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Abstract
In this paper, we consider the closedness of shift invariant subspaces in Lp,q(Rd+1). We
first define the shift invariant subspaces generated by the shifts of finite functions in
Lp,q(Rd+1). Then we give some necessary and sufficient conditions for the shift
invariant subspaces in Lp,q(Rd+1) to be closed. Our results improve some known
results in (Aldroubi et al. in J. Fourier Anal. Appl. 7:1–21, 2001).
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1 Introduction and main result
Lp,q(Rd+1) (1 < p, q < +∞) are called mixed Lebesgue spaces which generalize Lebesgue
spaces [2–6]. They are very important for the study of sampling and equation problems,
since we can consider functions to be independent quantities with different properties
[5–8]. Recently, Torres, Ward, Li, Liu and Zhang studied the sampling theorem on the
shift invariant subspaces in Lp,q(Rd+1) [6–8]. In this environment, we study the closedness
of shift invariant subspaces in Lp,q(Rd+1).

The closedness is an expected property for shift invariant subspaces, which is widely
considered in the study of shift invariant subspaces. de Boor, DeVore, Ron, Bownik and
Shen studied the closedness of shift invariant subspaces in L2(Rd) [9–11]. And Jia, Mic-
chelli, Aldroubi, Sun and Tang discussed the closedness of shift invariant subspaces in
Lp(Rd) [1, 12, 13]. In this paper, we consider the closedness of shift invariant subspaces in
Lp,q(Rd+1).

In order to provide our main result which extends the result in [1], we introduce some
definitions and notations.

The definition of Lp,q(Rd+1) is as follows.

Definition 1.1 For 1 < p, q < +∞. Lp,q = Lp,q(Rd+1) is made up of all functions f satisfying

‖f ‖Lp,q =
[∫

R

(∫
Rd

∣∣f (x, y)
∣∣q dy

) p
q

dx
] 1

p
< +∞.
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We define mixed sequence spaces �p,q(Zd+1) as follows:

�p,q = �p,q(
Z

d+1) =
{

c : ‖c‖�p,q =
[∑

n∈Z

(∑
l∈Zd

∣∣c(n, l)
∣∣q

) p
q
] 1

p
< +∞

}
.

Given a function f , define

‖f ‖Lp,q :=
∥∥∥∥
∑
k1∈Z

[∫
[0,1]d

( ∑
k2∈Zd

∣∣f (· + k1, x2 + k2)
∣∣)q

dx2

]1/q∥∥∥∥
Lp[0,1]

.

For 1 ≤ p, q ≤ ∞, let Lp,q = Lp,q(Rd+1) be the linear space of all functions f for which
‖f ‖Lp,q < ∞. The norms are defined above and with usual modification in the case of
p or q = ∞. Lp,q is a generalization of Lp (the definition of Lp see [14, Sect. 1]). Clearly,
for 1 ≤ p, q ≤ ∞, one has L∞,∞ ⊂L∞ and L∞,∞ ⊂Lp,q ⊂L1,1.

Let f̂ (ω) denote the Fourier transform of f ∈ L1(Rd+1):

f̂ (ω) =
∫
Rd+1

f (x)e–iωx dx.

For a given sequence c and a function φ, c ∗sd φ =
∑

k∈Zd+1 c(k)φ(· – k) is called semi-
convolution of c and φ.

Assume that B is a Banach space. (B)(r) denotes r copies B × B × · · · × B of B. If C =
(c1, c2, . . . , cr)T ∈ (B)(r), then one defines the norm of C by ‖C‖(B)(r) =

∑r
j=1 ‖cj‖B .

WCp,q (1 ≤ p, q ≤ ∞) consists of all distributions whose Fourier coefficients belong to
�p,q. When p = q = 1, WC1,1 becomes the Wiener class WC .

Suppose that � = (θ1, θ2, . . . , θr)T and � = (ψ1,ψ2, . . . ,ψs)T are two vector functions
which satisfy θ̂j(ω)ψ̂j′ (ω) (1 ≤ j ≤ r, 1 ≤ j′ ≤ s) are integrable. One defines

[�̂, �̂](ω) =
( ∑

k∈Zd+1

θ̂j(ω + 2kπ )ψ̂j′ (ω + 2kπ )
)

1≤j≤r,1≤j′≤s
.

Remark 1.2 By [14, Theorem 3.1 and Theorem 3.2], [�̂, �̂](ω) ∈ WC for any �,� ∈
L∞,∞ ⊂ L∞ ⊂ L2. Therefore, for any � ∈ L∞,∞, using the continuity of [�̂, �̂](ω) and
rank[�̂, �̂](ω) = rank(�̂(ω + 2kπ ))k∈Zd+1 , one obtains, for any n ≥ 0, the set 
n = {ω :
rank(�̂(ω + 2kπ ))k∈Zd+1 > n} is open.

The following proposition shows that the shift invariant subspaces in Lp,q (1 < p, q < ∞)
are well defined.

Proposition 1.3 ([8, Lemma 2.2]) Let θ ∈Lp,q, where 1 < p, q < ∞. Then, for any c ∈ �p,q,

‖c ∗sd θ‖Lp,q ≤ ‖c‖�p,q‖θ‖Lp,q .

Definition 1.4 For � = (θ1, θ2, . . . , θr)T ∈ (L∞,∞)(r), the multiply generated shift invariant
subspace in the mixed Lebesgue spaces Lp,q is defined by

Vp,q(�) =

{ r∑
j=1

∑
k∈Zd+1

cj(k)θj(· – k) : cj =
{

cj(k) : k ∈ Z
d+1} ∈ �p,q, 1 ≤ j ≤ r

}
.
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The following is our main result.

Theorem 1.5 Assume � = (θ1, θ2, . . . , θr)T ∈ (L∞,∞)(r) and 1 < p, q < ∞. Then the following
four conditions are equivalent.

(i) Vp,q(�) is closed in Lp,q .
(ii) There exist some positive constants C1 and C2 satisfying

C1[�̂, �̂](ω) ≤ [�̂, �̂](ω)[�̂, �̂](ω)T ≤ C2[�̂, �̂](ω), ∀ω ∈ [–π ,π ]d+1.

(iii) There exist constants B1, B2 > 0 satisfying

B1‖f ‖Lp,q ≤ inf
f =

∑r
j=1 cj∗sdφj

r∑
j=1

‖cj‖�p,q ≤ B2‖f ‖Lp,q , ∀f ∈ Vp,q(�).

(iv) There is � = (ψ1,ψ2, . . . ,ψr)T ∈ (L∞,∞)(r) satisfying

f =
r∑

j=1

∑
k∈Zd+1

〈
f ,ψj(· – k)

〉
θj(· – k)

=
r∑

j=1

∑
k∈Zd+1

〈
f , θj(· – k)

〉
ψj(· – k), ∀f ∈ Vp,q(�).

The paper is organized as follows. In the next section, we give some three useful lemmas
and two propositions. In Sect. 3, we give the proof of Theorem 1.5. Finally, concluding
remarks are presented in Sect. 4.

2 Some useful lemmas and propositions
In this section, we give three useful lemmas and two propositions which are needed in the
proof of Theorem 1.5.

Proposition 2.1 ([1, Lemma 1]) Let � ∈ (L2)(r). Then the following are equivalent:
(i) rank(�̂(ω + 2kπ ))k∈Zd+1 is a constant for any ω ∈R

d+1.
(ii) There exist some positive constants C1 and C2 such that

C1[�̂, �̂](ω) ≤ [�̂, �̂](ω)[�̂, �̂](ω)T ≤ C2[�̂, �̂](ω), ∀ω ∈ [–π ,π ]d+1.

Proposition 2.2 ([1, Lemma 2]) Let � ∈ (L2)(r) satisfy rank(�̂(ξ + 2kπ ))k∈Zd+1 = k0 ≥ 1 for
all ξ ∈R

d+1. Then there exists a finite index set 
, ηλ ∈ [–π ,π ]d+1, 0 < δλ < 1/4, nonsingular
2π -periodic r × r matrix Pλ(ξ ) with all entries in the Wiener class and Kλ ⊂ Z

d+1 with
cardinality(Kλ) = k0 for all λ ∈ 
, having the following properties:

(i)

[–π ,π ]d+1 ⊂
⋃
λ∈


B(δλ, δλ/2),

where B(x0, δ) denotes the open ball in R
d+1 with center x0 and radius δ;
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(ii)

Pλ(ξ )�̂(ξ ) =

(
�̂1,λ(ξ )
�̂2,λ(ξ )

)
, ξ ∈R

d+1 and λ ∈ 
,

where �1,λ and �2,λ are functions from R
d+1 to C

k0 and C
r–k0 , respectively, satisfying

rank
(
�̂1,λ(ξ + 2πk)

)
k∈Kλ

= k0, ∀ξ ∈ B(δλ, δλ/2)

and

�̂2,λ(ξ ) = 0, ∀ξ ∈ B(δλ, 8δλ/5) + 2πZd+1.

Furthermore, there exist 2π -periodic C∞ functions hλ(ξ ), λ ∈ 
, on R
d+1 such that

∑
λ∈


hλ(ξ ) = 1, ∀ξ ∈R
d+1

and

supp hλ(ξ ) ⊂ B(δλ, δλ/2) + 2πZd+1.

The following lemma can be proved similarly to [7, Theorem 3.4]. And we leave the
details to the interested reader.

Lemma 2.3 Assume that f ∈ Lp,q (1 < p, q < ∞) and g ∈L∞,∞. Then

∥∥∥∥
{∫

R

∫
Rd

f (x1, x2)g(x1 – k1, x2 – k2) dx1 dx2 : k1 ∈ Z, k2 ∈ Z
d
}∥∥∥∥

�p,q
≤ ‖f ‖Lp,q‖g‖L∞,∞ .

Lemma 2.4 Let c ∈ �1. Then one has:
(i) If θ ∈Lp,q (1 < p, q < ∞), then

‖c ∗sd θ‖Lp,q ≤ ‖c‖�1‖θ‖Lp,q .

(ii) If θ ∈L∞,∞, then

‖c ∗sd θ‖L∞,∞ ≤ ‖c‖�1‖θ‖L∞,∞ .

Proof (i) By Young’s inequality and the triangle inequality, one has

‖c ∗sd θ‖Lp,q =
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
l∈Zd

∣∣c ∗sd θ (· + n, y + l)
∣∣)q

dy
]1/q∥∥∥∥

Lp[0,1]

=
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
l∈Zd

∣∣∣∣
∑
n′∈Z

∑
l′∈Zd

cn′ ,l′θ
(· + n – n′, y + l – l′

)∣∣∣∣
)q

dy
]1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
n′∈Z

∑
l∈Zd

∣∣∣∣
∑
l′∈Zd

cn′ ,l′θ
(· + n – n′, y + l – l′

)∣∣∣∣
)q

dy
]1/q∥∥∥∥

Lp[0,1]



Zhang Journal of Inequalities and Applications  (2018) 2018:166 Page 5 of 11

≤
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
n′∈Z

∑
l∈Zd

|cn′ ,l|
(∑

l′∈Zd

∣∣θ(· + n – n′, y + l′
)∣∣))q

dy
]1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
∑
n∈Z

∑
n′∈Z

∑
l∈Zd

|cn′ ,l|
[∫

[0,1]d

(∑
l′∈Zd

∣∣θ(· + n – n′, y + l′
)∣∣)q

dy
]1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
∑
n′∈Z

∑
l∈Zd

|cn′ ,l|
∑
n∈Z

[∫
[0,1]d

(∑
l′∈Zd

∣∣θ(· + n – n′, y + l′
)∣∣)q

dy
]1/q∥∥∥∥

Lp[0,1]

≤
∑
n′∈Z

∑
l∈Zd

|cn′ ,l|
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
l′∈Zd

∣∣θ(· + n – n′, y + l′
)∣∣)q

dy
]1/q∥∥∥∥

Lp[0,1]

≤
∑
n′∈Z

∑
l∈Zd

|cn′ ,l|
∥∥∥∥
∑
n∈Z

[∫
[0,1]d

(∑
l′∈Zd

∣∣θ(· + n, y + l′
)∣∣)q

dy
]1/q∥∥∥∥

Lp[0,1]

= ‖c‖�1‖θ‖Lp,q .

The desired result (i) in Lemma 2.4 is obtained.
(ii) The desired result (ii) in Lemma 2.4 can be found in [8, Lemma 2.4]. �

Lemma 2.5 Assume that θ ∈ Lp,q (1 < p, q < ∞) and
∑

k∈Zd+1 θ (· – k) = 0. Then for any
function h on R

d+1 satisfying

∣∣h(x)
∣∣ ≤ D

(
1 + |x|)–d–2 and

∣∣h(x) – h(y)
∣∣ ≤ D|x – y|(1 + min

(|x|, |y|))–d–2, (2.1)

one has

lim
n→∞ 2–n(d+1)

∥∥∥∥
∑

k∈Zd+1

h
(
2–nk

)
θ (· – k)

∥∥∥∥
Lp,q

= 0.

Here D in (2.1) is a positive constant.

Proof Since θ ∈Lp,q, for any ε > 0, there is N0 ≥ 2 satisfying

∥∥∥∥
∑

|l|≥N0

(∫
[0,1]d

(∑
k∈Zd

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]
< ε (2.2)

and

∥∥∥∥
∑
l∈Z

(∫
[0,1]d

( ∑
k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]
< ε, (2.3)

where Ed
N0

= {(k1, . . . , kd) : there exists some 1 ≤ i0 ≤ d such that |ki0 | > N0}.
Set

θ1(x1, . . . , xd+1) = θ (x1, . . . , xd+1)χON0
(x1, . . . , xd+1)

+
∑

(k1,...,kd+1)∈Ed+1
N0

θ (x1 + k1, . . . , xd+1 + kd+1)χ[0,1]d+1 (x1, . . . , xd+1),
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where ON0 =
⋃

|ki|≤N0,1≤i≤d+1[(k1, . . . , kd+1) + [0, 1]d+1] and χS is the characteristic function
of S.

Thus
∑

k∈Zd+1 θ1(· – k) =
∑

k∈Zd+1 θ (· – k) = 0 and ‖θ1 – θ‖Lp,q < 5ε. In fact

‖θ1 – θ‖Lp,q

=
∥∥∥∥
∑
l∈Z

(∫
[0,1]d

(∑
k∈Zd

∣∣(θ1 – θ )(· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
(∫

[0,1]d

(∑
k∈Zd

∣∣(θ1 – θ )(·, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
∑
l �=0

(∫
[0,1]d

(∑
k∈Zd

∣∣(θ1 – θ )(· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

= I1 + I2.

First of all, one treats I1: by (2.2) and (2.3), one has

I1 ≤
∥∥∥∥
(∫

[0,1]d

(∣∣(θ1 – θ )(·, x)
∣∣)q dx

)1/q

+
(∫

[0,1]d

(∑
k �=0

∣∣(θ1 – θ )(·, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
(∫

[0,1]d

(∣∣(θ1 – θ )(·, x)
∣∣)q dx

)1/q∥∥∥∥
Lp[0,1]

+
∥∥∥∥
(∫

[0,1]d

(∑
k �=0

∣∣(θ1 – θ )(·, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
(∫

[0,1]d

( ∑
(k1,...,kd+1)∈Ed+1

N0

∣∣θ (· + k1, . . . , xd+1 + kd+1)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
(∫

[0,1]d

( ∑
k∈Ed

N0

∣∣θ (·, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
(∫

[0,1]d

(( ∑
|l|>N0,k∈Zd

+
∑

l∈Z,k∈Ed
N0

)∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
∑
l∈Z

(∫
[0,1]d

( ∑
k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥
(∫

[0,1]d

( ∑
|l|>N0,k∈Zd

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
(∫

[0,1]d

( ∑
l∈Z,k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]
+ ε
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≤
∥∥∥∥

∑
|l|>N0

(∫
[0,1]d

(∑
k∈Zd

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
∑
l∈Z

(∫
[0,1]d

( ∑
k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]
+ ε

< ε + ε + ε = 3ε.

Next, one treats I2:

I2 ≤
∥∥∥∥

∑
|l|>N0

(∫
[0,1]d

(∑
k∈Zd

∣∣(θ1 – θ )(· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥

∑
|l|≤N0,l �=0

(∫
[0,1]d

(∑
k∈Zd

∣∣(θ1 – θ )(· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

=
∥∥∥∥

∑
|l|>N0

(∫
[0,1]d

(∑
k∈Zd

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥

∑
|l|≤N0,l �=0

(∫
[0,1]d

( ∑
k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

≤
∥∥∥∥

∑
|l|>N0

(∫
[0,1]d

(∑
k∈Zd

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

+
∥∥∥∥
∑
l∈Z

(∫
[0,1]d

( ∑
k∈Ed

N0

∣∣θ (· + l, x + k)
∣∣)q

dx
)1/q∥∥∥∥

Lp[0,1]

< ε + ε = 2ε.

Therefore, one has ‖θ1 – θ‖Lp,q < 5ε.
Using Lemma 2.4 and (2.1), there exists some positive constant C such that

∥∥∥∥2–n(d+1)
∑

k∈Zd+1

h
(
2–nk

)(
φ(· – k) – φ1(· – k)

)∥∥∥∥
Lp,q

≤ 2–n(d+1)
∑

k∈Zd+1

∣∣h(
2–nk

)∣∣‖φ1 – φ‖Lp,q ≤ Cε.

Thus
∥∥∥∥2–n(d+1)

∑
k∈Zd+1

h
(
2–nk

)
θ1(· – k)

∥∥∥∥
Lp,q

= 2–n(d+1)
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

( ∑
j2∈Zd

∣∣∣∣
∑

k1∈Z,k2∈Zd

h
(
2–nk1, 2–nk2

)

× θ1(· + j1 – k1, x2 + j2 – k2)
∣∣∣∣
)q

dx2

)1/q∥∥∥∥
Lp[0,1]

= 2–n(d+1)
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

( ∑
j2∈Zd

∣∣∣∣
∑

k1∈Z,k2∈Zd

(
h
(
2–nk1, 2–nk2

)
– h

(
2–nj1, 2–nj2

))
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× θ1(· + j1 – k1, x2 + j2 – k2)
∣∣∣∣
)q

dx2

)1/q∥∥∥∥
Lp[0,1]

≤ 2–n(d+2)C1(N0)
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

( ∑
j2∈Zd

∑
k1∈Z,k2∈Zd

(
1 + 2–n∣∣(k1, k2)

∣∣)–(d+2)

× ∣∣θ1(· + j1 – k1, x2 + j2 – k2)
∣∣)q

dx2

)1/q∥∥∥∥
Lp[0,1]

= 2–n(d+2)C1(N0)
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

(∑
k1∈Z

∑
k2∈Zd

(
1 + 2–n∣∣(k1, k2)

∣∣)–(d+2)

×
∑

j2∈Zd

∣∣θ1(· + j1 – k1, x2 + j2)
∣∣)q

dx2

)1/q∥∥∥∥
Lp[0,1]

≤ 2–n(d+2)C1(N0)
∑

k1∈Z,k2∈Zd

(
1 + 2–n∣∣(k1, k2)

∣∣)–(d+2)

×
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

( ∑
j2∈Zd

∣∣θ1(· + j1 – k1, x2 + j2)
∣∣)q

dx2

)1/q∥∥∥∥
Lp[0,1]

≤ 2–nC2(N0)
∥∥∥∥
∑
j1∈Z

(∫
[0,1]d

( ∑
j2∈Zd

∣∣θ1(· + j1, x2 + j2)
∣∣)q

dx2

)1/q∥∥∥∥
Lp[0,1]

= 2–nC2(N0)‖θ1‖Lp,q ≤ 2–nC2(N0)
(‖θ‖Lp,q + 5ε

)
.

Here Ci(N0) (i = 1, 2) are positive constants depending only on N0 and d. This completes
the proof. �

3 Proof of Theorem 1.5
In this section, we give the proof of Theorem 1.5. The main steps of the proof are as follows:
(iv) ⇒ (iii) ⇒ (i) ⇒ (ii) ⇒ (iv).

(iv) ⇒ (iii):
Let f =

∑r
j=1

∑
k∈Zd+1〈f ,ψj(· – k)〉θj(· – k). Then, by Lemma 2.3, one has

inf
f =

∑r
j=1 cj∗sdφj

r∑
j=1

‖cj‖�p,q ≤
r∑

j=1

∥∥{〈
f ,ψj(· – k1, · – k2)

〉
: k1 ∈ Z, k2 ∈ Z

d}∥∥
�p,q

≤
r∑

j=1

‖f ‖Lp,q‖ψj‖L∞,∞ = ‖f ‖Lp,q

r∑
j=1

‖ψj‖L∞,∞ .

Conversely, if f =
∑r

j=1 cj ∗sd θj, then, by Proposition 1.3 and the triangle inequality

‖f ‖Lp,q =

∥∥∥∥∥
r∑

j=1

cj ∗sd θj

∥∥∥∥∥
Lp,q

≤
r∑

j=1

‖cj ∗sd θj‖Lp,q

≤
r∑

j=1

‖cj‖�p,q‖θj‖Lp,q ≤ max
1≤j≤r

‖θj‖Lp,q

r∑
j=1

‖cj‖�p,q . (3.1)
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Taking the infimum for (3.1), one gets

‖f ‖Lp,q ≤ max
1≤j≤r

‖θj‖Lp,q inf
f =

∑r
j=1 cj∗sdθj

r∑
j=1

‖cj‖�p,q .

Let B1 = 1/ max1≤j≤r ‖θj‖Lp,q and B2 =
∑r

j=1 ‖ψj‖L∞,∞ . Then one has

B1‖f ‖Lp,q ≤ inf
f =

∑r
j=1 cj∗sdφj

r∑
j=1

‖cj‖�p,q ≤ B2‖f ‖Lp,q , ∀f ∈ Vp,q(�).

(iii) ⇒ (i):
For convenience, let T : (�p,q)(r) → Vp,q(�) be a mapping which is defined by

TC =
r∑

j=1

cj ∗sd θj, C = (c1, c2, . . . , cr)T ∈ (
�p,q)(r),

and let ‖f ‖inf = inff =
∑r

j=1 cj∗sdθj

∑r
j=1 ‖cj‖�p,q . Then, obviously, ‖ · ‖inf is a norm. Assume fn ⊂

Ran(T) (n ≥ 1) is a Cauchy sequence. Here Ran(T) denotes the range of T . Without loss
of generality, let ‖fn – fn–1‖inf < 2–n. Using the definition of ‖ · ‖inf , there is Cn ∈ (�p,q)(r)

(n ≥ 2) such that TCn = fn – fn–1 and ‖Cn‖(�p,q)(r) < 2–n for any n ≥ 2. By the completeness
of (�p,q)(r) and

∑∞
n=2 ‖Cn‖(�p,q)(r) < ∞, one has Z =

∑∞
n=2 Cn ∈ (�p,q)(r) and f1 + TZ ∈ Ran(T).

Note that ‖TC‖inf ≤ ‖C‖(�p,q)(r) for any C ∈ (�p,q)(r). One has

‖fn – f1 – TZ‖inf =

∥∥∥∥∥T

( ∞∑
k=n+1

Ck

)∥∥∥∥∥
inf

≤
∥∥∥∥∥

∞∑
k=n+1

Ck

∥∥∥∥∥
(�p,q)(r)

≤
∞∑

k=n+1

‖Ck‖(�p,q)(r) → 0,

when n → ∞. Therefore, Ran(T) is closed. Since Vp,q(�) = Ran(T), one sees that Vp,q(�)
is closed.

(i) ⇒ (ii):
Similarly to [1, Proof of (i) ⇒ (iii)], one can prove (i) ⇒ (ii) by using L∞,∞ ⊂ L∞, and

substituting Lp,q,L∞,∞, Proposition 2.1 and Lemma 2.5 for Lp,L∞, Lemma 1 and Lemma 3
in [1], respectively.

(ii) ⇒ (iv):
Assume that hλ(ω), Pλ(ω) and �̂1,λ(ω) are as in Proposition 2.2. Define

Dλ(ω) = Pλ(ω)T

(
[�̂1,λ, �̂1,λ](ω)–1 0

0 I

)
Pλ(ω)Hλ(ω). (3.2)

Here Hλ(ω) is a function with period 2π which satisfies supp Hλ ⊂ B(ηλ, δλ) + 2πZd+1 and
Hλ(ω) = 1 on supp hλ. Thus Dλ ∈ (WC)(r×r). Let � = (ψ1,ψ2, . . . ,ψr)T be defined by

�̂(ω) =
∑
λ∈


hλ(ω)Dλ(ξ )�̂(ω). (3.3)

Then, by Lemma 2.4, one has � ∈ L∞,∞. For any f ∈ Vp,q(�), using the definition of
Vp,q(�), there exists a distribution A(ω) ∈ (WCp,q)(r) with period 2π which satisfies f̂ (ω) =
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A(ω)T�̂(ω). Putting

g =
r∑

j=1

∑
k∈Zd+1

〈
f ,ψj(· – k)

〉
θj(· – k).

By the periodicity of hλ(ω) and Dλ(ω), (3.2), (3.3) and Proposition 2.2, one has

ĝ(ω) = A(ω)T [�̂, �̂](ω)�̂(ω)

=
∑
λ∈


A(ω)T Pλ(ω)–1

×
(

[�̂1,λ, �̂1,λ](ω) 0
0 0

)(
[�̂1,λ, �̂1,λ](ω)–1 0

0 I

)(
�̂1,λ(ω)

0

)
hλ(ω)

=
∑
λ∈


A(ω)T Pλ(ω)–1

(
�̂1,λ(ω)

0

)
hλ(ω)

=
∑
λ∈


A(ω)T Pλ(ω)–1Pλ(ω)�̂(ω)hλ(ω)

=
∑
λ∈


A(ω)T�̂(ω)hλ(ω)

= A(ω)T�̂(ω)

= f̂ (ω).

Thus f̂ (ω) = ĝ(ω). Therefore f = g , namely

f =
r∑

j=1

∑
k∈Zd

〈
f ,ψj(· – k)

〉
θj(· – k).

Similar arguments show that

f =
r∑

j=1

∑
k∈Zd

〈
f , θj(· – k)

〉
ψj(· – k).

4 Concluding remarks
In this paper, we study the closedness of shift invariant subspaces in Lp,q(Rd+1). We first
define the shift invariant subspaces generated by the shifts of finite functions in Lp,q(Rd+1).
Then we give some necessary and sufficient conditions for the shift invariant subspaces in
Lp,q(Rd+1) to be closed.

However, in this paper, we only consider the closedness of shift invariant subspace
of Lp,q(Rd+1). Studying the Lp,q-frames in a shift invariant subspace of mixed Lebesgue
Lp,q(Rd) is the goal of future work.
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