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Abstract
In this paper, we refine and generalize some weighted arithmetic–geometric operator
mean inequalities due to Lin (Stud. Math. 215:187–194, 2013) and Zhang (Banach J.
Math. Anal. 9:166–172, 2015) as follows: Let A and B be positive operators. If
0 <m ≤ A ≤ m′ <M′ ≤ B ≤ M or 0 <m ≤ B ≤ m′ <M′ ≤ A≤ M, then for a positive
unital linear map �,

�2(A∇αB) ≤
[ K (h)
S(h′r)

]2
�2(A�αB),

�2(A∇αB) ≤
[ K (h)
S(h′r)

]2[
�(A)�α�(B)

]2
,

�2p(A∇αB) ≤ 1
16

[K2(h)(M2 +m2)2

S2(h′r)M2m2

]p
�2p(A�αB),

�2p(A∇αB) ≤ 1
16

[K2(h)(M2 +m2)2

S2(h′r)M2m2

]p[
�(A)�α�(B)

]2p
,

where α ∈ [0, 1], K (h) = (h+1)2

4h , S(h′) = h
′ 1
h′–1

e logh
′ 1
h′–1

, h = M
m , h

′ = M′
m′ , r =min{α, 1 – α} and

p ≥ 2.
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1 Introduction
Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space (H, 〈·, ·〉)
and I be the identity operator. ‖ · ‖ is the operator norm. A ≥ 0 (A > 0) implies that A
is a positive (strictly positive) operator. A linear map � : B(H) → B(K) is called positive
if A ≥ 0 implies �(A) ≥ 0. It is said to be unital if �(I) = I . For A, B > 0, the α-weighted
arithmetic mean and α-weighted geometric mean of A and B are defined, respectively, by

A∇αB = (1 – α)A + αB, A�αB = A
1
2
(
A– 1

2 BA– 1
2
)αA

1
2 ,

where α ∈ [0, 1]. When α = 1
2 , we write A∇B and A�B for brevity for A∇ 1

2
B and A� 1

2
B,

respectively.
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Let 0 < m ≤ A, B ≤ M, and � be a positive unital linear map. Tominaga [3] showed that
the following operator inequality holds:

A + B
2

≤ S(h)A�B, (1.1)

where S(h) = h
1

h–1

e log h
1

h–1
is called Specht’s radio and h = M

m . Indeed

S(h) ≤ K(h) =
(h + 1)2

4h
≤ S2(h) (h ≥ 1) (1.2)

was observed by Lin [1, (3.3)].
By (1.1) and (1.2), it is easy to obtain the following inequality:

�

(
A + B

2

)
≤ K(h)�(A�B). (1.3)

Lin [1, Theorem 2.1] proved that (1.3) can be squared as follows:

�2
(

A + B
2

)
≤ K2(h)�2(A�B) (1.4)

and

�2
(

A + B
2

)
≤ K2(h)

[
�(A)��(B)

]2. (1.5)

Zhang [2] generalized (1.4) and (1.5) when p ≥ 2

�2p
(

A + B
2

)
≤ [K(h)(M2 + m2)]2p

16M2pm2p �2p(A�B) (1.6)

and

�2p
(

A + B
2

)
≤ [K(h)(M2 + m2)]2p

16M2pm2p

[
�(A)��(B)

]2p. (1.7)

A great number of results on operator inequalities have been given in the literature, for
example, see [4–6] and the references therein.

In this paper, motivated by the aforementioned discussion, we extend (1.4)–(1.7) to the
weighted arithmetic–geometric mean. In order to prove our results, we show a new opera-
tor weighted arithmetic–geometric mean inequality. Manipulating this operator inequal-
ity enables us to refine and generalize (1.4)–(1.7). Furthermore, a numerical example is
given to demonstrate the effectiveness of the theoretical results.

2 Main results
In this section, the main results of this paper will be given. To do this, the following lemmas
are necessary.
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Lemma 1 ([7]) Let A, B > 0. Then the following norm inequality holds:

‖AB‖ ≤ 1
4
‖A + B‖2. (2.1)

Lemma 2 ([8]) Let A > 0. Then for every positive unital linear map �,

�
(
A–1) ≥ �–1(A). (2.2)

Lemma 3 ([9]) Let A, B > 0. Then for 1 ≤ r < ∞,

∥∥Ar + Br∥∥ ≤ ∥∥(A + B)r∥∥. (2.3)

Lemma 4 ([10]) Let 0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M or 0 < m ≤ B ≤ m′ < M′ ≤ A ≤ M.
Then for each α ∈ [0, 1],

A∇αB ≥ S
(
h′r)A�αB, (2.4)

where S(h′) = h
′ 1

h′–1

e log h
′ 1

h′–1
, h′ = M′

m′ and r = min{α, 1 – α}.

Theorem 1 Let 0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M or 0 < m ≤ B ≤ m′ < M′ ≤ A ≤ M. Then for
each α ∈ [0, 1],

A∇αB + MmS
(
h′r)(A�αB)–1 ≤ M + m, (2.5)

where S(h′) = h
′ 1

h′–1

e log h
′ 1

h′–1
, h′ = M′

m′ and r = min{α, 1 – α}.

Proof Since

0 < m ≤ A ≤ M,

then

(1 – α)(M – A)(m – A)A–1 ≤ 0.

That is,

(1 – α)
(
A + MmA–1) ≤ (1 – α)(M + m). (2.6)

Similarly, we get

α
(
B + MmB–1) ≤ α(M + m). (2.7)

Summing up inequalities (2.6) and (2.7), we get

A∇αB + MmA–1∇αB–1 ≤ M + m.
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By (A�αB)–1 = A–1�αB–1 and (2.4), we have

A∇αB + MmS
(
h′r)(A�αB)–1 ≤ A∇αB + MmA–1∇αB–1

≤ M + m.

This completes the proof. �

Theorem 2 Let � be a positive unital linear map and let A and B be positive operators. If
0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M or 0 < m ≤ B ≤ m′ < M′ ≤ A ≤ M, then for each α ∈ [0, 1],

�2(A∇αB) ≤
[

K(h)
S(h′r)

]2

�2(A�αB), (2.8)

�2(A∇αB) ≤
[

K(h)
S(h′r)

]2[
�(A)�α�(B)

]2, (2.9)

where K(h) = (h+1)2

4h , S(h′) = h
′ 1

h′–1

e log h
′ 1

h′–1
, h = M

m , h′ = M′
m′ and r = min{α, 1 – α}.

Proof Inequality (2.8) is equivalent to

∥∥�(A∇αB)�–1(A�αB)
∥∥ ≤ K(h)

S(h′r)
.

By (2.1), (2.2) and (2.5), we have

∥∥�(A∇αB)MmS
(
h′r)�–1(A�αB)

∥∥ ≤ 1
4
∥∥�(A∇αB) + MmS

(
h′r)�–1(A�αB)

∥∥2

≤ 1
4
∥∥�(A∇αB) + MmS

(
h′r)�[

(A�αB)–1]∥∥2

=
1
4
∥∥�

[
(A∇αB) + MmS

(
h′r)(A�αB)–1]∥∥2

≤ 1
4
∥∥�(M + m)

∥∥2

=
1
4

(M + m)2.

That is,

∥∥�(A∇αB)�–1(A�αB)
∥∥ ≤ (M + m)2

4MmS(h′r)
=

K(h)
S(h′r)

.

Thus, (2.8) holds.
Inequality (2.9) is equivalent to

∥∥�(A∇αB)
[
�(A)�α�(B)

]–1∥∥ ≤ K(h)
S(h′r)

.



Xue Journal of Inequalities and Applications  (2018) 2018:154 Page 5 of 6

By (2.1) and (2.5), we have

∥∥�(A∇αB)MmS
(
h′r)[�(A)�α�(B)

]–1∥∥

≤ 1
4
∥∥�(A∇αB) + MmS

(
h′r)[�(A)�α�(B)

]–1∥∥2

=
1
4
∥∥�(A)∇α�(B) + MmS

(
h′r)[�(A)�α�(B)

]–1∥∥2

≤ 1
4

(M + m)2.

That is,

∥∥�(A∇αB)
[
�(A)�α�(B)

]–1∥∥ ≤ K(h)
S(h′r)

.

Thus, (2.9) holds.
This completes the proof. �

Theorem 3 Let � be a positive unital linear map and let A and B be positive operators. If
0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M or 0 < m ≤ B ≤ m′ < M′ ≤ A ≤ M and 2 ≤ p < ∞, then for
each α ∈ [0, 1],

�2p(A∇αB) ≤ 1
16

[
K2(h)(M2 + m2)2

S2(h′r)M2m2

]p

�2p(A�αB), (2.10)

�2p(A∇αB) ≤ 1
16

[
K2(h)(M2 + m2)2

S2(h′r)M2m2

]p[
�(A)�α�(B)

]2p, (2.11)

where K(h) = (h+1)2

4h , S(h′) = h
′ 1

h′–1

e log h
′ 1

h′–1
, h = M

m , h′ = M′
m′ and r = min{α, 1 – α}.

Proof By (2.8), we have

�–2(A�αB) ≤ L2�–2(A∇αB), (2.12)

where L = K (h)
S(h′r ) .

Inequality (2.10) is equivalent to

∥∥�p(A∇αB)�–p(A�αB)
∥∥ ≤ 1

4

[
K2(h)(M2 + m2)2

S2(h′r)M2m2

] p
2

.

By (2.1), (2.3) and (2.12), we have

∥∥�p(A∇αB)Mpmp�–p(A�αB)
∥∥

≤ 1
4

∥∥∥∥L
p
2 �p(A∇αB) +

(
M2m2

L

) p
2
�–p(A�αB)

∥∥∥∥
2

≤ 1
4

∥∥∥∥L�2(A∇αB) +
M2m2

L
�–2(A�αB)

∥∥∥∥
p
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≤ 1
4
∥∥L�2(A∇αB) + LM2m2�–2(A∇αB)

∥∥p

≤ 1
4
[
L
(
M2 + m2)]p.

That is,

∥∥�p(A∇αB)�–p(A�αB)
∥∥ ≤ 1

4

[
L(M2 + m2)

Mm

]p

=
1
4

[
K2(h)(M2 + m2)2

S2(h′r)M2m2

] p
2

.

Thus, (2.10) holds.
Similarly, (2.11) holds by inequality (2.9).

This completes the proof. �

Remark 1 When α = 1
2 , because of K (h)

S(
√

h′) < K(h), inequalities (2.8), (2.9), (2.10) and (2.11)
are sharper than (1.4), (1.5), (1.6) and (1.7), respectively.

In what follows, when α = 1
2 , we present an example showing that inequalities (2.8)–

(2.11) are sharper than (1.4)–(1.7), respectively.

Example 1 Take A =
[ 2

3 0
0 5

7

]
and B =

[ 10
3 0
0 23

7

]
. We find 1

2 < A < 3
4 < 3 < B < 4. A calculation

shows K (8)
S(2) ≈ 2.3847 < K(8) ≈ 2.5313.

3 Conclusions
In this paper, we have presented some new weighted arithmetic–geometric operator mean
inequalities. These inequalities are refinements and generalizations of some correspond-
ing results of [1, 2].
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