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Abstract
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1 Introduction
The Riemann zeta function ζ (s) in the real variable s was introduced by Euler [2] in connec-
tion with questions about the distribution of prime numbers. Later Riemann [6] derived
deeper results about a dual correspondence between the distribution of prime numbers
and the complex zeros of ζ (s) in the complex variable s. In these developments, he as-
serted that all the non-trivial zeros of ζ (s) are on the line Re(s) = 1

2 , and this has been one
of the most important unsolved problems in mathematics, called the Riemann hypothe-
sis. A vast amount of research on calculation of ζ (s) on the line Re(s) = 1

2 , which is called
the critical line, and on the strip 0 < Re(s) < 1, which is called the critical strip, has been
conducted using various methods [1].

The Riemann zeta function and a tail of the Riemann zeta function from n for an integer
n ≥ 1 are defined, respectively, by: for Re(s) > 1,

ζ (s) =
∞∑

k=1

1
ks and ζn(s) =

∞∑

k=n

1
ks ,

and for 0 < Re(s) < 1,

ζ (s) =
1

1 – 21–s

∞∑

k=1

(–1)k+1

ks and ζn(s) =
1

1 – 21–s

∞∑

k=n

(–1)k+1

ks .

To understand the values of ζ (s), it would be helpful to understand the values of tails of
ζ (s), for example, the integer parts of their inverses [ζn(s)–1], where [x] denotes the greatest
integer that is less than or equal to x.
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Some values of [ζn(s)–1] for small positive integers s have become known recently. Xin
[7] showed that for s = 2 and 3,

[
ζn(2)–1] = n – 1 and

[
ζn(3)–1] = 2n(n – 1).

For s = 4, Xin and Xiaoxue [8] showed that

[
ζn(4)–1] = 3n3 – 5n2 + 4n – 1 +

[
(2n + 1)(n – 1)

4

]

for any integer n ≥ 2, and Xu [9] showed that for s = 5,

[
ζn(5)–1] = 4n4 – 8n3 + 9n2 – 5n +

[
(n + 1)(n – 2)

3

]

for any integer n ≥ 4. Hwang and Song [3] provided an alternative proof of the case when
s = 5 and a formula when s = 6 as follows. For an integer n, write n48 for the remainder
when n is divided by 48, then

[
ζn(6)–1]

=

⎧
⎨

⎩
5n5 – 25

2 n4 + 75
4 n3 – 125

8 n2 + 185
48 n – 5n48

48 – [ 35–5n48
48 ], if n is even,

5n5 – 25
2 n4 + 75

4 n3 – 125
8 n2 + 185

48 n – 5n48+18
48 – [ 17–5n48

48 ], if n is odd

for any integer n ≥ 829. For the integer s greater than 6, no such a formula is known.
There are other interesting results related to this theme such as bounds of ζ (3) in greater

precision in [4] and [5].
We study the inverses of tails of the Riemann zeta function ζn(s)–1 for s on the critical

strip 0 < s < 1. The following notation is needed to explain our results.

Definition 1 For any positive integer n and real number s with 0 < s < 1, we define

An,s =
(

1
ns –

1
(n + 1)s

)
+

(
1

(n + 2)s –
1

(n + 3)s

)
+ · · ·

and

Bn,s =
(

–
1
ns +

1
(n + 1)s

)
+

(
–

1
(n + 2)s +

1
(n + 3)s

)
+ · · · .

Now the tail of the Riemann zeta function for 0 < s < 1 can be written as follows:

ζn(s) =

⎧
⎨

⎩
– 1

1–21–s An,s, if n is even,

– 1
1–21–s Bn,s, if n is odd.

(1)

In this paper, we present the bounds of A–1
n,s and B–1

n,s, hence the bounds of the inverses of
tails of the Riemann zeta function ζn(s)–1 for 0 < s < 1 in Sect. 2.1, and compute the values
[A–1

n,s] and [B–1
n,s], hence the values of the inverses of tails of the Riemann zeta function

[ 1
1–21–s ζn(s)–1] for s = 1

2 , 1
3 , and 1

4 in Sect. 2.2.
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2 Main results
2.1 The bounds of the inverses of ζn(s) for 0 < s < 1
In this section, we present the bounds of A–1

n,s and B–1
n,s in Definition 1, hence the bounds of

the inverses of tails of the Riemann zeta function ζn(s)–1 for 0 < s < 1.

Proposition 1 Let s be a real number with 0 < s < 1. Then, for any positive even number n,

2(n – 1)s < A–1
n,s < 2ns,

and for any positive odd number n,

–2ns < B–1
n,s < –2(n – 1)s.

Proof Let n be a positive even number. For every positive integer k, it is easy to see that

(
1

(n + 1 + 2k)s –
1

(n + 2 + 2k)s

)

<
(

1
(n + 2k)s –

1
(n + 1 + 2k)s

)

<
(

1
(n – 1 + 2k)s –

1
(n + 2k)s

)
.

The summations of each term over k give

An+1,s < An,s < An–1,s

and

1
2

(An+1,s + An,s) < An,s <
1
2

(An–1,s + An,s).

Therefore, we have

1
2ns < An,s <

1
2(n – 1)s ,

which gives the first statement.
The second statement can be shown similarly. �

Since every proof of the case when n is an odd number is analogous to that of the case
when n is an even number, we omit all the proofs of the odd number cases in this paper.

Now we find tighter bounds for A–1
n,s and B–1

n,s.

Proposition 2 Let s be a real number with 0 < s < 1. Then, for any positive even number n,

2
(

n –
1
2

)s

< A–1
n,s,
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and for any positive odd number n,

B–1
n,s < –2

(
n –

1
2

)s

.

Proof Let n be a positive even number. We will show that

An,s <
1

2(n – 1
2 )s

.

Rewriting each of the both sides as a series

An,s =
∞∑

k= n
2

(
1

(2k)s –
1

(2k + 1)s

)

and

1
2(n – 1

2 )s
=

∞∑

k= n
2

(
1

2(2k – 1
2 )s

–
1

2(2k + 3
2 )s

)
,

we will show that for any positive integer k,

1
(2k)s –

1
(2k + 1)s <

1
2(2k – 1

2 )s
–

1
2(2k + 3

2 )s
.

For this, we let

f (x) =
(

1
2(2x – 1

2 )s
–

1
2(2x + 3

2 )s

)
–

(
1

(2x)s –
1

(2x + 1)s

)

and will show that f (x) is positive for x ≥ 1 and 0 < s < 1. With

g(x) =
1

2(2x – 1
2 )s

+
1

2(2x + 1
2 )s

–
1

(2x)s ,

we have f (x) = g(x) – g(x + 1
2 ). Consider the derivative of g(x):

g ′(x) = –2s
(

1
2(2x – 1

2 )s+1
+

1
2(2x + 1

2 )s+1
–

1
(2x)s+1

)
.

Since the function 1
xs+1 is convex, we obtain that

1
2(2x – 1

2 )s+1
+

1
2(2x + 1

2 )s+1
–

1
(2x)s+1 ≥ 0,

and therefore g ′(x) is negative, that is, g(x) is decreasing. We conclude that f (x) is positive,
which gives the statement. �
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Proposition 3 Let s be a real number with 0 < s < 1. Then, for any positive even number n,

A–1
n,s < 2

(
n –

1
4

)s

,

and for any positive odd number n,

–2
(

n –
1
4

)s

< B–1
n,s.

Proof Let n be a positive even number. We will show that

1
2(n – 1

4 )s
< An,s.

Rewriting each of the both sides as a series

An,s =
∞∑

k= n
2

(
1

(2k)s –
1

(2k + 1)s

)

and

1
2(n – 1

4 )s
=

∞∑

k= n
2

(
1

2(2k – 1
4 )s

–
1

2(2k + 7
4 )s

)
,

we need to show that for any positive integer k,

1
2(2k – 1

4 )s
–

1
2(2k + 7

4 )s
<

1
(2k)s –

1
(2k + 1)s .

For this, we let

f (x) =
(

1
(2x)s –

1
(2x + 1)s

)
–

(
1

2(2x – 1
4 )s

–
1

2(2x + 7
4 )s

)
.

We check that f (1) > 0 and now we will show that f (x) is positive for x ≥ 2 and 0 < s < 1.
With

g(x) =
1

(2x)s –
(

1
2(2x – 1

4 )s
+

1
2(2x + 3

4 )s

)
,

we have f (x) = g(x) – g(x + 1
2 ), so we only need to show that g(x) is decreasing. Consider

the derivative of g(x):

g ′(x) = s
(

–
2

(2x)s+1 +
(

1
(2x – 1

4 )s+1
+

1
(2x + 3

4 )s+1

))

= s
((

1
(2x – 1

4 )s+1
–

1
(2x)s+1

)
–

(
1

(2x)s+1 –
1

(2x + 3
4 )s+1

))
.
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Since the function 1
xs+1 is decreasing and convex, by comparing slopes at (2x – 1

4 ) and
(2x + 3

4 ), we obtain

1
(2x – 1

4 )s+1
–

1
(2x)s+1 <

1
4

(s + 1)
1

(2x – 1
4 )s+2

and

1
(2x)s+1 –

1
(2x + 3

4 )s+1
>

1
4

(s + 1)
3

(2x + 3
4 )s+2

.

Therefore,

g ′(x) <
1
4

s(s + 1)
(

1
(2x – 1

4 )s+2
–

3
(2x + 3

4 )s+2

)
.

Consider h(x, s) := 1
3 ( 2x+3/4

2x–1/4 )s+2, which is the ratio of two terms on the right-hand side of
the above expression. We check that h(x, s) < 1 for x ≥ 2 and 0 < s < 1. Since h(2, 1) =
6859/10,125 and limx→∞ h(x, s) = 1

3 for 0 < s < 1, we obtain that g ′(x) is negative and, there-
fore, g(x) is decreasing, which gives the statement. �

We combine the results of Proposition 2 and Proposition 3.

Theorem 1 Let s be a real number with 0 < s < 1. Then, for any positive even number n,

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n –

1
4

)s

,

and for any positive odd number n,

–2
(

n –
1
4

)s

< B–1
n,s < –2

(
n –

1
2

)s

.

We express these bounds in terms of ζn(s) using expression (1).

Corollary 1 Let s be a real number with 0 < s < 1. Then, for any positive even number n,

2
(
1 – 21–s)

(
n –

1
4

)s

< ζn(s)–1 < 2
(
1 – 21–s)

(
n –

1
2

)s

,

and for any positive odd number n,

–2
(
1 – 21–s)

(
n –

1
2

)s

< ζn(s)–1 < –2
(
1 – 21–s)

(
n –

1
4

)s

.

Furthermore, we have tighter bounds of A–1
n,s and B–1

n,s for a sufficiently large number n.

Theorem 2 For any positive number ε and any real number s with 0 < s < 1,

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n –

1
2

+ ε

)s
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for a sufficiently large even number n and

–2
(

n –
1
2

+ ε

)s

< B–1
n,s < –2

(
n –

1
2

)s

for a sufficiently large odd number n.

Proof From Theorem 1, it suffices to show that for a sufficiently large even number n,

1
2(n – 1

2 + ε)s
< An,s.

Rewriting each of the both sides as a series

An,s =
∞∑

k= n
2

(
1

(2k)s –
1

(2k + 1)s

)

and

1
2(n – 1

2 + ε)s
=

∞∑

k= n
2

(
1

2(2k – 1
2 + ε)s

–
1

2(2k + 3
2 + ε)s

)
,

we need to show that for a sufficiently large even number n and every integer k ≥ n
2 ,

1
2(2k – 1

2 + ε)s
–

1
2(2k + 3

2 + ε)s
<

1
(2k)s –

1
(2k + 1)s .

For this, let

f (x) =
(

1
(2x)s –

1
(2x + 1)s

)
–

(
1

2(2x – 1
2 + ε)s

–
1

2(2x + 3
2 + ε)s

)
,

and we will show that f (x) is positive for x ≥ x0, where x0 is a sufficiently large number.
With

g(x) =
1

(2x)s –
(

1
2(2x – 1

2 + ε)s
+

1
2(2x + 1

2 + ε)s

)
,

we have that f (x) = g(x)–g(x+ 1
2 ), so we only need to show that g(x) is decreasing. Consider

the derivative of g(x):

g ′(x) = s
(

–
2

(2x)s+1 +
1

(2x – 1
2 + ε)s+1

+
1

(2x + 1
2 + ε)s+1

)

= s
((

1
(2x – 1

2 + ε)s+1
–

1
(2x)s+1

)
–

(
1

(2x)s+1 –
1

(2x + 1
2 + ε)s+1

))
.

Since 1
xs+1 is decreasing and convex, by comparing slopes at (2x – 1

2 + ε) and (2x + 1
2 + ε),

we obtain

1
(2x – 1

2 + ε)s+1
–

1
(2x)s+1 < (s + 1)

1
2 – ε

(2x – 1
2 + ε)s+2
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and

1
(2x)s+1 –

1
(2x + 1

2 + ε)s+1
> (s + 1)

1
2 + ε

(2x + 1
2 + ε)s+2

.

Therefore

g ′(x) < s(s + 1)
( 1

2 – ε

(2x – 1
2 + ε)s+2

–
1
2 + ε

(2x + 1
2 + ε)s+2

)
.

Consider h(x) :=
1
2 –ε

1
2 +ε

( 2x+ 1
2 +ε

2x– 1
2 +ε

)s+2, which is the ratio of two terms on the right-hand side
of the above expression. We need to show that h(x) < 1 for every x > x0, where x0 is a
sufficiently large number. We check that

h(x) < 1 ⇐⇒ 2x + 1
2 + ε

2x – 1
2 + ε

<
( 1

2 + ε

1
2 – ε

) 1
s+2

.

For any ε > 0 and 0 < s < 1, we have that 1 < (
1
2 +ε

1
2 –ε

)1/(s+2) and 2x+ 1
2 +ε

2x– 1
2 +ε

is larger than 1, de-
creasing and converges to 1 as x goes to infinity, so there is x0 such that, for every x > x0,
h(x) < 1. Therefore the proof is complete. �

We express these bounds in terms of ζn(s) using expression (1).

Corollary 2 For any positive number ε and any real number s with 0 < s < 1, we have

2
(
1 – 21–s)

(
n –

1
2

+ ε

)s

< ζn(s)–1 < 2
(
1 – 21–s)

(
n –

1
2

)s

,

for a sufficiently large even number n and

–2
(
1 – 21–s)

(
n –

1
2

)s

< ζn(s)–1 < –2
(
1 – 21–s)

(
n –

1
2

+ ε

)s

for a sufficiently large odd number n.

2.2 The value of the inverse of ζn(s) for s = 1
2 , 1

3 , and 1
4

We study firstly the value of the inverse of ζn( 1
2 ), where ζn( 1

2 ) is the tail of the Riemann
zeta function from n at s = 1

2 .

Theorem 3 For any positive even number n,

[
A–1

n,1/2
]

=
[

2
(

n –
1
2

)1/2]
,

and for any positive odd number n,

[
B–1

n,1/2
]

=
[

–2
(

n –
1
2

)1/2]
.
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Proof Let n be a positive even number. By Theorem 1, we have that

2
(

n –
1
2

)1/2

< A–1
n,1/2 < 2

(
n –

1
4

)1/2

.

Note that 2(n – 1
4 )1/2 – 2(n – 1

2 )1/2 < 1 for n ≥ 2, and it implies that there is at most one
integer in the open interval from 2(n – 1

2 )1/2 to 2(n – 1
4 )1/2. Suppose that there is an integer

h in the open interval, i.e.,

2
(

n –
1
2

)1/2

< h < 2
(

n –
1
4

)1/2

or 4n – 2 < h2 < 4n – 1.

There is, however, no integer in the open interval from 4n – 2 to 4n – 1, therefore such an
integer h does not exist. This gives the statement. �

We express this result in terms of ζn(s) using expression (1).

Corollary 3 For any positive integer n,

[
1

1 – 21/2 ζn

(
1
2

)–1]
=

[
(–1)n+12

(
n –

1
2

)1/2]
.

We study secondly the value of the inverse of ζn( 1
3 ), where ζn( 1

3 ) is the tail of the Riemann
zeta function from n at s = 1

3 .

Theorem 4 For any positive even number n,

[
A–1

n,1/3
]

=
[

2
(

n –
1
2

)1/3]
,

and for any positive odd number n,

[
B–1

n,1/3
]

=
[

–2
(

n –
1
2

)1/3]
.

Proof Let n be a positive even number. By Theorem 1, we have that

2
(

n –
1
2

)1/3

< A–1
n,1/3 < 2

(
n –

1
4

)1/3

.

Note that 2(n – 1
4 )1/3 – 2(n – 1

2 )1/3 < 1 for n ≥ 2, and it implies that there is at most one
integer in the open interval from 2(n – 1

2 )1/3 to 2(n – 1
4 )1/3. Suppose that there is an integer

h in the open interval, i.e.,

2
(

n –
1
2

)1/3

< h < 2
(

n –
1
4

)1/3

or 8n – 4 < h3 < 8n – 2.
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This shows that the integer h is of the form h = 2(n – 3
8 )1/3. If we show A–1

n,1/3 < 2(n – 3
8 )1/3

or, equivalently, 1
2(n– 3

8 )1/3 < An,1/3, then our proof will be done. Let us rewrite

An,1/3 =
∞∑

k= n
2

(
1

(2k)1/3 –
1

(2k + 1)1/3

)

and

1
2(n – 3

8 )1/3
=

∞∑

k= n
2

(
1

2(2k – 3
8 )1/3

–
1

2(2k + 13
8 )1/3

)
.

Now it suffices to show that for any positive integer k,

1
2(2k – 3

8 )1/3
–

1
2(2k + 13

8 )1/3
<

1
(2k)1/3 –

1
2(2k + 1)1/3 .

For this, we let

f (x) =
(

1
(2x)1/3 –

1
(2x + 1)1/3

)
–

(
1

2(2x – 3
8 )1/3

–
1

2(2x + 13
8 )1/3

)
,

and we will show that f (x) is positive for any positive integer x.
We check that f (1) = 0.00053 · · · and f (2) = 0.00081 · · · , so it suffices to show f (x) > 0

for x ≥ 3. With

g(x) =
1

(2x)1/3 –
(

1
2(2x – 3

8 )1/3
+

1
2(2x + 5

8 )1/3

)
,

we have that f (x) = g(x) – g(x + 1
2 ), so we only need to show that g(x) is decreasing for x ≥ 3.

Consider the derivative of g(x):

g ′(x) =
1
3

(
–

2
(2x)4/3 +

1
(2x – 3

8 )4/3
+

1
(2x + 5

8 )4/3

)

=
1
3

((
1

(2x – 3
8 )4/3

–
1

(2x)4/3

)
–

(
1

(2x)4/3 –
1

(2x + 5
8 )4/3

))
.

Since 1
x4/3 is decreasing and convex, by comparing slopes at (2x – 3

8 ) and (2x + 5
8 ), we obtain

1
(2x – 3

8 )4/3
–

1
(2x)4/3 < 2 · 3

16
· 4

3
· 1

(2x – 3
8 )7/3

and

1
(2x)4/3 –

1
(2x + 5

8 )4/3
> 2 · 5

16
· 4

3
· 1

(2x + 5
8 )7/3

.

Therefore

g ′(x) <
1

18

(
3

(2x – 3
8 )7/3

–
5

(2x + 5
8 )7/3

)
.
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Consider h(x) := 3
5 ( 2x+5/8

2x–3/8 )7/3, which is the ratio of two terms of the right-hand side of
the above expression. We check that h(x) < 1 for x ≥ 3 because h(3) = 0.87 · · · and
limx→∞ h(x) = 3

5 and h′(x) < 0 for x ≥ 3. Hence we obtain that g ′(x) is negative and so
g(x) is decreasing for x ≥ 3, which proves the statement. �

We express this result in terms of ζn(s) using expression (1).

Corollary 4 For any positive integer n,

[
1

1 – 22/3 ζn

(
1
3

)–1]
=

[
(–1)n+12

(
n –

1
2

)1/3]
.

We study lastly the value of the inverse of ζn( 1
4 ), which is the tail of the Riemann zeta

function from n at s = 1
4 .

Theorem 5 For any positive even number n,

[
A–1

n,1/4
]

=
[

2
(

n –
1
2

)1/4]
,

and for any positive odd number n,

[
B–1

n,1/4
]

=
[

–2
(

n –
1
2

)1/4]
.

Proof Let n be a positive even number. By Theorem 1, we have that

2
(

n –
1
2

)1/4

< A–1
n,1/4 < 2

(
n –

1
4

)1/4

.

Note that 2(n – 1
4 )1/4 – 2(n – 1

2 )1/4 < 1 for n ≥ 2, and it implies that there is at most one
integer in the open interval from 2(n – 1

2 )1/4 to 2(n – 1
4 )1/4. Suppose that there is an integer

h in the open interval, i.e.,

2
(

n –
1
2

)1/4

< h < 2
(

n –
1
4

)1/4

or 16n – 8 < h4 < 16n – 4.

This shows that the integer h4 is one of the form 16n–7, 16n–6, or 16n–5. For any integer
h, however, h4 ≡ 0 or 1 (mod 16), hence such an integer h does not exist. Therefore this
gives the statement. �

We express this result in terms of ζn(s) using expression (1).

Corollary 5 For any positive integer n,

[
1

1 – 23/4 ζn

(
1
4

)–1]
=

[
(–1)n+12

(
n –

1
2

)1/4]
.

We express the results of Theorems 3, 4, and 5 in a single statement.
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Theorem 6 For s = 1
2 , 1

3 , or 1
4 , and for any positive even number n,

[
A–1

n,s
]

=
[

2
(

n –
1
2

)s]
,

and for any positive odd number n,

[
B–1

n,s
]

=
[

–2
(

n –
1
2

)s]
.

We express the results of Corollaries 3, 4, and 5 in a single statement.

Corollary 6 For any positive integer n and s = 1
2 , 1

3 , or 1
4 ,

[
1

1 – 21–s ζn(s)–1
]

=
[

(–1)n+12
(

n –
1
2

)s]
.

3 Conclusion
In this paper, we have presented the bounds of A–1

n,s and B–1
n,s, hence the bounds of the

inverses of tails of the Riemann zeta function ζn(s)–1 for 0 < s < 1, and computed the values
[A–1

n,s] and [B–1
n,s], hence the values of the inverses of tails of the Riemann zeta function

[ 1
1–21–s ζn(s)–1] for s = 1

2 , 1
3 , and 1

4 . For other values of s, for example s = 1
5 or 2

3 , the values
of An,s and Bn,s do not seem to have simple expressions.
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