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1 Introduction
Somos’ quadratic recurrence constant is defined (see [1–3]) by

σ =

√
1
√

2
√

3 · · · =
∞∏

n=1

n1/2n
=

∞∏
k=1

(
1 +

1
k

)1/2k

= exp

{ ∞∑
k=1

ln k
2k

}

= 1.66168794 . . . (1.1)

or

σ = exp

{
–

∫ 1

0

1 – x
(2 – x) ln x

dx
}

= exp

{
–

∫ 1

0

∫ 1

0

x
(2 – xy) ln(xy)

dx dy
}

. (1.2)

The constant σ arises in the study of the asymptotic behavior of the sequence

g0 = 1, gn = ng2
n–1, n ∈N := {1, 2, 3, . . .}, (1.3)

with the first few terms

g0 = 1, g1 = 1, g2 = 2, g3 = 12, g4 = 576, g5 = 1,658,880, . . . .

This sequence behaves as follows (see [4, p. 446] and [3, 5]):

gn ∼ σ 2n

n

(
1 +

2
n

–
1
n2 +

4
n3 –

21
n4 +

138
n5 –

1091
n6 +

10,088
n7 –

106,918
n8

+
1,279,220

n9 –
17,070,418

n10 +
251,560,472

n11 –
4,059,954,946

n12 + · · ·
)–1

. (1.4)
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The constant σ appears in important problems from pure and applied analysis, and it is
the motivation for a large number of research papers (see, for example, [1, 6–16]).

Sondow and Hadjicostas [15] introduced and studied the generalized-Euler-constant
function γ (z), defined by

γ (z) =
∞∑

n=1

zn–1
(

1
n

– ln
n + 1

n

)
, (1.5)

where the series converges when |z| ≤ 1. Pilehrood and Pilehrood [13] considered the
function zγ (z) (|z| ≤ 1). The function γ (z) generalizes both Euler’s constant γ (1) and the
alternating Euler constant ln 4

π
= γ (–1) [17, 18].

Sondow and Hadjicostas [15] defined the generalized Somos constant

σt =
t

√
1

t
√

2
t

√
3 t√4 · · · =

∞∏
n=1

n1/tn
=

(
t

t – 1

)1/(t–1)

exp

{
–

1
t(t – 1)

γ

(
1
t

)}
, t > 1. (1.6)

Coffey [19] gave the integral and series representations for lnσt :

lnσt =
∫ ∞

0

(
e–x

t – 1
+

1
1 – tex

)
dx
x

(1.7)

and

lnσt =
1

t – 1

∞∑
k=1

(–1)k–1

k
Lik

(
1
t

)
=

1
t – 1

∞∑
k=1

1
k

[
t Lik

(
1
t

)
– 1

]
(1.8)

in terms of the polylogarithm function.
It is known (see [15]) that

γ

(
1
2

)
= 2 ln

2
σ

, equivalently, σ = 2 exp

{
–

1
2
γ

(
1
2

)}
. (1.9)

Thus, formula (1.5) is closely related to Somos’ quadratic recurrence constant σ .
Define

γn(z) =
n∑

k=1

zk–1
(

1
k

– ln
k + 1

k

)
, |z| ≤ 1.

Mortici [11] proved that for n ∈N,

270(n + 1)
2n(270n3 + 1530n2 + 1065n + 6293)

< γ

(
1
2

)
– γn

(
1
2

)
<

18
2n(18n2 + 84n – 13)

(1.10)

and

∞∑
k=n+1

1
2k2 · 3k–1 –

22,400(n + 1)
3n(44,800n4 + 280,000n3 + 435,120n2 + 744,380n – 2,477,677)

< γ

(
1
3

)
– γn

(
1
3

)
<

∞∑
k=n+1

1
2k2 · 3k–1 –

160
3n(320n3 + 1680n2 + 1428n + 3889)

. (1.11)



Ma and Chen Journal of Inequalities and Applications  (2018) 2018:147 Page 3 of 15

Lu and Song [10] improved Mortici’s results and obtained the inequalities:

690n2 + 3524n + 145
6(2n)(n + 1)2(115n2 + 894n + 779)

< γ

(
1
2

)
– γn

(
1
2

)

<
48n + 127

3(2n)(16n + 85)(n + 1)2 (1.12)

and

∞∑
k=n+1

1
2k2 · 3k–1 –

987840n2 + 8444340n + 10946779
40(3n)(n + 1)2(49392n3 + 582741n2 + 1769516n + 1236167)

< γ

(
1
3

)
– γn

(
1
3

)
<

∞∑
k=n+1

1
2k2 · 3k–1 –

1620n2 + 6995n + 1847
40(3n)(81n2 + 532n + 451)(n + 1)3 (1.13)

for n ∈N.
You and Chen [16] further improved inequalities (1.10)–(1.13). Recently, Chen and Han

[7] gave new bounds for γ (1/2) – γn(1/2):

1
2n

(
1

(n + 1)2 –
8

3(n + 1)3 +
23

2(n + 1)4 –
332

5(n + 1)5 +
479

(n + 1)6 –
29,024

7(n + 1)7

)

< γ

(
1
2

)
– γn

(
1
2

)

<
1
2n

(
1

(n + 1)2 –
8

3(n + 1)3 +
23

2(n + 1)4 –
332

5(n + 1)5 +
479

(n + 1)6

)
(1.14)

for n ∈N, and presented the following asymptotic expansion:

γ

(
1
2

)
– γn

(
1
2

)

∼ 1
2n(n + 1)2

{
1 –

8
3(n + 1)

+
23

2(n + 1)2 –
332

5(n + 1)3 +
479

(n + 1)4 – · · ·
}

(1.15)

as n → ∞. Moreover, these authors gave a formula for successively determining the coef-
ficients in (1.15).

Chen and Han [7] pointed out that the lower bound in (1.14) is for n ≥ 24 sharper than
the one in (1.12), and the upper bound in (1.14) is for n ≥ 18 sharper than the one in (1.12),

For any positive integer m ≥ 2, in this paper we give the asymptotic expansion of
γ (1/m) – γn(1/m) as n → ∞. Based on the result obtained, we establish the inequality
for γ (1/4) – γn(1/4). We also consider the asymptotic expansion for γ (–1) – γn(–1).

2 Lemmas
Lemma 2.1 As x → ∞,

1
x

– ln

(
1 +

1
x

)
–

m–1∑
j=2

(–1)j

j
1
xj ∼ A(x) –

1
m

A(x + 1), (2.1)
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where A(x) is defined by

A(x) =
∞∑

j=m

aj

xj (2.2)

with the coefficients aj given by the recurrence relation

aj =
(–1)j

m – 1

{
m
j

+
j–1∑

k=m

(–1)kak

(
j – 1
j – k

)}
, j ≥ m. (2.3)

Here, and throughout this paper, an empty sum is understood to be zero.

Proof Using the Maclaurin series of ln(1 + t),

ln(1 + t) =
∞∑
j=1

(–1)j–1

j
tj, –1 < t ≤ 1,

we obtain

1
x

– ln

(
1 +

1
x

)
–

m–1∑
j=2

(–1)j

j
1
xj =

∞∑
j=m

(–1)j

j
1
xj . (2.4)

In view of (2.4), we can let

1
x

– ln

(
1 +

1
x

)
–

m–1∑
j=2

(–1)j

j
1
xj ∼

∞∑
j=m

aj

xj –
1
m

∞∑
j=m

aj

(x + 1)j , (2.5)

where aj are real numbers to be determined.
Write (2.5) as

1
x

– ln

(
1 +

1
x

)
–

m–1∑
j=2

(–1)j

j
1
xj ∼

∞∑
j=m

aj

xj –
1
m

∞∑
j=m

aj

xj

(
1 +

1
x

)–j

. (2.6)

Direct computation yields

∞∑
j=m

aj

xj

(
1 +

1
x

)–j

=
∞∑

j=m

aj

xj

∞∑
k=0

(
–j
k

)
1
xk

=
∞∑

j=m

aj

xj

∞∑
k=0

(–1)k
(

k + j – 1
k

)
1
xk

=
∞∑

j=m

j∑
k=m

ak(–1)j–k
(

j – 1
j – k

)
1
xj . (2.7)

It follows from (2.4), (2.6), and (2.7) that

∞∑
j=m

(–1)j

j
1
xj ∼

∞∑
j=m

{
aj –

1
m

j∑
k=m

ak(–1)j–k
(

j – 1
j – k

)}
1
xj . (2.8)
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Equating coefficients of the term x–j on both sides of (2.8) yields

(–1)j

j
= aj –

1
m

j∑
k=m

ak(–1)j–k
(

j – 1
j – k

)
, j ≥ m. (2.9)

For j = m, we obtain am = (–1)m

m–1 , and for j ≥ m + 1, we have

(–1)j

j
= aj –

1
m

[ j–1∑
k=m

ak(–1)j–k
(

j – 1
j – k

)
+ aj

]
, j ≥ m + 1.

We then obtain the recursive formula

am =
(–1)m

m – 1
, aj =

(–1)jm
(m – 1)j

+
1

m – 1

j–1∑
k=m

ak(–1)j–k
(

j – 1
j – k

)
, j ≥ m + 1,

which can be written as (2.3). The proof of Lemma 2.1 is complete. �

Lemma 2.2 Let

a(x) =
1

3x4 –
32

45x5 and b(x) =
1

3x4 –
32

45x5 +
68

27x6 . (2.10)

Then, for x ≥ 1,

a(x) –
1
4

a(x + 1) <
1
x

– ln

(
1 +

1
x

)
–

1
2x2 +

1
3x3 < b(x) –

1
4

b(x + 1). (2.11)

Proof It is well known that for –1 < t ≤ 1 and m ∈ N,

2m∑
j=1

(–1)j–1

j
tj < ln(1 + t) <

2m–1∑
j=1

(–1)j–1

j
tj,

which implies that for x ≥ 1 and m ≥ 2,

2m+1∑
j=4

(–1)j

jxj <
1
x

– ln

(
1 +

1
x

)
–

1
2x2 +

1
3x3 <

2m∑
j=4

(–1)j

jxj . (2.12)

Using (2.12), we find that

1
x

– ln

(
1 +

1
x

)
–

1
2x2 +

1
3x3 – a(x) +

1
4

a(x + 1)

>
1

4x4 –
1

5x5 – a(x) +
1
4

a(x + 1) =
310x4 + 770x3 + 845x2 + 445x + 92

180x5(x + 1)5 > 0

and

1
x

– ln

(
1 +

1
x

)
–

1
2x2 +

1
3x3 – b(x) +

1
4

b(x + 1)
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<
1

4x4 –
1

5x5 +
1

6x6 – b(x) +
1
4

b(x + 1)

= –
4380x5 + 14,205x4 + 21,530x3 + 17,439x2 + 7344x + 1270

540x6(x + 1)6 < 0.

The proof of Lemma 2.2 is complete. �

Remark 2.1 Using the methods from [20–22] it is possible to get estimations (based on
the power series expansions) of the logarithm function that can be used, for example, in
the analysis of parameterized Euler-constant function, which will be an item for further
work.

Lemma 2.3 As x → ∞, we have

1
x

– ln

(
1 +

1
x

)
∼ C(x) + C(x + 1), (2.13)

where C(x) is defined by

C(x) =
∞∑
j=2

cj

xj (2.14)

with the coefficients cj given by the recurrence relation

c2 =
1
4

, cj =
(–1)j

2j
–

1
2

j–1∑
k=2

ck(–1)j–k
(

j – 1
j – k

)
, j ≥ 3. (2.15)

Proof In view of (2.4), we can let

1
x

– ln

(
1 +

1
x

)
∼

∞∑
j=2

cj

xj +
∞∑
j=2

cj

(x + 1)j , (2.16)

where cj are real numbers to be determined. Write (2.16) as

1
x

– ln

(
1 +

1
x

)
∼

∞∑
j=2

cj

xj +
∞∑
j=2

cj

xj

(
1 +

1
x

)–j

.

Noting that (2.7) holds, we have

∞∑
j=2

(–1)j

j
1
xj ∼

∞∑
j=2

{
cj +

j∑
k=2

ck(–1)j–k
(

j – 1
j – k

)}
1
xj . (2.17)

Equating coefficients of the term x–j on both sides of (2.17) yields

(–1)j

j
= cj +

j∑
k=2

ck(–1)j–k
(

j – 1
j – k

)
, j ≥ 2.
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For j = 2, we obtain c2 = 1/4, and for j ≥ 3 we have

(–1)j

j
= 2cj +

j–1∑
k=2

ck(–1)j–k
(

j – 1
j – k

)
, j ≥ 3.

We then obtain the recursive formula (2.15). The proof of Lemma 2.3 is complete. �

The first few coefficients cj are

c2 =
1
4

, c3 =
1

12
, c4 = –

1
8

, c5 = –
1

10
, c6 =

1
4

,

c7 =
17
56

, c8 = –
17
16

, c9 = –
31
18

.

3 Main results
For any positive integer m ≥ 2, Theorem 3.1 gives the asymptotic expansion of γ (1/m) –
γn(1/m) as n → ∞.

Theorem 3.1 For any positive integer m ≥ 2, we have

γ

(
1
m

)
– γn

(
1
m

)
∼

∞∑
k=n+1

m–1∑
j=2

(–1)j

j · mk–1
1
kj +

A(n + 1)
mn , n → ∞, (3.1)

where A(x) is given in (2.2). Namely,

γ

(
1
m

)
– γn

(
1
m

)

∼
∞∑

k=n+1

m–1∑
j=2

(–1)j

j · mk–1
1
kj

+
(–1)m

mn

{
1

(m – 1)(n + 1)m –
2m2

(m + 1)(m – 1)2(n + 1)m+1

+
m2(m2 + 8m + 3)

2(m + 2)(m – 1)3(n + 1)m+2 –
(m + 1)(m3 + 12m2 + 51m + 8)m2

6(m – 1)4(m + 3)(n + 1)m+3

+
m2(m6 + 25m5 + 216m4 + 866m3 + 1241m2 + 501m + 30)

24(m – 1)5(m + 4)(n + 1)m+4 – · · ·
}

. (3.2)

Proof Write (2.1) as

1
k

– ln

(
1 +

1
k

)
–

m–1∑
j=2

(–1)j

j
1
kj = AN (k) –

1
m

AN (k + 1) + O
(

1
kN+1

)
, (3.3)

where

AN (k) =
N∑

j=m

aj

kj (3.4)
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with the coefficients aj given by the recurrence relation (2.3). From (3.3), we have

1
mk–1

(
1
k

– ln

(
1 +

1
k

))
–

1
mk–1

m–1∑
j=2

(–1)j

j
1
kj

=
AN (k)
mk–1 –

AN (k + 1)
mk + O

(
1

mk–1kN+1

)
. (3.5)

Adding (3.5) from k = n + 1 to k = ∞, we have

γ

(
1
m

)
– γn

(
1
m

)
–

∞∑
k=n+1

m–1∑
j=2

(–1)j

j · mk–1
1
kj =

1
mn

{
AN (n + 1) + O

(
1

(n + 1)N+1

)}
,

which can be written as (3.1). The proof of Theorem 3.1 is complete. �

Remark 3.1 For m = 2 in (3.2), we obtain (1.15). For m = 3 in (3.2), we find

γ

(
1
3

)
– γn

(
1
3

)

∼
∞∑

k=n+1

1
2k23k–1

+
1

3n(n + 1)3

{
–

1
2

+
9

8(n + 1)
–

81
20(n + 1)2 +

37
2(n + 1)3 –

5661
56(n + 1)4 + · · ·

}
. (3.6)

For m = 4 in (3.2), we find

γ

(
1
4

)
– γn

(
1
4

)

∼
∞∑

k=n+1

(
1
2

–
1

3k

)
1

k24k–1

+
1

4n(n + 1)4

{
1
3

–
32

45(n + 1)
+

68
27(n + 1)2 –

2080
189(n + 1)3

+
9017

162(n + 1)4 – · · ·
}

. (3.7)

Formula (3.7) motivated us to establish Theorem 3.2.

Theorem 3.2 For n ∈ N,

∞∑
k=n+1

(
1
2

–
1

3k

)
1

k24k–1 +
1
4n

{
1

3(n + 1)4 –
32

45(n + 1)5

}

< γ

(
1
4

)
– γn

(
1
4

)

<
∞∑

k=n+1

(
1
2

–
1

3k

)
1

k24k–1 +
1
4n

{
1

3(n + 1)4 –
32

45(n + 1)5 +
68

27(n + 1)6

}
. (3.8)
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Proof From the double inequality (2.11), we have

a(k)
4k–1 –

a(k + 1)
4k <

1
4k–1

(
1
k

– ln

(
1 +

1
k

))
–

1
4k–1

(
1

2k2 –
1

3k3

)

<
b(k)
4k–1 –

b(k + 1)
4k , (3.9)

where a(x) and b(x) are given in (2.10). Adding inequalities (3.9) from k = n + 1 to k = ∞,
we have

a(n + 1)
4n <

∞∑
k=n+1

1
4k–1

(
1
k

– ln

(
1 +

1
k

))
–

∞∑
k=n+1

1
4k–1

(
1

2k2 –
1

3k3

)
<

b(n + 1)
4n ,

which can be written as (3.8). The proof of Theorem 3.2 is complete. �

Remark 3.2 Inequality (3.8) can be further refined by inserting additional terms on both
sides of the inequality. For example, for n ∈N, we have

∞∑
k=n+1

(
1
2

–
1

3k

)
1

k24k–1 +
1
4n

{
1

3(n + 1)4 –
32

45(n + 1)5 +
68

27(n + 1)6 –
2080

189(n + 1)7

}

< γ

(
1
4

)
– γn

(
1
4

)

<
∞∑

k=n+1

(
1
2

–
1

3k

)
1

k24k–1

+
1
4n

{
1

3(n + 1)4 –
32

45(n + 1)5 +
68

27(n + 1)6 –
2080

189(n + 1)7 +
9017

162(n + 1)8

}
. (3.10)

Remark 3.3 Following the same method as the one used in the proof of Theorem 3.2, we
can prove the following inequality:

∞∑
k=n+1

1
2k23k–1 +

1
3n

{
–

1
2(n + 1)3 +

9
8(n + 1)4 –

81
20(n + 1)5 +

37
2(n + 1)6 –

5661
56(n + 1)7

}

< γ

(
1
3

)
– γn

(
1
3

)

<
∞∑

k=n+1

1
2k23k–1 +

1
3n

{
–

1
2(n + 1)3 +

9
8(n + 1)4 –

81
20(n + 1)5 +

37
2(n + 1)6

}
(3.11)

for n ∈N. We omit the proof.

In view of (1.14), (3.11), (3.8), and (3.10), we pose the following conjecture.

Conjecture 3.1 For any positive integer m ≥ 2, we have

(–1)m

mn

2N∑
j=m

aj

(n + 1)j < (–1)m

{
γ

(
1
m

)
– γn

(
1
m

)
–

∞∑
k=n+1

m–1∑
j=2

(–1)j

j · mk–1kj

}

<
(–1)m

mn

2N+1∑
j=m

aj

(n + 1)j , (3.12)



Ma and Chen Journal of Inequalities and Applications  (2018) 2018:147 Page 10 of 15

with the coefficients aj given in (2.3).

By using the Maple software, we find, as n → ∞,

γ

(
1
2

)
– γn

(
1
2

)
∼ 1

2n(n + 1)2

(
1 +

– 8
3

n + 85
16

+
– 2689

160

(n + 807,797
129,072 )3

+ · · ·
)

, (3.13)

γ

(
1
3

)
– γn

(
1
3

)

∼
∞∑

k=n+1

1
2k23k–1 +

1
3n(n + 1)3

(
–

1
2

+
9
8

n + 23
5

+
98
25

(n + 140,843
27,440 )3

+ · · ·
)

(3.14)

and

γ

(
1
4

)
– γn

(
1
4

)
∼

∞∑
k=n+1

(
1
2

–
1

3k

)
1

k24k–1

+
1

4n(n + 1)4

{
1
3

+
– 32

45

n + 109
24

+
– 2365

1134

(n + 825,361
170,280 )3

+ · · ·
}

. (3.15)

From a computational viewpoint, formulas (3.13), (3.14), and (3.15) improve formulas
(1.15), (3.6), and (3.7), respectively.

For any positive integer m ≥ 2, we here provide a pair of recurrence relations for deter-
mining the constants p� ≡ p�(m) and q� ≡ q�(m) (see Remark 3.4) such that

γ

(
1
m

)
– γn

(
1
m

)

∼
∞∑

k=n+1

m–1∑
j=2

(–1)j

j · mk–1
1
kj +

1
mn(n + 1)m

(
am +

∞∑
�=1

p�

(n + q�)2�–1

)
(3.16)

as n → ∞. This develops formulas (3.13), (3.14), and (3.15) to produce a general result
given by Theorem 3.3.

Theorem 3.3 For any positive integer m ≥ 2, we have

γ

(
1
m

)
– γn–1

(
1
m

)
∼

∞∑
k=n

m–1∑
j=2

(–1)j

j · mk–1
1
kj +

1
mn–1nm

(
am +

∞∑
�=1

λ�

(n + μ�)2�–1

)
(3.17)

as n → ∞, where λ� ≡ λ�(m) and μ� ≡ μ�(m) are given by a pair of recurrence relations

λ� = am+2�–1 –
�–1∑
k=1

λkμ
2�–2k
k

(
2� – 2

2� – 2k

)
, � ≥ 2, (3.18)

and

μ� = –
1

(2� – 1)λ�

{
am+2� +

�–1∑
k=1

λkμ
2�–2k+1
k

(
2� – 1

2� – 2k + 1

)}
, � ≥ 2, (3.19)
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with

λ1 = am+1 =
(–1)m+12m2

(m + 1)(m – 1)2 and μ1 = –
am+2

λ1
=

(m + 1)(m2 + 8m + 3)
4(m + 2)(m – 1)

.

Here aj are given in (2.3).

Proof In view of (3.13), (3.14), and (3.15), we let

γ

(
1
m

)
– γn–1

(
1
m

)
∼

∞∑
k=n

m–1∑
j=2

(–1)j

j · mk–1
1
kj +

1
mn–1nm

(
am +

∞∑
�=1

λ�

(n + μ�)2�–1

)
,

where λ� and μ� are real numbers to be determined. This can be written as

mn–1nm

{
γ

(
1
m

)
– γn–1

(
1
m

)
–

∞∑
k=n

m–1∑
j=2

(–1)j

j · mk–1
1
kj

}

∼ am +
∞∑
j=1

λj

n2j–1

(
1 +

μj

n

)–2j+1

. (3.20)

Direct computation yields

∞∑
j=1

λj

n2j–1

(
1 +

μj

n

)–2j+1

=
∞∑
j=1

λj

n2j–1

∞∑
k=0

(
–2j + 1

k

)
μk

j

nk

=
∞∑
j=1

λj

n2j–1

∞∑
k=0

(–1)k
(

k + 2j – 2
k

)
μk

j

nk

=
∞∑
j=1

j–1∑
k=0

λk+1μ
j–k–1
k+1 (–1)j–k–1

(
j + k – 1
j – k – 1

)
1

nj+k ,

which can be written as

∞∑
j=1

λj

n2j–1

(
1 +

μj

n

)–2j+1

∼
∞∑
j=1

{
 j+2
2 �∑

k=1

λkμ
j–2k+1
k (–1)j–1

(
j – 1

j – 2k + 1

)}
1
nj . (3.21)

Substituting (3.21) into (3.20) we have

mn–1nm

{
γ

(
1
m

)
– γn–1

(
1
m

)
–

∞∑
k=n

m–1∑
j=2

(–1)j

j · mk–1
1
kj

}

∼ am +
∞∑
j=1

{
 j+2
2 �∑

k=1

λkμ
j–2k+1
k (–1)j–1

(
j – 1

j – 2k + 1

)}
1
nj . (3.22)

On the other hand, it follows from (3.1) that

mn–1nm

{
γ

(
1
m

)
– γn–1

(
1
m

)
–

∞∑
k=n

m–1∑
j=2

(–1)j

j · mk–1
1
kj

}
∼

∞∑
j=0

am+j

nj . (3.23)
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Equating coefficients of the term n–j on the right-hand sides of (3.22) and (3.23), we
obtain

am+j =

 j+2

2 �∑
k=1

λkμ
j–2k+1
k (–1)j–1

(
j – 1

j – 2k + 1

)
, j ∈N. (3.24)

Setting j = 2� – 1 and j = 2� in (3.24), respectively, yields

am+2�–1 =
�∑

k=1

λkμ
2�–2k
k

(
2� – 2

2� – 2k

)
(3.25)

and

am+2� = –
�+1∑
k=1

λkμ
2�–2k+1
k

(
2� – 1

2� – 2k + 1

)

= –
�∑

k=1

λkμ
2�–2k+1
k

(
2� – 1

2� – 2k + 1

)
– λ�+1μ

–1
�+1

(
2� – 1

–1

)

= –
�∑

k=1

λkμ
2�–2k+1
k

(
2� – 1

2� – 2k + 1

)
. (3.26)

For � = 1, from (3.25) and (3.26) we obtain

λ1 = am+1 =
(–1)m+12m2

(m + 1)(m – 1)2 and μ1 = –
am+2

λ1
=

(m + 1)(m2 + 8m + 3)
4(m + 2)(m – 1)

,

and for � ≥ 2 we have

am+2�–1 =
�–1∑
k=1

λkμ
2�–2k
k

(
2� – 2

2� – 2k

)
+ λ�

and

am+2� = –
�–1∑
k=1

λkμ
2�–2k+1
k

(
2� – 1

2� – 2k + 1

)
– (2� – 1)λ�μ�.

We then obtain the recurrence relations (3.18) and (3.19). The proof of Theorem 3.3 is
complete. �

Here we give explicit numerical values of some first terms of λ� and μ� by using formulas
(3.18) and (3.19). This shows how easily we can determine the constants a� and b� in (3.17).

λ1 = am+1 =
(–1)m+12m2

(m + 1)(m – 1)2 ,

μ1 = –
am+2

λ1
=

(m + 1)(m2 + 8m + 3)
4(m + 2)(m – 1)

,
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λ2 = am+3 – λ1μ
2
1

=
(–1)m+1m2(m + 1)(m3 + 12m2 + 51m + 8)

6(m – 1)4(m + 3)

–
(–1)m+12m2

(m + 1)(m – 1)2

(
(m + 1)(m2 + 8m + 3)

4(m + 2)(m – 1)

)2

= (–1)m+1 m2(m + 1)(m5 + 7m4 + 58m3 + 266m2 + 485m + 47)
24(m – 1)4(m + 3)(m + 2)2 ,

μ2 = –
am+4 + λ1μ

3
1

3λ2

= –
(–1)mm2(m6+25m5+216m4+866m3+1241m2+501m+30)

24(m–1)5(m+4) + λ1μ
3
1

3λ2

=
(
(m + 3)

(
m9 + 34m8 + 450m7 + 3634m6 + 17,584m5 + 48,642m4 + 71,302m3

+ 50,926m2 + 14,151m + 636
))

/
(
12(m + 2)(m + 4)

(
m5 + 7m4 + 58m3 + 266m2

+ 485m + 47
)(

m2 – 1
))

.

Remark 3.4 The constants p� and q� in (3.16) are given by

p� := λ� and q� := 1 + μ�.

Setting m = 2, 3, and 4 in (3.16), respectively, yields (3.13), (3.14), and (3.15).
Noting that ln 4

π
= γ (–1) holds, Theorem 3.4 presents the asymptotic expansion for ln 4

π
.

Theorem 3.4 As n → ∞, we have

γ (–1) – γn(–1) ∼ (–1)nC(n + 1), (3.27)

where C(x) is given in (2.14). Namely,

γ (–1) – γn(–1)

∼ (–1)n
{

1
4(n + 1)2 +

1
12(n + 1)3 –

1
8(n + 1)4 –

1
10(n + 1)5 + · · ·

}
. (3.28)

Proof Write (2.13) as

1
k

– ln

(
1 +

1
k

)
= CN (k) + CN (k + 1) + O

(
1

kN+1

)
, (3.29)

where

CN (x) =
N∑

j=2

cj

xj (3.30)

with the coefficients cj given by the recurrence relation (2.15).
From (3.29), we have

(–1)k–1
(

1
k

– ln

(
1 +

1
k

))
= (–1)k–1CN (k) – (–1)kCN (k + 1) + O

(
(–1)k–1

kN+1

)
. (3.31)
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Adding (3.31) from k = n + 1 to k = ∞, we have

γ (–1) – γn(–1) =
∞∑

k=n+1

(–1)k–1
(

1
k

– ln

(
1 +

1
k

))

= (–1)nCN (n + 1) + O
(

1
(n + 1)N+1

)
, (3.32)

which can be written as (3.27). The proof of Theorem 3.4 is complete. �

Remark 3.5 We see from (3.28) that the alternating Euler constant ln 4
π

has the following
expansion:

ln
4
π

∼
n∑

k=1

(–1)k–1
(

1
k

– ln
k + 1

k

)

+ (–1)n
{

1
4(n + 1)2 +

1
12(n + 1)3 –

1
8(n + 1)4 –

1
10(n + 1)5 + · · ·

}
. (3.33)

4 Conclusions
In this paper, we give asymptotic expansions related to the generalized Somos quadratic
recurrence constant (Theorems 3.1 and 3.3). We present the inequalities for γ ( 1

4 ) – γn( 1
4 )

and γ ( 1
3 ) – γn( 1

3 ) (see (3.8), (3.10), and (3.11)). The expansion of the alternating Euler con-
stant ln 4

π
is also obtained (see (3.33)).
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