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1 Introduction and preliminaries
Throughout the manuscript, we denote N0 := N ∪ {0}, where N is the positive integers.
Further, R represents the real numbers and R

+
0 := [0,∞).

Following this pioneering result on b-metric, a number of authors have reported sev-
eral interesting results in this direction (see, e.g., [1, 2, 4–12, 14, 16, 18] and the related
references therein).

Definition 1.1 (Czerwik [11]) Let X be a nonempty set and d : X × X → [0,∞) be a func-
tion satisfying the following conditions:

(b1) d(x, y) = 0 if and only if x = y.
(b2) d(x, y) = d(y, x) for all x, y ∈ X .
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X , where s ≥ 1.

The function d is called a b-metric and the space (X, d) is called a b-metric space, in short,
bMS.

The immediate example of b-metric is the following.

Example 1.1 Let Y = {x, y, z} and X = Y ∪ N. Define a mapping d : X × X → [0,∞) such
that

d(x, y) = d(y, x) = d(x, z) = d(z, x) = 1,

d(y, z) = d(z, y) = A,

d(x, x) = d(y, y) = d(z, z) = 0, d(n, m) =
∣
∣
∣
∣

1
n

–
1
m

∣
∣
∣
∣
,
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where A ∈ [2,∞). Then we find that

d(x, y) ≤ A
2

[

d(x, z) + d(z, y)
]

for x, y, z ∈ X.

It is evident that (X, d) is a b-metric space. Notice also that if A > 2, the standard triangle
inequality does not hold and (X, d) is not a metric space.

Remark 1.1 It is clear that for s = 1, the b-metric becomes a usual metric.

Recently, Kamran [13] introduced a new type of generalized metric space and they
proved some fixed point theorems on this space.

Definition 1.2 ([13]) Let X be a nonempty set and θ : X × X → [1,∞). A function dθ :
X × X → [0,∞) is called an extended b-metric if, for all x, y, z ∈ X, it satisfies

(dθ 1) dθ (x, y) = 0 iff x = y;
(dθ 2) dθ (x, y) = dθ (y, x);
(dθ 3) dθ (x, y) ≤ θ (x, y)[dθ (x, z) + dθ (z, y)].

The pair (X, dθ ) is called an extended b-metric space, in short extended-bMS.

Remark 1.2 If θ (x, y) = s for s ≥ 1, then we obtain the definition of bMS.

Example 1.2 Let X = [0, 1] and θ : X × X → [1,∞), θ (x, y) = x+y+1
x+y . Define dθ : X × X →

[0,∞) as

dθ (x, y) =
1
xy

for x, y ∈ (0, 1], x �= y,

dθ (x, y) = 0 for x, y ∈ [0, 1], x = y,

dθ (x, 0) = dθ (0, x) =
1
x

for x ∈ (0, 1].

Obviously, (dθ 1) and (dθ 2) hold. For (dθ 3), we distinguish the following cases:
(i) Let x, y ∈ (0, 1]. For z ∈ (0, 1], we have

dθ (x, y) ≤ θ (x, y)
[

dθ (x, z)+dθ (z, y)
] ⇔ 1

xy
≤ 1 + x + y

x + y
· x + y

xyz
⇔ z ≤ 1+x+y.

If z = 0, then

dθ (x, y) ≤ θ (x, y)
[

dθ (x, 0)+dθ (0, y)
] ⇔ 1

xy
≤ 1 + x + y

x + y
· x + y

xy
⇔ 1 ≤ 1+x+y.

(ii) For x ∈ (0, 1] and y = 0, let z ∈ (0, 1].

dθ (x, 0) ≤ θ (x, 0)
[

dθ (x, z) + dθ (z, 0)
] ⇔ 1

x
≤ 1 + x

x
· 1 + x

xz
⇔ xz ≤ (1 + x)2.

In conclusion, for any x, y, z ∈ X ,

dθ (x, z) ≤ θ (x, z)
[

dθ (x, y) + dθ (y, z)
]

.

Hence, (X, dθ ) is an extended b-metric space.
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Some fundamental concepts, like convergence, Cauchy sequence, and completeness in
a extended-bMS, are defined as follows [13].

Definition 1.3 ([13]) Let (X, dθ ) be an extended-bMS.
(i) A sequence xn in X is said to converge to x ∈ X if, for every ε > 0, there exists

N = N(ε) ∈N such that dθ (xn, x) < ε for all n ≥ N . In this case, we write
limn→∞ xn = x.

(ii) A sequence xn in X is said to be Cauchy if, for every ε > 0, there exists N = N(ε) ∈N

such that dθ (xm, xn) < ε for all m, n ≥ N .

Definition 1.4 An extended-b-metric space (X, dθ ) is complete if every Cauchy sequence
in X is convergent.

Lemma 1.1 Let (X, dθ ) be a complete extended-bMS. If dθ is continuous, then every con-
vergent sequence has a unique limit.

Theorem 1.1 ([13]) Let (X, dθ ) be an extended-bMS such that dθ is a continuous func-
tional. Let T : X → X satisfy

dθ (Tx, Ty) ≤ kdθ (x, y) (1)

for all x, y ∈ X, where k ∈ [0, 1) is such that, for each x0 ∈ X, limn,m→∞ θ (xn, xm) < 1
k , here

xn = Tnx0, n = 1, 2, . . . . Then T has precisely one fixed point u. Moreover, for each y ∈ X,
Tny → u.

For our purposes, we need to recall the following definition which is proposed by
Popescu [17].

Definition 1.5 Let T : X → X and α : X × X → [0,∞). We say that T is an α-orbital
admissible if, for all x, y ∈ X, we have

α(x, Tx) ≥ 1 ⇒ α
(

Tx, T2x
) ≥ 1. (2)

Definition 1.6 A set X is regular with respect to mapping α : X ×X → [0,∞) if, whenever
{xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n and xn → x ∈ X
as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 and
α(x, xn(k)) ≥ 1 for all n.

2 (S,T) orbital cyclic
Definition 2.1 Suppose that T , S are two self-mappings on a complete extended-bMS
(X, dθ ). Suppose also that there are two functions α,β : X × X → [0,∞) such that, for any
x ∈ X,

α(x, Tx) ≥ 1 ⇒ β(Tx, STx) ≥ 1 and

β(x, Sx) ≥ 1 ⇒ α(Sx, TSx) ≥ 1.
(3)

Then we say that the pair S, T is an (α,β)-orbital-cyclic admissible pair.
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We start with the following lemma which is essential in our main results.

Lemma 2.1 ([3]) Let (X, dθ ) be an extended b-metric space.If there exists q ∈ [0, 1) such
that the sequence {xn} for an arbitrary x0 ∈ X satisfies limn,m→∞ θ (xn, xm) < 1

q , and also

0 < dθ (xn, xn+1) ≤ qdθ (xn–1, xn) (4)

for any n ∈ N, then the sequence {xn} is Cauchy in X.

Proof Let {xn}n∈N be a given sequence. By employing inequality (4) recursively, we derive
that

0 < dθ (xn, xn+1) ≤ qndθ (x0, x1). (5)

Since q ∈ [0, 1), we find that

lim
n→∞ dθ (xn, xn+1) = 0. (6)

On the other hand, by (dθ 3), together with triangular inequality, for p ≥ 1, we derive
that

dθ (xn, xn+p)

≤ θ (xn, xn+p) · [dθ (xn, xn+1) + dθ (xn+1, xn+p)
]

≤ θ (xn, xn+p)dθ (xn, xn+1) + θ (xn, xn+p)dθ (xn+1, xn+p)

≤ θ (xn, xn+p)qndθ (x0, x1) + θ (xn, xn+p)θ (xn+1, xn+p)
[

dθ (xn+1, xn+2) + dθ (xn+2, xn+p)
]

≤ θ (xn, xn+p) · qndθ (x0, x1) + θ (xn, xn+p)θ (xn+1, xn+p) · qn+1dθ (x0, x1) + · · ·
+ θ (xn, xn+p) · · · θ (xn+p–1, xn+p) · qn+p–1dθ (x0, x1)

= dθ (x0, x1)
n+p–1
∑

i=1

qi
i

∏

j=1

θ (xn+j, xn+p). (7)

Notice the inequality above is dominated by
∑n+p–1

i=1 qi ∏i
j=1 θ (xn+j, xn+p) ≤ ∑n+p–1

i=1 qi ×
∏i

j=1 θ (xj, xn+p).
On the other hand, by employing the ratio test, we conclude that the series

∑∞
i=1 ai,

where ai = qi ∏i
j=1 θ (xj, xn+p) converges to some S ∈ (0,∞). Indeed, limi→∞ ai+1

ai
=

limi→∞ qθ (xi, xi+p) < 1, and hence we get the desired result. Thus, we have

S =
∞

∑

i=1

qi
i

∏

j=1

θ (xj, xn+p) with the partial sum Sn =
n

∑

i=1

qi
i

∏

j=1

θ (xj, xn+p).

Consequently, we observe, for n ≤ 1, p ≤ 1, that

dθ (xn, xn+p) ≤ qndθ (x0, x1)[Sn+p–1 – Sn–1]. (8)

Letting n → ∞ in (8), we conclude that the constructive sequence {xn} is Cauchy in the
extended b-metric space (X, dθ ). �
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Theorem 2.1 Let T , S be two self-mappings on a complete extended-bMS (X, dθ ) such that
the pair T , S forms an (α,β)-orbital-cyclic admissible pair. Suppose that

(i) for each x0 ∈ X , limn,m→∞ θ (xn, xm) < 1–k
k , where x2n = Sx2n–1 and x2n+1 = Tx2n for

each n ∈ N;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either S and T are continuous, or
(iii*) if xn is a sequence in X such that xn → u, then α(u, Tu) ≥ 1 and β(u, Su) ≥ 1.

Moreover, if for all x, y ∈ X and k ∈ [0, 1
2 )

α(x, Tx)β(y, Sy)dθ (Tx, Sy) ≤ k
[

dθ (x, Tx) + dθ (y, Sy)
]

, (9)

then the pair of the mappings T , S possesses a common fixed point u, that is, Tu = u = Su.

Proof By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1. Take x1 = Tx0

and x2 = Sx1. By induction, we construct a sequence {xn} such that

x2n = Sx2n–1 and x2n+1 = Tx2n ∀n ∈ N. (10)

We have α(x0, x1) ≥ 1, and since (S, T) is an α,β-orbital-cyclic admissible pair, we get

α(x0, x1) ≥ 1 ⇒ β(Tx0, STx0) = β(x1, x2) ≥ 1

and

β(x1, x2) ≥ 1 ⇒ α(Sx1, TSx1) = α(x2, x3) ≥ 1.

Applying again (3),

α(x2, x3) ≥ 1 ⇒ β(Tx2, STx2) = β(x3, x4) ≥ 1

and

β(x3, x4) ≥ 1 ⇒ α(Sx3, TSx3) = α(x4, x5) ≥ 1.

Recursively, we obtain

α(x2n, x2n+1) ≥ 1 for all n ∈N, (11)

and

β(x2n+1, x2n+2) ≥ 1 for all n ∈N. (12)

Without loss of generality, we assume that xn �= xn+1 for each n ∈N0. Indeed, if xn0 = xn0+1

for some n0 ∈ N0, then u = xn0 forms a common fixed point for S and T , which finalizes
the proof. More precisely, to see that u is the common fixed point of S and T , we shall
examine the following two cases. First, we assume that n0 is even, that is, n0 = 2k. In this
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case, we have x2k = x2k+1 = Tx2k , that is, x2k is a fixed point of T . Now we shall prove that
x2k = x2k+1 = Tx2k = Sx2k+1. Suppose on the contrary that dθ (Tx2k , Sx2k+1) > 0. By letting
x = x2k and y = x2k+1 in (9) and keeping in mind (11) and (12), we get that

0 < dθ (x2k+1, x2k+2) = dθ (Tx2k , Sx2k+1) ≤ α(x2k , Tx2k)β(x2k+1, Sx2k+1)dθ (Tx2k , Sx2k+1)

≤ k
[

dθ (x2k , Tx2k) + dθ (x2k+1, Sx2k+1)
]

≤ kdθ (x2k+1, Sx2k+1) = kdθ (x2k+1, x2k+2),

a contradiction. Hence, we conclude that dθ (Tx2k , Sx2k+1) = 0 and x2k = x2k+1 = Tx2k =
Sx2k+1, that is, x2k = x2k+1 = u is a common fixed point of T and S. Analogously, one can
derive the same conclusion for the case n0 is odd, that is, n0 = 2k – 1.

Thus, throughout the proof, we suppose that

xn �= xn+1 for all n ∈N0. (13)

In what follows, we shall prove that the sequence {xn} is Cauchy. For this purpose, it is
sufficient to examine the following two cases.

Case (a): Let x = x2n and y = x2n+1. Then, by inequality (9) and using (11), (12), we get

0 < dθ (x2n+1, x2n+2)

= dθ (Tx2n, Sx2n+1) ≤ α(x2n, Tx2n)β(x2n+1, Sx2n+1)dθ (Tx2n, Sx2n+1)

≤ k
[

dθ (x2n, Tx2n) + dθ (x2n+1, Sx2n+1)
]

= k
[

dθ (x2n, x2n+1) + dθ (x2n+1, x2n+2)
]

, (14)

and from here

dθ (x2n+1, x2n+2) ≤ qdθ (x2n, x2n+1) (15)

for each n ∈ N0, where q = k
1–k < 1 with k ∈ [0, 1

2 ).
Case (b): Let x = x2n and y = x2n–1. Then, by inequality (9) and using (11), (12), we get

0 < dθ (x2n+1, x2n)

= dθ (Tx2n, Sx2n–1) ≤ α(x2n, Tx2n)β(x2n–1, Sx2n–1)dθ (Tx2n, Sx2n–1)

≤ k
[

dθ (x2n, Tx2n) + dθ (x2n–1, Sx2n–1)
]

= k
[

dθ (x2n, x2n+1) + dθ (x2n–1, x2n)
]

(16)

and

dθ (x2n, x2n+1) ≤ qdθ (x2n–1, x2n) (17)

for each n ∈ N0, where q = k
1–k < 1 with k ∈ [0, 1

2 ).
Combining (15) and (17), we can conclude that

dθ (xm, xm+1) ≤ qdθ (xm–1, xm) (18)
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for all m ∈ N. From Lemma 2.1, taking into account (i), limn,m→∞ θ (xn, xm) < 1–k
k = 1

q , we
obtain that {xm} is a Cauchy sequence. By completeness of (X, dθ ), there is some point
u ∈ X such that

lim
n→∞ xn = u. (19)

Naturally, we also have

x2n → u and x2n+1 → u. (20)

Due to the continuity of the mappings T and S, we get

u = lim
n→∞ xn+1 = lim

n→∞ Txn = T lim
n→∞ xn = Tu

and

u = lim
n→∞ xn+1 = lim

n→∞ Sxn = S lim
n→∞ xn = Su.

Let us consider now the alternative hypothesis (iii*). Taking x = u and y = x2n+1 in (9) and
taking into account (12), we get

dθ (Tu, x2n+2) = dθ (Tu, Tx2n+1)

≤ α(u, Tu)β(x2n+1, Sx2n+1)dθ (Tu, Sx2n+1)

≤ k
[

dθ (u, Tu) + dθ (x2n+1, x2n+2)
]

. (21)

Letting n → ∞, we obtain

dθ (Tu, u) = lim
n→∞ dθ (Tu, x2n+2) ≤ k lim

n→∞
[

dθ (u, Tu) + dθ (x2n+1, x2n+2)
]

= kdθ (u, Tu) < dθ (u, Tu), (22)

which implies dθ (Tu, u) = 0. Hence, we get that Tu = u. Analogously, regarding (11) and
(22), we observe that

dθ (x2n+1, Su) = dθ (Tx2n, Su)

≤ α(x2n, Tx2n)β(u, Su)dθ (Tx2n, Su)

≤ k
[

dθ (x2n, Tx2n) + dθ (u, Su)
]

. (23)

Now, letting n → ∞ in the inequality above, we derive that

dθ (u, Su) = lim
n→∞ dθ (x2n+1, Su) ≤ k lim n → ∞[

dθ (x2n, Tx2n) + dθ (u, Su)
]

= kdθ (u, Su) < dθ (u, Su). (24)

Hence, we find that Su = u. Accordingly, we conclude that T and S have a common fixed
point u. �
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Example 2.1 Let X = [0, 1] and dθ : X × X → [0,∞) defined by

dθ (x, y) =
1
xy

for x, y ∈ (0, 1], x �= y,

dθ (x, y) = 0 for x, y ∈ [0, 1], x = y,

dθ (x, 0) = dθ (0, x) =
1
x

for x ∈ (0, 1]

when

θ (x, y) =

⎧

⎨

⎩

1+x+y
x+y if x ∈ (0, 1],

1 if x = y = 0.

Then (X, dθ ) is an extended-bMS (see Example 1.2).
Let T : X → X, S : X → X, defined as

T(x) =

⎧

⎪⎪⎨

⎪⎪⎩

1 if x = 1
2 ,

1
2 if x = 1

4 ,
x+1

2 otherwise,

respectively

S(x) =

⎧

⎨

⎩

1 if x ∈ { 1
2 , 1

4 },
x otherwise,

and two functions α,β : X × X → [0,∞) defined by

α(x, y) =

⎧

⎨

⎩

1 if (x, y) ∈ {(1, 1), ( 1
2 , 1), ( 1

4 , 1
2 )},

0 otherwise,

and

β(x, y) =

⎧

⎨

⎩

1 if (x, y) ∈ {(1, 1), ( 1
2 , 1), ( 1

4 , 1)},
0 otherwise.

We show that the pair T , S forms an (α,β)-orbital-cyclic admissible pair. Indeed, for
x = 1,

α(1, T1) = α(1, 1) ≥ 1 ⇒ β(T1, ST1) = β(1, 1) ≥ 1

and

β(1, S1) = β(1, 1) ≥ 1 ⇒ α(S1, TS1) = α(1, 1) ≥ 1.

For x = 1
2 :

α

(
1
2

, T
1
2

)

= α

(
1
2

, 1
)

≥ 1 ⇒ β

(

T
1
2

, ST
1
2

)

= β(1, 1) ≥ 1
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and

β

(
1
2

, S
1
2

)

= β

(
1
2

, 1
)

≥ 1 ⇒ α

(

S
1
2

, TS
1
2

)

= α(1, 1) ≥ 1.

For x = 1
4 :

α

(
1
4

, T
1
4

)

= α

(
1
4

,
1
2

)

≥ 1 ⇒ β

(

T
1
4

, ST
1
4

)

= β

(
1
2

, 1
)

≥ 1

and

β

(
1
4

, S
1
4

)

= β

(
1
4

, 1
)

≥ 1 ⇒ α

(

S
1
4

, TS
1
4

)

= α(1, 1) ≥ 1.

We have thus proved that T is α orbital admissible, and sure, because α( 1
4 , T 1

4 ) ≥ 1,
assumption (ii) is satisfied.

If x0 ∈ { 1
4 , 1

2 , 1}, then xn = Tnx0 = 1, so

lim
n,m→∞ θ (xn, xm) =

3
2

< 3 =
1 – k

k
,

where we choose k = 1
4 < 1

2 . Otherwise, for each x0 ∈ X – { 1
4 , 1

2 , 1}, we have x2n–1 =
∑n

k=1( 1
2 )n + x0

2n , x2n = x2n–1 and limn→∞ xn = 1. So,

lim
n,m→∞ θ (xn, xm) =

3
2

< 3 =
1 – k

k
.

Hence, (i) is also verified.
We have

dθ (1, T1) = 0, dθ

(
1
2

, T
1
2

)

= 2, dθ

(
1
4

, T
1
4

)

= 8,

dθ (1, S1) = 0, dθ

(
1
2

, S
1
2

)

= 2, dθ

(
1
4

, S
1
4

)

= 4

and

dθ (T1, S1) = 0, dθ

(

T1, S
1
2

)

= 0, dθ

(

T1, S
1
4

)

= 0,

dθ

(

T
1
2

, S1
)

= 0, dθ

(

T
1
2

, S
1
2

)

= 0, dθ

(

T
1
2

, S
1
4

)

= 0,

dθ

(

T
1
4

, S1
)

= 2, dθ

(

T
1
4

, S
1
2

)

= 2, dθ

(

T
1
4

, S
1
4

)

= 2.

Because in the other cases α(x, y) = 0 and β(x, y) = 0, it is enough to investigate the fol-
lowing situations:

Case (a): For x ∈ {1, 1
2 } and y ∈ {1, 1

2 , 1
4 },

dθ (Tx, Sy) = 0

so inequality (9) is satisfied.
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Case (b): Let x = 1
4 , y = 1. Then

2 = dθ

(

T
1
4

, S1
)

= α

(
1
4

,
1
2

)

β(1, 1)dθ

(

T
1
4

, S1
)

≤ 1
4

[

dθ

(
1
4

, T
1
4

)

+ dθ (1, S1)
]

=
1
4

[8 + 0] =
8
4

.

Case (c): Let x = 1
4 , y = 1

2 . Then

2 = dθ

(

T
1
4

, S
1
2

)

= α

(
1
4

, T
1
4

)

β

(
1
2

, S
1
2

)

dθ

(

T
1
4

, S
1
2

)

≤ 1
4

[

dθ

(
1
4

, T
1
4

)

+ dθ

(
1
2

, S
1
2

)]

=
1
4

[8 + 2] =
10
4

.

Case (d): Let x = 1
4 , y = 1

4 . Then

2 = α

(
1
4

, T
1
4

)

β

(
1
4

, S
1
4

)

dθ

(

T
1
4

, S
1
4

)

≤ 1
4

[

dθ

(
1
4

, T
1
4

)

+ dθ (
1
4

, S
1
4

]

=
1
4

[8 + 4] =
12
4

.

Therefore, all the conditions of Theorem 2.2 are satisfied and T has a unique fixed point,
x = 1.

2.1 (α,β)-orbital-cyclic
Definition 2.2 Let X be a nonempty set, T : X → X, and α,β : X × X → [0,∞). We say
that T is an (α,β)-orbital-cyclic admissible mapping if

α(x, Tx) ≥ 1 implies β
(

Tx, T2x
) ≥ 1 and

β(x, Tx) ≥ 1 implies α
(

Tx, T2x
) ≥ 1

(25)

for all x ∈ X.

Corollary 2.1 Let T be a self-mapping on a complete extended-bMS (X, dθ ) such that the
mapping T forms an (α,β)-orbital-cyclic admissible mapping. Suppose that

(i) for each x0 ∈ X , limn,m→∞ θ (xn, xm) < 1–k
k , where xn = Tnx0, n = 1, 2, . . . ;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;
(iii) either T is continuous, or

(iii*) if xn is a sequence in X such that xn → u, then α(u, Tu)) ≥ 1 and β(u, Tu) ≥ 1.
Moreover, if for all x, y ∈ X and k ∈ [0, 1

2 )

α(x, Tx)β(y, Ty)dθ (Tx, Ty) ≤ k
[

dθ (x, Tx) + dθ (y, Ty)
]

, (26)

then the pair of the mappings T possesses a fixed point u, that is, Tu = u.

Proof It is sufficient to take S = T in Theorem 2.1. �
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Example 2.2 Let X = [0, 2] and define dθ : X × X → [0,∞) and θ : X × X → [1,∞) by

dθ (x, y) =

⎧

⎨

⎩

(x – y)2 if x, y ∈ [1, 2],

|x – y| otherwise,

respectively

θ (x, y) =

⎧

⎨

⎩

x + y + 1 if x, y ∈ [1, 2],

1 otherwise.

Let the self-map T : X → X be defined by

T(x) =

⎧

⎨

⎩

x
8 if x ∈ [0, 1)√

–x2 + 3x – 2 if x ∈ [1, 2].

Define also α,β : X × X → [0,∞) by

α(x, y) =

⎧

⎨

⎩

2 if x, y ∈ [0, 1],

0 otherwise,

and

β(x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

1 if x, y ∈ [0, 1],

2 if x = 2, y = 0,

0 otherwise.

We show that T is (α,β)-orbital-cyclic admissible. Let x, y ∈ X such that α(x, Tx) ≥ 1 and
β(x, Tx) ≥ 1. Then x, y ∈ [0, 1). On the other hand, if x ∈ [0, 1), then Tx ≤ 1 and T2x ≤ 1.
It follows that α(Tx, T2x) ≥ 1 and β(Tx, T2x) ≥ 1. Thus, the assertion holds. For x = 0, we
have T0 = 0 and α(0, T0) ≥ 1, respectively, β(0, T0) ≥ 1, so assumption (ii) is satisfied.
Let now {xn} be a sequence in X such that xn → x. Then {xn} ⊂ [0, 1] and x ∈ [0, 1]. This
implies that α(x, Tx) ≥ 1.

For x0 ∈ [0, 1), we get Tnx0 = x0
8n and limn,m→∞ θ (Tnx0, Tmx0) = 1. If x0 ∈ [1, 2], Tx0 ≤

1
4 , and limn,m→∞ θ (Tnx0, Tmx0) = 1. So, assumption (i) is satisfied for k = 1

3 . We have the
following cases:

(a): For x, y ∈ [0, 1), we get

dθ (x, y) = |x – y|, dθ (Tx, Ty) =
1
8
|x – y|,

dθ (x, Tx) =
7
8

x, dθ (y, Ty) =
7
8

y.

Replaced in (26) we get

α(x, Tx)β(y, Ty)dθ (Tx, Ty) ≤ 1
3

· [dθ (x, Tx) + dθ (y, Ty)
]
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or

2
|x – y|

8
≤ 1

3

[
7x
8

+
7y
8

]

=
7x + 7y

24
,

which is true for any x, y ∈ [0, 1).
(b): For x = 1 and y = 2, we know that α(1, T1) = α(1, 0) ≥ 1 and β(T1, T21) = β(0, 0) ≥ 1,

and β(2, T2) = β(2, 0) ≥ 1 and α(T2, T22) = α(0, 0) ≥ 1. But in this case (26) is obvious,
because dθ (T1, T2) = 0.

(c): For x ∈ [0, 1) and y = 2, (26) becomes

α(x, Tx)β(2, T2)dθ (Tx, T2) ≤ 1
3
[

dθ (x, Tx) + dθ (2, T2)
]

or

x
2

= 4 · x
8

≤ 1
3

[
7x
8

+ 2
]

=
7x + 16

24
.

(d): For all other cases, α(x, Tx) = 0 or β(x, Tx) = 0, and for this reason inequality (26)
holds. Therefore, all the conditions of Corollary 2.1 are satisfied and T has a fixed point,
x = 0.

Corollary 2.2 Let T be a self-mapping on a complete extended-bMS (X, dθ ) such that T is
an α-orbital admissible mapping. Suppose that

(i) for each x0 ∈ X , limn,m→∞ θ (xn, xm) < 1–k
k , where xn = Tnx0, n = 1, 2, . . . ;

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) either T is continuous, or

(iii*) if xn is a sequence in X such that xn → u, then α(u, Tu)) ≥ 1.
Moreover, if for all x, y ∈ X and k ∈ [0, 1

2 )

α(x, Tx)α(y, Ty)dθ (Tx, Ty) ≤ k
[

dθ (x, Tx) + dθ (y, Ty)
]

, (27)

then the pair of the mappings T possesses a fixed point u, that is, Tu = u.

Proof It is sufficient to take β(x, y) = α(x, y) in Corollary 2.1. �

Example 2.3 Let X = [0, 2] be endowed with extended b-metric dθ : X × X → [0,∞), de-
fined by dθ (x, y) = (x – y)2, where θ : X × X → [1,∞), θ (x, y) = x + y + 1. Let T : X → X such
that

Tx =

⎧

⎨

⎩

x+1
3 if x ∈ [0, 1],

x
2 if x ∈ (1, 2].

Define also α : X × X → (0,∞) as

α(x, y) =

⎧

⎨

⎩

1 if (x, y) ∈ {[0, 1
2 ] × [0, 1

2 ]} ∪ {[ 1
2 , 1] × [ 1

2 , 1]},
0 otherwise.
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We prove that Corollary 2.2 can be applied to T for k = 1
4 , but Theorem 1.1 cannot be

applied to T . We show that T is an α-orbital admissible mapping. If x, y ∈ [0, 1
2 ], then Tx ≤

1
2 and T2x ≤ 1. Thus, α(x, Tx) ≥ 1 implies α(Tx, T2x) ≥ 1. Similarly, we get that α(x, Tx) ≥ 1
implies α(Tx, T2x) ≥ 1 for all x, y ∈ [ 1

2 , 1], so T is α-orbital admissible. In reason of the
above arguments, α(0, T0) = α(0, 1

3 ) ≥ 1. Thus, assertion (ii) holds.
Note that, for each x0 ∈ X, Tnx0 =

∑n
k=1( 1

3 )n + x0
3n and limn→∞ Tnx0 = 1

2 . Hence,

lim
n,m→∞ θ

(

Tn(x0), Tm(x0)
)

= 2 · 1
2

+ 1 = 2 < 3 =
1 – k

k
.

So assumption (i) is satisfied, and because α( 1
2 , T 1

2 ) = α( 1
2 , 1

2 ) ≥ 1, assumption (iii*) is also
satisfied. Let x, y ∈ [0, 1

2 ], or x, y ∈ [ 1
2 , 1]. We have

d(Tx, Ty) = α(x, Tx)α(y, Ty)d(Tx, Ty) =
(x – y)2

9

and

k · [dθ (x, Tx) + dθ (y, Ty)
]

=
1
4

[
(2x – 1)2

9
+

(2y – 1)2

9

]

=
4x2 + 4y2 – 4x – 4y + 2

36
.

Replaced in inequality (28), we get

x2 – 2xy + y2

9
≤ 4x2 + 4y2 – 4x – 4y + 2

36
,

or, equivalently,

8xy – 4x – 4y + 2 ≥ 0 ⇔ (2x – 1)(2y – 1) ≥ 0.

Hence, inequality (28) is satisfied. In other cases, inequality (28) is obviously satisfied,
because α(x, y) = 0. Therefore, all conditions of Corollary 2.2 are satisfied and T has a
unique fixed point, x = 1

2 .
Let x = 2 and y = 3. Then

dθ (T2, T3) = dθ (9, 16) = 25 > k = k · dθ (2, 3)

for any k < 1.

2.2 Uniqueness
Notice that in this section we investigate the existence of (common) fixed points of certain
operators. For the uniqueness of a fixed point of the observed results, we will consider the
following hypothesis.

(H) For all x, y ∈ CFix(T), we have α(x, Tx) ≥ 1 and β(y, Sy) ≥ 1.
Here, CFix(T) denotes the set of common fixed points of T and S.

Theorem 2.2 Adding condition (H) to the hypotheses of Theorem 2.1, we obtain that u is
the unique fixed point of T .
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Proof Suppose, on the contrary, that v is another fixed point of T . From (H), there exists
v ∈ X such that

α(u, Tu) ≥ 1 and β(v, Sv) ≥ 1. (28)

Since T satisfies (9), we get that

dθ (Tu, Sv) ≤ α(u, Tu)β(v, Sv)dθ (Tu, Sv) ≤ k
[

dθ (u, Tu) + dθ (v, Sv)
]

,

which yields that

dθ (u, v) ≤ 0.

Since the inequality above is possible only if dθ (u, v) = 0, that is, u = v. This is a contradic-
tion. Thus we proved that u is the unique fixed point of T . �

Notice also that instead of hypothesis (H), one can suggest different conditions, see,
e.g., [15].

3 Conclusions
It is clear that one can list several consequences from our results. By letting θ (x, y) = s,
constant, with 1 ≤ s < k–1

k in Theorem 2.1 (analogously, in Corollary 2.1 and Corollary 2.2),
we get corresponding fixed point results in the setting of standard b-metric space.

On the other hand, regarding the techniques used in [15], one can derive another set of
corollaries, by choosing the admissible mapping in a proper way. In this way, for exam-
ple, several existing fixed point results in the literature in the setting of partially ordered
metric spaces can be derived. Furthermore, the analogs of fixed point results for cyclic
contractions can be found.
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