and their
implications. To represent empirical observations that at retirement, consumption drops
substantially and relative risk aversion increases significantly, we make the following as-
sumption.

Assumption 4.1 1 < γ̄1 < γ̄2.

This assumption was also made in Jang and Lee [10] (see detailed justification therein).
By the definitions of γ1 and γ2, it easily follows that 1 < γ1 < γ2.

Lemma 4.1 Suppose that B1 > L–n1(γ2–γ̄2)Bp. Then G′(x) = 0 has a unique solution xe ∈
(0,∞) and G′′(x) < 0 for all x > 0. Furthermore, if G(xe) > 0, G(x) = 0 has two distinct roots.

Proof

G′(x) = –
1
2
γ1n1θ

2(n2 – n1)
(
B1 – L–n1(γ2–γ̄2)Bp

)
x–γ1n1–1

+
{

ρ

1 – γ1
–

(

r –
1
2
θ2n2

)}
1

K1
–

{
ρ

1 – γ2
–

(

r –
1
2
θ2n2

)}
γ1L

γ2–γ̄2
γ2

γ2K2
x

γ1
γ2

–1.

By Definition 3.1, (r – 1
2θ2n2) = ρ

n2
1+n2

> 0, and we see that limx↓0 G′(x) = ∞ and
limx↑∞ G′(x) < 0. On the other hand,

G′′(x) =
1
2
γ1n1(γ1n1 + 1)θ2(n2 – n1)

(
B1 – L–n1(γ2–γ̄2)Bp

)
x–γ1n1–2

–
{

ρ

1 – γ2
–

(

r –
1
2
θ2n2

)}
γ1(γ1 – γ2)L

γ2–γ̄2
γ2

γ 2
2 K2

x
γ1
γ2

–2 < 0,

so G′(x) is strictly decreasing. Therefore, G′(x) = 0 has a unique solution xe ∈ (0,∞). The
existence of two distinct roots to the equation G(x) = 0, under the condition that G(xe) > 0,
is an easy consequence. �

To examine some examples, we use parameters that satisfy the conditions of Lemma 4.1.
For such parameters, we are obliged to solve G(x) = 0 and choose the appropriate one
of the two roots, say xm and xM (xm < xe < xM). Similar arguments of the proof of the
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Proposition 4.2 in Lee and Shin [15] lead us to choose xM as the appropriate root to the
equation G(x) = 0.

Firstly, we consider the effects of risk aversion jump and subsistence consumption on the
retirement wealth level. Figure 1(a) shows that a strong pre-retirement subsistence con-
sumption may lead to a reduction in the retirement wealth level. With an option to retire, a
strong restriction on consumption before retirement would reduce incentive to work, and
urge early retirement. In contrast, an economic agent with a strong post-retirement sub-
sistence consumption may be more likely to delay retirement as in Fig. 1(b). Both Fig. 1(a)
and 1(b) say that the retirement wealth level decreases as the magnitude of jump in relative
risk aversion increases. This finding implies that an individual with a large risk aversion
coefficient after retirement (hence invest more in the riskless asset) needs to accumulate
less wealth for retirement.

Figure 2(a) and 2(b) illustrate the optimal consumption and portfolio while working with
respect to pre-retirement subsistence consumption and risk aversion change. Because a
strong pre-retirement subsistence consumption alone or together with a large magnitude
of jump in relative risk aversion tends to urge early retirement (as in Fig. 1(a)), an economic
agent is likely to reduce her consumption and increase investment in the risky asset to
reach the retirement wealth level earlier. An incentive to increase investment in the risky
asset induced by a desire for early retirement competes with the effect of pre-retirement
subsistence consumption on investment in the risky asset (a strong pre-retirement sub-

Figure 1 Retirement wealth level and subsistence consumption (parameters: ρ = 0.03, r = 0.03, μ = 0.07,
σ = 0.2, α = 0.5, I1 = 1, I2 = 0.1, γ̄1 = 2, L = 4)

Figure 2 Combined effects of risk aversion change and subsistence consumption on pre-retirement optimal
consumption and portfolio at the wealth level 4 (parameters: ρ = 0.03, r = 0.03, μ = 0.07, σ = 0.2, α = 0.5,
I1 = 1, I2 = 0.1, R2 = 0.03, γ̄1 = 2, L = 4)
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Figure 3 Consumption drop at retirement and subsistence consumption (parameters: ρ = 0.03, r = 0.03,
μ = 0.07, σ = 0.2, α = 0.5, I1 = 1, I2 = 0.5, γ̄1 = 2, γ̄2 = 5, L = 4)

sistence consumption alone seems to reduce investment in the risky asset), and the latter
prevails in the case shown in Fig. 2(b).

By means of our model, we explore the consumption drop at retirement which has been
well reported in the literature. We define the consumption drop at retirement  by

� (c̄r – c̄l)/c̄l = c̄
γ1–γ2

γ2
l L

γ2–γ̄2
γ2 – 1,

where c̄l and c̄r are from (3.22). It is worthwhile to emphasize that if there is no risk aversion
change at retirement, i.e., γ̄1 = γ̄2, then consumption drop at retirement  is not affected
by subsistence consumption R1 and R2 at all. Figure 3(a) and 3(b) exhibit the effects of
subsistence consumption on consumption drop at retirement. Decreasing pre-retirement
subsistence consumption deepens consumption drop at retirement, while increasing post-
retirement subsistence consumption has an effect in the same direction. Although empir-
ical evidence consistent with such findings is rare, we interpret them as demonstrating
that a relatively weak pre-retirement or relatively strong post-retirement restriction on
consumption may intensify consumption drop at retirement.

5 Conclusion
This paper aims to quantify the effects of subsistence consumption and risk aversion
change at retirement on optimal consumption, portfolio, and retirement. Lifetime rela-
tive risk aversion is assumed to be constant and to make a one-off jump at retirement.
A Cobb–Douglas utility function, which is appropriate for capturing consumption drop
at retirement, is employed. The main findings from our analytic solution are as follows.
The wealth accumulation for retirement decreases as pre-retirement subsistence con-
sumption increases, and increases as post-retirement subsistence consumption increases.
Regardless of the subsistence consumption, a large magnitude of jump in relative risk
aversion tends to urge retirement. An interesting finding is that subsistence consump-
tion constraints can affect consumption drop at retirement if the relative risk aversion
changes at retirement. Whereas post-retirement subsistence consumption may intensify
consumption drop at retirement, pre-retirement subsistence consumption weakens it. We
also found that increase in pre-retirement subsistence consumption may lead to decrease
in both consumption and investment in the risky asset. In contrast, the magnitude of the
jump in relative risk aversion may lead the economic agent to decrease consumption, but
to raise investment in the risky asset.
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Other than imposing subsistence consumption constraint, considering an incomplete
market, for example unhedgeable income risk, is a way to increase realism in investigating
lifetime optimal consumption, portfolio, and retirement rules. In this respect, to incorpo-
rate income risk in the present paper is a meaningful future research.
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