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1 Introduction
Somos’ quadratic recurrence constant is defined (see [1-3]) by

n=1 k=1

=1.66168794... (1.1)
or

Lo1-x Lorl X
p{/ Wd}"{/ | md"dy}' (12

The constant o arises in the study of the asymptotic behavior of the sequence
2@=1 g, =ng>,, neN:={1,23..}, (1.3)
with the first few terms
go=1, a=1 S=2, g =12, g4 =576, g5 = 1,658,880,

This sequence behaves as follows (see [4, p. 446] and [3, 5]):

8n ™~ —

o (1 2 1 4 21 138 1091 10,088 106,918
+ —_
n

+——-—
n n2 m nt nb n’ ns

-1
1,279,220 17,070,418 251,560,472  4,059,954,946
+ 9 - 10 + 11 - 12 te ) (14)
n n n n
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The constant o appears in important problems from pure and applied analysis, and it is
the motivation for a large number of research papers (see, for example, [1, 6-16]).

Sondow and Hadjicostas [15] introduced and studied the generalized-Euler-constant
function y(z), defined by

V(Z)=Zz”1<%—lnn:ll>, (1.5)

where the series converges when |z| < 1. Pilehrood and Pilehrood [13] considered the
function zy (z) (Jz| < 1). The function y (z) generalizes both Euler’s constant y (1) and the
alternating Euler constant lng =y(-1)[17,18].

Sondow and Hadjicostas [15] defined the generalized Somos constant

i o < ¢\ Ve 1 1
o, = 1[2‘31/4...:1_[;41“ :<:> exp{—t(t_l)y<;>}, t>1. (1.6)
n=1

Coffey [19] gave the integral and series representations for Inoy:

[ e 1 dx
Ino; = + — (1.7)
0 t—-1 1-—te¥ X
and
1 (-1t 1 1 1. (1
1 = — Ly - )=—— —|tLixg - ) -1 1.8
noe t—1k§1 k 1’(t> t—lkgk[ 1’<t) } 18

in terms of the polylogarithm function.
It is known (see [15]) that

1 2 . 1 1
y|=)=2In—, equivalently, o =2expj—=y|=|¢- (1.9)
2 o 2°\2

Thus, formula (1.5) is closely related to Somos’ quadratic recurrence constant o.
Define

. 1
ya(2) =y 27 (— ~In —) 2l < 1.
P k k

Mortici [11] proved that for n € N,

270(n + 1) 1 1 18
<yl=)-vl=)< (1.10)
21(27013 + 1530n2 + 10657 + 6293) 2 2 27(18n? + 84n — 13)

and
i 1 22,400(x + 1)
(= 2k 3k1 31(44,800n* + 280,000° + 435,120n2 + 744,380n - 2,477,677)

1 1 > 1 160
<vlz)-wmlz)< D - . (111)
3 3) " A= 2k2-3K1 313203 + 1680n2 + 14281 + 3889)
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Lu and Song [10] improved Mortici’s results and obtained the inequalities:

690n% + 35241 + 145 1 1
evl(=)-v (2
602" (n+ 1)2(115n% +894n + 779) ~'\2 ) ~ 7"\ 2

48n + 127

< 1.12
3(27)(167 + 85) (1 + 1)2 (1.12)
and
i 1 98784012 + 84443401 + 10946779
(= 2K -3k 40(37)(n + 1)2(49392n3 + 58274102 + 17695161 + 1236167)
1 1 i 1 162012 + 699571 + 1847 1.13)
<vl=z)- —|< - .
"\3)77"\3) " & 22 31T 40(37)(81n2 + 5320 + 451)(n + 1)?
for nm e N.

You and Chen [16] further improved inequalities (1.10)—(1.13). Recently, Chen and Han
[7] gave new bounds for y(1/2) — y,(1/2):

1 1 8 23 332 479 29,024
21\ (n+1)2 3m+1)2 2mn+1)* 5n+1)P° m+1)° 7m+1)7

o))

1 1 8 23 332 479 (1.14)
<= - + - + .
27\ (n+1)2 3n+1)3 2m+1)* 5n+1°> (m+1)°
for n € N, and presented the following asymptotic expansion:
1 1
14 D) Vn )
1 1 8 23 332 479 (1.15)
~ — + p— + —_. . .
2"(n + 1)2 3n+1) 2m+1)2 5(n+13 (m+1)*

as n — 00. Moreover, these authors gave a formula for successively determining the coef-
ficients in (1.15).
Chen and Han [7] pointed out that the lower bound in (1.14) is for # > 24 sharper than
the one in (1.12), and the upper bound in (1.14) is for » > 18 sharper than the one in (1.12),
For any positive integer m > 2, in this paper we give the asymptotic expansion of
y(1/m) — y,(1/m) as n — oo. Based on the result obtained, we establish the inequality

for y(1/4) — y,(1/4). We also consider the asymptotic expansion for y(-1) — y,,(-1).

2 Lemmas

Lemma 2.1 Asx — o0,

m-1 i
1 1 -1y
——1n(1+—>— (‘)
x x =

% ~ A(x) - %A(x +1), (2.1)

~
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where A(x) is defined by

A=)
j=m

with the coefficients a; given by the recurrence relation

1y j-1 1
T RS | R

k=m

Here, and throughout this paper, an empty sum is understood to be zero.

Proof Using the Maclaurin series of In(1 + £),

o (-1)!
1n(1+t):z — 7, -1<t<]1,
j=1

we obtain

1 1\ YY1 & ()1
;‘1“(1+;>‘, PSR Dt

where a; are real numbers to be determined.
Write (2.5) as

N a 1\7 &) 1
>5(y) ~XIE ()
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(2.2)

(2.4)

(2.5)

(2.8)
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Equating coefficients of the term x7 on both sides of (2.8) yields
) _ 1Y (-1
T=ﬂj—akzzmﬂk(—1)’ k) ] = m.

For j = m, we obtain a,, = %, and for j > m + 1, we have

(-1y 1 [ i1
- (i '
Tza}-—;[kzzmak(—ly (i_k)+aj], j>m+1.

We then obtain the recursive formula

j-1

-1

3

b 0 U Zak(_l)jk(;::}(>, j=m+l,

(m-1)j m—lk

=m

which can be written as (2.3). The proof of Lemma 2.1 is complete.

Lemma 2.2 Let

1 3 1 32 68
==~ 2% and b(x)= —
) =3 " s M bW =3

- + .
xt  45x5  27x6

Then, for x > 1,

1 1 1 1 1 1
_- De<--Inf1+>)-—+-— - - 1).
a(x) 4a(x+ )<x n( +x> 2x2+ x3<h(x) 4b(x+ )

3

Proof 1tis well known thatfor -1 <t <landmeN,

2m i 2m-1 i

-1yt . -1yt .
E ( )1 Y<In(l+1¢)< E ( )’ v,
= =

which implies that for x > 1 and m > 2,

2m+1 i 2m i
-1y 1 1 1 1 -1y

Z(,.)<——1n 1+ - ——+—<Z(_.).
oo x x) 2x* 3x° joo

Jj=4 j=4

Using (2.12), we find that

1 e 1 1 1 ) 1 e 1)
——In{1+-)-—+-—=-ax)+-alx+
x x 2x2  3x3 4
1 1 1 310x* + 770x3 + 845x% + 445x + 92
>————ax)+-alx+1) = >0
4t 5xb 4 18045 (x + 1)°

and

1 1 1 1 1
;—11’1(1+J—C>—2—9(:2+§—b(x)+1b(x+1)
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1 1
— 1
< e st ot —b(x) + b(x +1)

4380x +14,205x* + 21,5304% + 17,4392 + 7344« + 1270

540x°(x + 1)°

The proof of Lemma 2.2 is complete.

Page 6 of 15

O

Remark 2.1 Using the methods from [20-22] it is possible to get estimations (based on

the power series expansions) of the logarithm function that can be used, for example, in

the analysis of parameterized Euler-constant function, which will be an item for further

work.

Lemma 2.3 Asx — 00, we have

X

1 —ln(l . }C) ~ C(x) + Clx+ 1),

where C(x) is defined by

with the coefficients c; given by the recurrence relation

1 - 1 o (i-1
=0 9= 5 —E (-1y* , j=3.
5] 4 2k Y '—k) ]=

Proof In view of (2.4), we can let

1 ooc >
;—ln(l ) 22:; Zz(x+1)/

where ¢; are real numbers to be determined. Write (2.16) as

——1 1+-— 2 Zl1+-) .

()25 20
j=2 j=2

Noting that (2.7) holds, we have

i(Ty; i{chk( 1y- C 1)}—

j=2 j=2

Equating coefficients of the term x on both sides of (2.17) yields

o j '_kc_ 1)
A -1 ,
A k; a7

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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For j = 2, we obtain ¢; = 1/4, and for j > 3 we have

%—ZC]+ZC](( 1y~ (l >

We then obtain the recursive formula (2.15). The proof of Lemma 2.3 is complete.

The first few coefficients c; are

1 1 1 1 1
C2=Z¢ C3=E¢ C4=_§¢ C5 = 107 Ce E;
17 17 31
c7 %, 8 = E; Cg = E

3 Main results

Page 7 of 15

For any positive integer m > 2, Theorem 3.1 gives the asymptotic expansion of y(1/m) —

vu(1/m) as n — oo.

Theorem 3.1 For any positive integer m > 2, we have

oo m-1
1 (- 1)1 1 A(n+ 1)
() nG) - E X T
k=n+1 j=2
where A(x) is given in (2.2). Namely,
(=) (1)
Y\ =)= Vul —
m m
k1
k=n+1 j= 2 m k]
N (=1)m 1 2m?
m" | (m=-1)m+1)" (m+1)(m—-1)%(n+ 1)1

m?(m? + 8m + 3) (m + 1)(m® + 12m?* + 51m + 8)m?
+ p—
2(m + 2)(m — 1)3(n + 1)m+2 6(m —1)*(m + 3)(n + 1)m+3
m?(m® + 25m® + 216m* + 866m> + 1241m> + 501m + 30)
+ —_— e .
24(m — 1)5(m + 4)(n + 1)+

Proof Write (2.1) as

1 1\ 2 (=11 1
z —ln<1+ %> —ZT? _AN(k)— —AN(k+ 1)+O</N+l)

(3.1)

(3.2)

(3.3)

(3.4)
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with the coefficients a; given by the recurrence relation (2.3). From (3.3), we have

(i 1))

iy
537‘?

j=2

An(k) An(k+1) 1
= Tk YO\ (3.5)
Adding (3.5) from k = n + 1 to k = 0o, we have
1 oy 1o 1
()=o) - 22 v v+ 0 )|
k=n+1 j=2
which can be written as (3.1). The proof of Theorem 3.1 is complete. O

Remark 3.1 For m =2 in (3.2), we obtain (1.15). For m = 3 in (3.2), we find
1 1
4 3 Vn 3
> o
23k—1
. 2k?3

. 1 1+ 9 81 . 37 5661 . 36)
Im+13| 2 8m+1) 20m+1)2 2m+1)3 56(nm+1)4 T

For m = 4 in (3.2), we find

(3)+()

> /1 1 1
=3 (35
1 1 32 68 2080
TP 1) { 3 45(n+1)  27(n+ 12  189(n+ 1)
9017
+m_...}

Formula (3.7) motivated us to establish Theorem 3.2.

Theorem 3.2 ForneN,

i 1 1 1 N 1 1 32
S \2 3k ) k2451 47 | 3(m+1)*  45(m+1)5

<V<%)—Vn(i)

. i 1 i 1 32 N 68 3.9)
) 2 24k1 " 3m+1)* 45(m+1)> 27(n+1)° ) '
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Proof From the double inequality (2.11), we have

ak) ak+1) 1 /1 (0 1\)y 1 /1 1
g1~ g S\ "R T\ e T s

b(k) b(k+1)

4l< 1 4k

) (3.9)

where a(x) and b(x) are given in (2.10). Adding inequalities (3.9) from k = n + 1 to k = oo,

we have
an+1) < 1 (1 1 1 /1 1 bn+1)
i< X (i 0)- X g (aeae) <
k=n+1 k=n+1
which can be written as (3.8). The proof of Theorem 3.2 is complete. O

Remark 3.2 Inequality (3.8) can be further refined by inserting additional terms on both
sides of the inequality. For example, for #n € N, we have

(e ¢]

Z 1 1 1 1 1 32 68 2080
Z_ - = _ : _
it 2 3k) k241 4n |3(m+1)* 45(m+1)°  27(n+1)°  189(m + 1)7

(2)-+(2)

/1 1 1
<Y (5-3 )=

k=n+1

1 { 1 32 68 2080 9017

B+ )F 45+ 1P 27(n+ 16 189(n+ 1) 162(n+ )8 } (3.10)

Remark 3.3 Following the same method as the one used in the proof of Theorem 3.2, we
can prove the following inequality:

o0

5 11 19 8137 5661
A 2k 3 | 20w 17 T 8n e )P 20(n+ 17 2(n+ 16 56(n+ 1)
1 1
<yl=) -yl =
\3)7"\3
> 1 1 1 9 81 37
S I - 3.11
< k;l 2k23k-1 " 3 { 2n+ 13 8+ 1) 20+ 15 2(n+ 1) } (3-11)

for n € N. We omit the proof.
In view of (1.14), (3.11), (3.8), and (3.10), we pose the following conjecture.
Conjecture 3.1 For any positive integer m > 2, we have

(—l)m 2N 611' . 1 oo m-1 ( 1)1
m" ]‘:Zm(n+1)j<(_1) {V<E) ( ) ZZ mk=-1kJ

kn+1/2}

aj
- 3.12
< m" jgn:(n+1)l ( )



Ma and Chen Journal of Inequalities and Applications (2018) 2018:147

with the coefficients 4; given in (2.3).

By using the Maple software, we find, as n — oo,

Page 10 of 15

1 1 1 _8 _ 2689
3 160
P (2) =y 2) ~ " v, (3.13)
(2) (2) 2"(n+1>2( n+ s (n+ 95500
1 1
r(3) -3
00 9 98
1 1 ( 1 2 3% )
~3 N =4 ,oe (3.14)
k— 23 140,843
k:n+12k23 Lo 3n(m+1)3\ 2 n+ ( 27,440)3
and
1 1 /1 1 1
/(5)7(5)~ 2 (G5 e
k=n+1
1 1 -3 ik }
P T (3.15)
4"(n +1)* { n+ % (m+ %g;gé)s

From a computational viewpoint, formulas (3.13), (3.14), and (3.15) improve formulas

(1.15), (3.6), and (3.7), respectively.

For any positive integer m > 2, we here provide a pair of recurrence relations for deter-

mining the constants py = p,(m) and ¢,

() ()
Y =)~ Vu\ =
m m
oo m-1
-1y 1
I I= e

k=n+1 j=2

m”(n +1)m ( Z (n+ qg)% 1)

= qy(m) (see Remark 3.4) such that

(3.16)

as n — 0o. This develops formulas (3.13), (3.14), and (3.15) to produce a general result

given by Theorem 3.3.

Theorem 3.3 For any positive integer m > 2, we have

oo m-1

() ()~ Z

k=n j=2

as n— oo, where Ay = Ao(m) and |1,

- 20-2k 20-2
he ==Y e ) ) €22,

k=1

and

m" lnm ( Z (l’l+ﬂ[)2£ 1) (317)

= w¢(m) are given by a pair of recurrence relations

(3.18)

20-1

Mg =—
k=1

-1
1 —
_- 5 202k Ces2
20— 1)k, {“ et ) bt 20— 2% +1 =

(3.19)
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with
N (=1)™+12p2 4 Ao (m+1)(m® + 8m + 3)
=dpy1 = ———————  an =— =
! ! (m+1)(m —1)2 H A 4m+2)(m-1)

Here a; are given in (2.3).

Proof In view of (3.13), (3.14), and (3.15), we let

oo m-1

()2 SRt e S )

k=n }2]

where A, and u, are real numbers to be determined. This can be written as

b (1) () £E S

m k=n j=2
o0 -2j+1
Iy Wi\ Y
Nam+ZnT,]_1<l+ ;’) . (3.20)
j=1

Direct computation yields

oo —-2j+1 e}

)»1 Mj / )\,/‘
E (1 + —) = E o
Jj=

~2j+ 1\
k nk
. k
1) k+2j =2\ 1
k nk

oo j-1 .
B jok—1 e (JHk-1\ 1
= Z )\k+l//Lk+1 ( 1)} <i—k— 1 n]»+k7

j=1 k=0

n%

which can be written as

Sa(h) -2

j=1 =

L2
!Z}\ w2 =1y (’ 2k+1)}1. (3.21)

Substituting (3.21) into (3.20) we have

e () (1) 530

m
n j=2

2] .
Nam+2{2xk 1 - lyl(,'-]zki 1>}$ (322)

On the other hand, it follows from (3.1) that

n-1,_m 1 N -1y 1 Qs
m"n y(;) yn1< ) ZZ/ — 57 Z . (3.23)

k=n j=2
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Equating coefficients of the term #7/ on the right-hand sides of (3.22) and (3.23), we

obtain

|_j+2

B2 .
i—2k+1 i J-1 )
Ay = Y Mty (=1) (: ) jeN. (3.24)
pa -2k+1

Setting j = 2¢ — 1 and j = 2¢ in (3.24), respectively, yields

V4

2 -2

Amine1 = Y Mgty < ) (3.25)
£ 2 — 2k

and

l+1
20-1
Gmsne == Y it (2@ — 2k + 1)
k=1

V4
20 -1 2 -1
R P !
; el 20 -2k +1)  ote g
L
2 -1
_ N 202k ) 3.26
; el 20— 2%k + 1 (8:26)

For £ = 1, from (3.25) and (3.26) we obtain

N (=1)"*12m? d Ay (M + 1)(m?* + 8m + 3)
-a -— <  an =— = s
L= e = D — 12 M= a(m +2)(m—-1)
and for £ > 2 we have
-1
20 -2
_ 202k
i1 = ;kkuk <2 . 2k> + e
and
-1
20 -1
- _ A 20-2k+1 _ ZE — 1A .
Am+20 ; kM 20— 2%+ 1 ( YAelle

We then obtain the recurrence relations (3.18) and (3.19). The proof of Theorem 3.3 is
complete. O

Here we give explicit numerical values of some first terms of A, and . by using formulas
(3.18) and (3.19). This shows how easily we can determine the constants a; and by in (3.17).

(_1)m+12m2
(m+1)(m—-1)¥’

iz (m+1)(m* + 8m + 3)
M Am+2)(m-1)

)"1 =am+1 =

M1 =
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A2 = @iz — MUT
()" (m + 1)(m® + 12m* + 51m + 8)
- 6(m —1)*(m + 3)
(=1 12m2 [ (m+ 1)(m?® + 8m + 3)\*
C (m+1)(m—1)? < 4(m +2)(m — 1) )

2(m + 1)(m° + 7m* + 58m> + 266m> + 485m + 47)
24(m — 1)*(m + 3)(m + 2)?

— (_1)m+1 m

’

3
Apia + ALY
I'LZ =

3As
(=1)" 12 (m® +25m° +216m* +866m3 +1241m> +501m+30) s
_ 24(m—1)5(m+4) 1Ky
3As

= ((m + 3)(m® + 34m® + 450m’ + 3634m° + 17,584m" + 48,642m" + 71,302m°
+50,926m° + 14,151m + 636))/(12(m + 2)(m + 4) (m° + 7m* + 58m” + 266m*

+485m + 47) (m* - 1)).

Remark 3.4 The constants p, and g, in (3.16) are given by
pei=ie and qp:=1+ .

Setting m = 2,3, and 4 in (3.16), respectively, yields (3.13), (3.14), and (3.15).
Noting that In % = y(-1) holds, Theorem 3.4 presents the asymptotic expansion for In %.

Theorem 3.4 As n — 0o, we have
Y(=1) = yu(=1) ~ (-1)"C(n + 1), (3.27)

where C(x) is given in (2.14). Namely,

y(=1) = vu(-1)
~(=1)" 1 1 1 1 s
— {4(n+1)2+12(}’l+1)3_8(n+1)4_10(}/1+1)5+.”}' )
Proof Write (2.13) as
(1 g) et ofgi) 3:29)
where
N
o ’ZZ: 9_; (3.30)

with the coefficients ¢; given by the recurrence relation (2.15).
From (3.29), we have

BT LV et 1k (-1k?
(-1 7)) = e - otk + D+ O T ) 63D
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Adding (3.31) from k = n + 1 to k = oo, we have

P -1 = Y <—1)“(% - ln<1 : %))

k=n+1
. 1
=(-1)"Cy(n+1)+ 0O m ) (3.32)
which can be written as (3.27). The proof of Theorem 3.4 is complete. O

Remark 3.5 We see from (3.28) that the alternating Euler constant In % has the following
expansion:

4 &Ko aafl  k+1
lnn_ Z(—l) <k—ln k)

+ (—1)”{ ! ! L ! o } (3.33)

An+1)2 12417 8P 100z 1P

4 Conclusions

In this paper, we give asymptotic expansions related to the generalized Somos quadratic
recurrence constant (Theorems 3.1 and 3.3). We present the inequalities for y(%) - yn(i)
and y(%) - y,,(%) (see (3.8), (3.10), and (3.11)). The expansion of the alternating Euler con-
stant ln% is also obtained (see (3.33)).
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