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1 Introduction
The Euler–Mascheroni constant

γ = 0.5772156649015328 . . .

is one of the most famous constants in analysis and number theory. It is the limit of the
sequence

γn = 1 +
1
2

+ · · · +
1
n

– log n. (1.1)

There are many famous problems related to the properties of this constant; for exam-
ple, it is not known yet whether the Euler–Mascheroni constant is a rational number. In
recent years, many researchers made great efforts in the area of concerning the rate of
convergence of the sequence (γn)n≥1 and establishing sequences converging faster to the
Euler–Mascheroni constant γ .

We begin with a brief overview of the relevant research.
To reveal the speed of convergence of the sequence (γn)n≥1, Boas [5] and Mortici and

Vernescu [20, 21] established the following double inequality for the difference between
the sequence and the Euler–Mascheroni constant:

1
2n + 1

< γn – γ <
1

2n
. (1.2)
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DeTemple [12] modified the logarithmic term of γn and showed that the sequence

Rn = 1 +
1
2

+ · · · +
1
n

– log

(
n +

1
2

)
(1.3)

converges to γ with rate of convergence n–2, since

1
24(n + 1)2 < Rn – γ <

1
24n2 . (1.4)

Vernescu [28] provided the sequence

Vn = 1 +
1
2

+ · · · +
1

n – 1
+

1
2n

– log n, (1.5)

which also converges to γ with rate of convergence n–2, since

1
12(n + 1)2 < γ – Vn <

1
12n2 . (1.6)

Cristea and Mortici [11] introduced the family of sequences

vn(a, b) = 1 +
1
2

+ · · · +
1

n – 2
+

an + b
n(n – 1)

– log n, (1.7)

where a, b are real parameters. Furthermore, they proved that, among the sequences
(vn(a, b))n≥1, the privileged one (vn( 3

2 , – 5
12 ))n≥1 offers the best approximation to γ , since

it has the rate of convergence n–3. More precisely, for

vn

(
3
2

, –
5

12

)
= 1 +

1
2

+ · · · +
1

n – 2
+

13
12(n – 1)

+
5

12n
– log n, (1.8)

they obtained the bounds

1
12n3 +

11
120n4 < vn

(
3
2

, –
5

12

)
– γ <

1
12n3 +

13
120n4 (n ≥ 9). (1.9)

Lu [16] used continued fraction approximation to obtain the following faster sequence
converging to the Euler–Mascheroni constant:

r(2)
n

(
1
2

,
1
6

)
= 1 +

1
2

+ · · · +
1
n

–
3

6n + 1
– log n, (1.10)

which satisfies

1
72(n + 1)3 < γ – r(2)

n

(
1
2

,
1
6

)
<

1
72n3 . (1.11)

Recently, Wu and Bercu [29] constructed the new sequence

ωn =
n∑

k=1

1 + (2b1 – 1)(–1)k–1

k
– log

[
n +

(–1)n–1(2b1 – 1) + 1
2

]
– (2b1 – 1) log 2, (1.12)

which converges to γ with rate of convergence n–2.
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For more detail about the approximation of the Euler–Mascheroni constant with very
high accuracy, we mention the works of Lu [16–18], Sweeney [27], Bailey [2], Crînganu
[10], and Alzer and Koumandos [1]. We also mention the excellent survey by Lagarias [15].
Hu and Mortici [13, 14, 19] provided some similar methods to deal with approximation of
the constant e.

In this paper, starting from the sequence (γn)n≥1, we use an approximation of Padé type
and provide a new convergent sequence for Euler–Mascheroni constant.

The Padé approximant is the best approximation of a function by a rational function
and often gives better approximation of the function than truncating its Taylor series. For
these reasons, Padé approximants are also used in computer calculations (see [3, 30]).

Recall the Padé approximant of P(n) of order [1/2]:

P[1/2](n) =
α0 + α1n

1 + β1n + β2n2 =
a1

n + b1
+

a2

n + b2
. (1.13)

We will use this Padé approximant p[1/2](n) as an additional term to establish a new
quicker sequence converging to the Euler–Mascheroni constant. More precisely, we con-
sider the following sequence:

�(2)
n = 1 +

1
2

+ · · · +
1
n

– log n –
a1

n + b1
–

a2

n + b2
. (1.14)

Furthermore, we will provide lower and upper bound estimates for the difference be-
tween the sequence and the Euler–Mascheroni constant.

2 Main results
Our main results are stated in the following theorem.

Theorem 2.1 Let

�(2)
n = 1 +

1
2

+ · · · +
1
n

– log n –
a1

n + b1
–

a2

n + b2
,

and let

a1 =
1

24b1(1 – 3b1)
,

a2 = –
(6b1 – 1)2

24b1(1 – 3b1)
,

b2 =
b1

6b1 – 1
, b1 ∈

(
1
6

,
1
3

)
∪

(
1
3

, +∞
)

.

Then we have the asymptotic expansion

�(2)
n = γ +

m∑
k=4

(
–

Bk

k
+ (–1)k(a1bk–1

1 + a2bk–1
2

)) 1
nk + O

(
1

nm+1

)
(2.1)

as n → ∞, where Bk are Bernoulli numbers. More explicitly, we have

�(2)
n = γ +

1 – 10p
120

· 1
n4 +

p2

2
· 1

n5 +
(

p2 – 36p3

12
–

1
252

)
1
n6 + p3(18p – 1)

1
n7
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+ · · · +
(

(3 –
√

9 – p–1)m–3 – (3 +
√

9 – p–1)m–3

24(–1)mp3–m
√

9 – p–1
–

Bm

m

)
1

nm + O
(

1
nm+1

)
(2.2)

as n → ∞, where p = b2
1/(6b1 – 1).

Furthermore, we have the following double inequality:

1 – 10p
120

· 1
n4 < �(2)

n – γ <
1 – 10p

120
· 1

n4 +
p2

2
· 1

n5 . (2.3)

Proof Using the representation of the harmonic sum in terms of digamma function (see
[4])

1 +
1
2

+ · · · +
1
n

= γ +
1
n

+ �(n) (2.4)

and the asymptotic formula

�(z) = log z –
1
2z

–
m∑

k=2

B2k–2

(2k – 2)z2k–2 + O
(

1
z2m

)

= log z –
1
2z

–
1

12z2 +
1

120z4 –
1

252z6 + · · · +
–B2m–2

(2m – 2)z2m–2 + O
(

1
z2m

)
, (2.5)

we obtain

1 +
1
2

+ · · · +
1
n

– log n

= γ +
1
n

+ �(n) – log n

= γ +
1

2n
–

1
12n2 +

1
120n4 –

1
252n6 + · · · +

–B2m–2

(2m – 2)n2m–2 + O
(

1
n2m

)
.

Hence

�(2)
n = 1 +

1
2

+ · · · +
1
n

– log n –
a1

n + b1
–

a2

n + b2

= γ –
a1

n + b1
–

a2

n + b2
+

1
2n

–
1

12n2 +
1

120n4

–
1

252n6 + · · · +
–B2m–2

(2m – 2)n2m–2 + O
(

1
n2m

)
.

Using the power series expansion gives

a1

n + b1
=

a1

n

(
1

1 + b1
n

)

=
a1

n

(
1 –

b1

n
+

b2
1

n2 –
b3

1
n3 + · · · + (–1)m bm

1
nm

)
+ O

(
1

nm+2

)

=
a1

n
–

a1b1

n2 +
a1b2

1
n3 –

a1b3
1

n4 + · · · + (–1)m a1bm
1

nm+1 + O
(

1
nm+2

)
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and

a2

n + b2
=

a2

n
–

a2b2

n2 +
a2b2

2
n3 –

a2b3
2

n4 + · · · + (–1)m a2bm
2

nm+1 + O
(

1
nm+2

)

as n → ∞. Thus we obtain

�(2)
n = γ +

(
1
2

– a1 – a2

)
1
n

+
(

–
1

12
+ a1b1 + a2b2

)
1
n2 –

(
a1b2

1 + a2b2
2
) 1

n3

+
(

1
120

+ a1b3
1 + a2b3

2

)
1
n4 –

(
a1b4

1 + a2b4
2
) 1

n5 +
(

–
1

252
+ a1b5

1 + a2b5
2

)
1
n6

+ · · · +
(

–B2m–2

2m – 2
+ a1b2m–3

1 + a2b2m–3
2

)
1

n2m–2

+
(
–a1b2m–2

1 – a2b2m–2
2

) 1
n2m–1 + O

(
1

n2m

)
.

From the assumption conditions

a1 =
1

24b1(1 – 3b1)
,

a2 = –
(6b1 – 1)2

24b1(1 – 3b1)
,

b2 =
b1

6b1 – 1
, b1 ∈

(
1
6

,
1
3

)
∪

(
1
3

, +∞
)

,

we have

1
2

– a1 – a2 = 0, –
1

12
+ a1b1 + a2b2 = 0, a1b2

1 + a2b2
2 = 0.

Therefore

�(2)
n = γ +

(
1

120
+ a1b3

1 + a2b3
2

)
1
n4 –

(
a1b4

1 + a2b4
2
) 1

n5 +
(

–
1

252
+ a1b5

1 + a2b5
2

)
1
n6

+ · · · +
(

–B2m–2

2m – 2
+ a1b2m–3

1 + a2b2m–3
2

)
1

n2m–2

+
(
–a1b2m–2

1 – a2b2m–2
2

) 1
n2m–1 + O

(
1

n2m

)
.

Note that, for all odd Bernoulli numbers B2m–1 = 0 (m ≥ 2), the last expression can be
rewritten as

�(2)
n = γ +

(
1

120
+ a1b3

1 + a2b3
2

)
1
n4 + · · · +

(
–B2m–2

2m – 2
+ a1b2m–3

1 + a2b2m–3
2

)
1

n2m–2

+
(

–B2m–1

2m – 1
– a1b2m–2

1 – a2b2m–2
2

)
1

n2m–1 + O
(

1
n2m

)

and

�(2)
n = γ +

(
1

120
+ a1b3

1 + a2b3
2

)
1
n4 + · · · +

(
–B2m–3

2m – 3
+ a1b2m–4

1 + a2b2m–4
2

)
1

n2m–3
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+
(

–B2m–2

2m – 2
+ a1b2m–3

1 + a2b2m–3
2

)
1

n2m–2 + O
(

1
n2m–1

)
,

that is,

�(2)
n = γ +

m∑
k=4

(
–

Bk

k
+ (–1)k(a1bk–1

1 + a2bk–1
2

)) 1
nk + O

(
1

nm+1

)
, (2.6)

which is the desired Eq. (2.1) in Theorem 2.1.
On the other hand, from

p =
b2

1
6b1 – 1

, b2 =
b1

6b1 – 1
, b1 ∈

(
1
6

,
1
3

)
∪

(
1
3

, +∞
)

,

we have b1b2 = p, b1 + b2 = 6p (p > 1
9 ), which implies that b1 and b2 are the roots of the

equation x2 – 6px + p = 0. Therefore,

b1,2 = 3p ± √
9p2 – p.

It is easy to observe that

a1 =
1

24b1(1 – 3b1)
=

b2

12b1(b2 – b1)
,

a2 = –
(6b1 – 1)2

24b1(1 – 3b1)
=

–b1

12b2(b2 – b1)
,

and thus

a1bk–1
1 + a2bk–1

2 =
b2bk–1

1
12b1(b2 – b1)

–
b1bk–1

2
12b2(b2 – b1)

= –
b1b2(bk–3

1 – bk–3
2 )

12(b1 – b2)

=
(3 –

√
9 – p–1)k–3 – (3 +

√
9 – p–1)k–3

24p3–k
√

9 – p–1
.

It follows from (2.6) that

�(2)
n = γ +

m∑
k=4

(
–

Bk

k
+ (–1)k(a1bk–1

1 + a2bk–1
2

)) 1
nk + O

(
1

nm+1

)

= γ +
m∑

k=4

(
–

Bk

k
+

(3 –
√

9 – p–1)k–3 – (3 +
√

9 – p–1)k–3

24(–1)kp3–k
√

9 – p–1

)
1
nk + O

(
1

nm+1

)
,

which implies the desired Eq. (2.2) in Theorem 2.1.
Next, we will show the double inequality (2.3). We define the sequences (zn)n≥1 and

(un)n≥1 by

zn = �(2)
n – γ –

1 – 10p
120

· 1
n4
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and

un = �(2)
n – γ –

1 – 10p
120

· 1
n4 –

p2

2
· 1

n5 .

It follows from (2.2) that

�(2)
n – γ –

1 – 10p
120

· 1
n4 = O

(
1
n5

)
,

�(2)
n – γ –

1 – 10p
120

· 1
n4 –

p2

2
· 1

n5 = O
(

1
n6

)
,

and thus we have

lim
n→∞ zn = 0 and lim

n→∞ un = 0.

To prove that zn > 0 and un < 0 for n ≥ 1, it suffices to show that (zn)n≥1 is decreasing
and (un)n≥1 is increasing.

Let

zn+1 – zn = f (n),

un+1 – un = g(n),

where

f (x) =
1

x + 1
+ log x – log(x + 1) + a1

(
1

x + b1
–

1
x + b1 + 1

)

+ a2

(
1

x + b2
–

1
x + b2 + 1

)
+

10p – 1
120

(
1

(x + 1)4 –
1
x4

)
,

g(x) = f (x) –
p2

2

(
1

(x + 1)5 –
1
x5

)
, x ∈ [1, +∞).

It is easy to verify that

a1

x + b1
+

a2

x + b2
=

6x + 36p – 1
12(x2 + 6px + p)

and

a1

x + b1 + 1
+

a2

x + b2 + 1
=

6x + 36p + 5
12(x2 + 2x + +6px + 1 + 7p)

.

Hence

f (x) =
1

x + 1
+ log x – log(x + 1) +

6x + 36p – 1
12(x2 + 6px + p)

–
6x + 36p + 5

12(x2 + 2x + +6px + 1 + 7p)
+

10p – 1
120

(
1

(x + 1)4 –
1
x4

)
.
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Differentiating f (x) with respect to x gives

f ′(x) =
P(x)

30x5(x + 1)5(x2 + 6px + p)2(x2 + 2x + 6px + 1 + 7p)2 ,

where

P(x) = 450p2x11 +
(

7020p2
(

p –
1
9

)
+ 3360p

(
p –

1
9

)
+

3360
9

(
p –

1
9

)
+

2955
81

)
x10

+
(

36,720p3
(

p –
1
9

)
+ 41,820p2

(
p –

1
9

)
+

102,570
9

p
(

p –
1
9

)

+
92,850

81

(
p –

1
9

)
+

74,625
729

)
x9 +

(
64,800p4

(
p –

1
9

)
+ 191,520p3

(
p –

1
9

)

+
1,018,260

9
p2

(
p –

1
9

)
+

1,798,290
81

p
(

p –
1
9

)
+

1,390,050
729

(
p –

1
9

)

+
1,055,439

6561

)
x8

+
(

302,400p4
(

p –
1
9

)
+ 446,910p3

(
p –

1
9

)
+

1,619,250
9

p2
(

p –
1
9

)

+
2,158,710

81
p
(

p –
1
9

)
+

1,383,054
729

(
p –

1
9

)
+

1,028,760
6561

)
x7

+
(

615,600p4
(

p –
1
9

)
+ 612,290p3

(
p –

1
9

)
+

1,632,350
9

p2
(

p –
1
9

)

+
1,634,294

81
p
(

p –
1
9

)
+

863,012
729

(
p –

1
9

)
+

659,621
6561

)
x6

+
(

724,800p4
(

p –
1
9

)
+

4,803,690
9

p3
(

p –
1
9

)
+

9,579,126
81

p2
(

p –
1
9

)

+
7,355,676

729
p
(

p –
1
9

)
+

3,484,686
6561

(
p –

1
9

)
+

2,953,245
59,049

)
x5

+
(

536,210p4
(

p –
1
9

)
+

2,700,431
9

p3
(

p –
1
9

)
+

4,053,779
81

p2
(

p –
1
9

)

+
2,169,314

729
p
(

p –
1
9

)
+

962,090
6561

(
p –

1
9

)
+

903,041
59,049

)
x4

+
(

247,060p4
(

p –
1
9

)
+

968,266
9

p3
(

p –
1
9

)
+

1,113,742
81

p2
(

p –
1
9

)

+
437,230

729
p
(

p –
1
9

)
+

240,400
6561

(
p –

1
9

)
+

240,400
59,049

)
x3 +

(
66,580p4

(
p –

1
9

)

+
213,658

9
p3

(
p –

1
9

)
+

195,838
81

p2
(

p –
1
9

)
+

58,786
729

p
(

p –
1
9

)

+
45,664
6561

(
p –

1
9

)
+

45,664
59,049

)
x2

+
(

9170p4
(

p –
1
9

)
+

25,937
9

p3
(

p –
1
9

)
+

20,429
81

p2
(

p –
1
9

)
+

5120
729

p2
)

x

+
(

490p4
(

p –
1
9

)
+

1309
9

p3
(

p –
1
9

)
+

985
81

p2
(

p –
1
9

)
+

256
729

p2
)

.
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Since p > 1
9 , we have P(x) > 0, which implies that f ′(x) > 0 for x ∈ [1, +∞). Hence

f (x) is strictly increasing on [1, +∞). It follows from limx→+∞ f (x) = 0 that f (x) < 0 for
x ∈ [1, +∞). This yields zn+1 – zn = f (n) < 0, so that (zn)n≥1 is strictly decreasing, which,
along with limn→∞ zn = 0, leads us to zn > 0. The left-hand inequality of (2.3) is proved.

Similarly, differentiating g(x) with respect to x, we obtain

g ′(x) =
–Q(x)

30x6(x + 1)6(x2 + 6px + p)2(x2 + 2x + 6px + 1 + 7p)2 ,

where

Q(x) =
(

3780p2
(

p –
1
9

)
+

2835
9

p2 + 5
)

x12 + 60,480p3
(

p –
1
9

)

+ 28,560p2
(

p –
1
9

)
+

22,890
9

p2 + 120p + 30)x11 +
(

324,000p4
(

p –
1
9

)

+ 381,960p3
(

p –
1
9

)
+

916,560
9

p2
(

p –
1
9

)
+

859,455
81

p2 + 680p

+ 76
)

x10 +
(
583,200p6 + 1,771,200p5 + 927,870p4 + 105,180p3

+ 2610p2 + 1624p + 105
)
x9 +

(
3,013,200p6 + 4,492,800p5

+ 1,555,150p4 + 138,450p3 + 9066p2 + 2122p + 85
)
x8 +

(
7,095,600p6

+ 7,020,600p5 + 1,794,700p4 + 138,504p3 + 12,426p2 + 1648p

+ 40
)
x7 +

(
10,103,400p6 + 7,393,390p5 + 1,467,221p4 + 100,436p3

+ 9010p2 + 774p + 10
)
x6 +

(
9,461,250p6 + 5,365,230p5 + 846,847p4

+ 49,296p3 + 4263p2 + 214p + 1
)
x5 +

(
5,874,525p6 + 2,667,310p5

+ 337,249p4 + 15,224p3 + 1191p2 + 32p
)
x4 +

(
2,352,300p6 + 883,050p5

+ 89,495p4 + 2688p3 + 209p2 + 2p
)
x3 +

(
568,125p6 + 183,690p5

+ 15,221p4 + 222p3 + 22p2)x2 +
(
72,450p6 + 21,410p5 + 1559p4

+ 4p3 + p2)x +
(
3675p6 + 1050p5 + 75p4).

Since p > 1
9 , we conclude that Q(x) < 0. Thus we have g ′(x) < 0 for x ∈ [1, +∞). It follows

that g(x) is strictly decreasing on [1, +∞). Since limx→+∞ g(x) = 0, we have g(x) > 0 for
x ∈ [1, +∞). This yields un+1 – un = g(n) > 0, which implies that (un)n≥1 is strictly increas-
ing. We obtain un < 0 since limn→∞ un = 0. The right-hand inequality of (2.3) is proved.

This completes the proof of Theorem 2.1. �

3 Some remarks on Theorem 2.1
Remark 3.1 Lu [16] constructed the sequence

r(3)
n = 1 +

1
2

+ · · · +
1
n

– log n –
a1

n + a2·n
n+a3

, (3.1)
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where a1 = 1
2 , a2 = 1

6 , and a3 = – 1
6 and proved the inequality

1
120(n + 1)4 < r(3)

n – γ <
1

120(n – 1)4 . (3.2)

In Theorem 2.1, if we take p = 1
5 in inequality (2.3), then we get

1
120n4 –

1
50n5 < γ – �(2)

n <
1

120n4 . (3.3)

Since

1
120(n + 1)4 <

1
120n4 –

1
50n5

and

1
120n4 <

1
120(n – 1)4

for all natural numbers n ≥ 5, the sequence (�(2)
n )n≥1 provides a more accurate double

inequality for the difference between the sequence and the Euler–Mascheroni constant
than the sequence (r(3)

n )n≥1 from [16].

Remark 3.2 Lu et al. [18] considered the following sequence converging to the Euler–
Mascheroni constant:

r(3)
n,2 = 1 +

1
2

+ · · · +
1
n

– log n –
1
2

log

(
1 +

a1

n + a2·n
n+a3

)
, (3.4)

where a1 = 1, a2 = – 1
3 , and a3 = 1

3 , and they proved that

1
180(n + 1)4 < γ – r(3)

n,2 <
1

180n4 . (3.5)

In Theorem 2.1, if we choose p = 1
6 in inequality (2.3), then we obtain

1
180n4 –

1
72n5 < γ – �(2)

n <
1

180n4 . (3.6)

It is easy to find that

1
180(n + 1)4 <

1
180n4 –

1
72n5

for all natural numbers n ≥ 5, so the sequence (�(2)
n )n≥1 improves inequality (3.5) from [18].

Remark 3.3 For more results relating to the Euler constant, sequences, and some esti-
mates, we refer the interested reader to Sîntǎmǎrian [23–26] and the references therein.
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4 Conclusion
To provide a sequence converging faster to the Euler–Mascheroni constant, we construct
a sequence �

(2)
n by reference to the Padé approximant method, which improves the rate of

convergence of the sequences introduced by Lu [16, 18]. Our sequence depends on a real
parameter and has a relatively simple form. It is worth noting that the method mentioned
is also applicable to establishing estimates of bounds for some special means. For example,
the method can be used for further study on the results obtained previously by Chu et al.
[6–9], Qian and Chu [22], Yang et al. [31–34], and Zhao et al. [35].
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