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Abstract
Saddle-point problems arise in many areas of scientific computing and engineering
applications. Research on the efficient numerical methods of these problems has
become a hot topic in recent years. In this paper, we propose some generalizations of
the new SOR-like method based on the original method. Convergence of these
methods is discussed under suitable restrictions on iteration parameters. Numerical
experiments are given to show that these methods are effective and efficient.
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1 Introduction
Consider the solution of the following symmetric saddle-point linear system with block
2-by-2 structure:

Ax ≡
(

A B
BT 0

)(
y
z

)
=

(
p
q

)
≡ b, (1.1)

where A ∈ R
m×m is a symmetric positive definite matrix, B ∈ R

m×n is a matrix of full col-
umn rank (m � n), BT ∈ R

n×m is the transpose of the matrix B, and p ∈ R
m and q ∈ R

n

are given vectors. Under such conditions, system (1.1) has a unique solution [8]. Prob-
lems of this type arise in many areas of scientific computing and engineering applications,
such as computational fluid dynamics, constrained and weighted least squares estimation,
constrained optimization, image reconstruction, computer graphics, and so on. For back-
ground and a comprehensive survey, we refer to [3, 5, 8, 12].

Since the matrices A and B are usually very large and sparse in applications, the direct
methods are not suitable to be applied to solve system (1.1). So, more attention has been
paid on the iteration methods for solving problem (1.1). Many iteration methods were
found for system (1.1): the Uzawa-type methods [1], matrix splitting methods, Krylov sub-
space methods, and so on. See [2, 3, 5, 8, 10, 11, 14–17, 19–23, 25–28] for more details. One
of the best iteration methods is SOR-like method, introduced by Golub et al. [13], which
includes the Uzawa-type methods as special cases. Later, many researchers generalized or
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modified the SOR-like method and studied their convergence properties for solving prob-
lem (1.1) from different points of view in recent years. For instance, Bai et al. [5] proposed
a generalized SOR-like method, which has two parameters and is more effective than the
SOR-like method; Shao et al. [19] extended this method and proposed a modified SOR-
like method, and Guo et al. [15] presented another modified SOR-like method; Zheng et
al. [27] also discussed a new SOR-like method based on a different splitting of the coef-
ficient matrix; Darvishi and Hessari [10], Wu et al. [23], and Najafi et al. [18] considered
the SSOR method. We refer to [2–28] and the references therein.

Recently, Guan et al. [14] came up with a new SOR-like method (NSOR-like) for solving
the following equivalent system (1.2) of problem (1.1):

(
A B

–BT 0

)(
y
z

)
=

(
p

–q

)
. (1.2)

The coefficient matrix can be split as follows:

A =

(
A B

–BT 0

)
= D – L – U ,

where

D =

(
1
α

A 0
0 Q

)
, L =

(
0 0

BT βQ

)
, U =

(
( 1
α

– 1)A –B
0 (1 – β)Q

)
(1.3)

with a symmetric positive definite matrix Q ∈ R
n×n and parameters α > 0, β ≥ 0, and

0 < ω < 2. The following iteration scheme was introduced for solving (1.2):

(D – ωL)

(
yk+1

zk+1

)
=

[
(1 – ω)D + ωU

](
yk

zk

)
+ ω

(
p

–q

)
,

or, equivalently,

(
yk+1

zk+1

)
= M

(
yk

zk

)
+ N

(
p

–q

)
,

where

M = (D – ωL)–1[(1 – ω)D + ωU
]

=

(
1
α

A 0
–ωBT (1 – ωβ)Q

)–1 (
( 1
α

– ω)A –ωB
0 (1 – ωβ)Q

)
, (1.4)

and N = ω(D – ωL)–1.
In this paper, we generalize this method to several variants for solving problem (1.1) or

(1.2). These methods include some of the above-mentioned methods as particular cases.
We discuss the convergence of these methods under suitable restrictions on iteration pa-
rameters, which are very easy to use in computations. Numerical experiments are given
to show that these methods are effective and efficient.
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The rest of the paper is organized as follows. In Sect. 2, we propose several generaliza-
tions based on the new SOR-like method for solving problem (1.1) or (1.2). In Sect. 3, we
give the convergence analysis of these methods. We use some numerical examples to show
the effectiveness of them in Sect. 4. A concluding remark is drawn in Sect. 5.

2 Methods
In the section, we derive some generalizations for solving system (1.1) or (1.2) based on
the new SOR-like method introduced by Guan et al. [14].

2.1 The new SSOR-like method (NSSOR-like)
By combining the NSOR-like method and its backward version the NSSOR-like method
can be easily obtained for solving problem (1.2). The backward iteration scheme of the
NSOR-like method is as follows:

(D – ωU )

(
yk+1

zk+1

)
=

[
(1 – ω)D + ωL

](
yk

zk

)
+ ω

(
p

–q

)
,

or, equivalently,

(
yk+1

zk+1

)
= M1

(
yk

zk

)
+ N1

(
p

–q

)
,

where

M1 = (D – ωU )–1[(1 – ω)D + ωL
]

=

(
αω–ω+1

α
A ωB

0 (ωβ – ω + 1)Q

)–1 (
1–ω
α

A 0
ωBT (ωβ – ω + 1)Q

)
, (2.1)

and N1 = ω(D – ωU )–1. Then the NSSOR-like method can be written as

(
yk+1

zk+1

)
= T1

(
yk

zk

)
+ C1

(
p

–q

)
,

where T1 = M1M and C1 = M1N + N1.

The NSSOR-like method
Given two initial guesses y0 ∈R

m, z0 ∈R
n. For k = 0, 1, . . . , until yk and zk converge,

compute yk+1 and zk+1 from yk and zk by the following procedure:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk+1 = yk – αω(2–ω)
αω–ω+1 (A–1Bzk + yk – A–1p)

+ αω2(2–ω)
(1–βω)(αω–ω+1)(βω–ω+1) A–1BQ–1(q – BT yk)

+ α2ω3(2–ω)
(1–βω)(αω–ω+1)(βω–ω+1) A–1BQ–1BT (A–1Bzk + yk – A–1p),

zk+1 = zk + ω(2–ω)
(1–βω)(βω–ω+1) Q–1(BT yk – q)

– αω2(2–ω)
(1–βω)(βω–ω+1) Q–1BT (A–1Bzk + yk – A–1p),

where α > 0, β ≥ 0, ω > 0 are given parameters.
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2.2 The generalized NSOR-like method (GNSOR-like)
By introducing a diagonal matrix � = diag(ωIm, τ In), where Im, In, and further I are all
identity matrices, we can obtain a generalization of the NSOR-like method:

(
yk+1

zk+1

)
= (D – �L)–1((I – �)D + �U

)(
yk

zk

)
+ (D – �L)–1�

(
p

–q

)
.

More precisely, we have the following algorithmic description of the GNSOR-like
method.

The GNSOR-like method
Given two initial guesses y0 ∈R

m, z0 ∈R
n. For k = 0, 1, . . . , until yk and zk converge,

compute yk+1 and zk+1 from yk and zk by the following procedure:

{
yk+1 = (1 – αω)yk + αωA–1(p – Bzk),
zk+1 = zk + τ

1–βτ
Q–1(BT yk+1 – q),

where α > 0, β ≥ 0, ω > 0, τ > 0 are given parameters.

Remark This method, in spirit, is analogous to the GSOR method [5]. It uses a relaxation
matrix � for the NSOR-like method instead of a single relaxation parameter. Obviously,
when ω = τ , this method reduces to the NSOR-like method mentioned in the previous
section.

2.3 The generalized NSSOR-like method (GNSSOR-like)
Ordinarily, the GNSSOR-like method can also be derived by combining the symmetric
technique, as introduced in [25].

The GNSSOR-like method
Given initial guesses y0 ∈ R

m, z0 ∈ R
n. For k = 0, 1, . . . , until yk and zk converge,

compute yk+1 and zk+1 from yk and zk by the following procedure:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk+1 = yk – αω(2–ω)
αω–ω+1 (A–1Bzk + yk – A–1p)

+ αωτ (2–τ )
(1–βτ )(αω–ω+1)(βτ–τ+1) A–1BQ–1(q – BT yk)

+ α2ω2τ (2–τ )
(1–βτ )(αω–ω+1)(βτ–τ+1) A–1BQ–1BT (A–1Bzk + yk – A–1p),

zk+1 = zk + τ (2–τ )
(1–βτ )(βτ–τ+1) Q–1(BT yk – q)

– αωτ (2–τ )
(1–βτ )(βτ–τ+1) Q–1BT (A–1Bzk + yk – A–1p),

where α > 0, β ≥ 0, ω > 0, τ > 0 are given parameters.

Remark It can be seen easily that, when ω = τ , this method reduces to the NSSOR-like
method mentioned in the previous subsection.

With different choices of parameters, the GNSSOR-like method covers several SSOR
methods as follows:
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(i) When α = 1 and β = 0, we get the SSOR method in [10],

The SSOR method 1
Given initial guesses y0 ∈ R

m, z0 ∈ R
n. For k = 0, 1, . . . , until yk and zk converge,

compute yk+1 and zk+1 from yk and zk by the following procedure:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk+1 = yk – ω(2 – ω)(A–1Bzk + yk – A–1p)
+ ωτ (2–τ )

1–τ
A–1BQ–1(q – BT yk)

+ ω2τ (2–τ )
1–τ

A–1BQ–1BT (A–1Bzk + yk – A–1p),
zk+1 = zk + τ (2–τ )

1–τ
Q–1(BT yk – q)

– ωτ (2–τ )
1–τ

Q–1BT (A–1Bzk + yk – A–1p),

where ω > 0 and τ > 0 are given parameters.

(ii) When α = 1 and β = 1/2, we get the SSOR method in [23],

The SSOR method 2
Given initial guesses y0 ∈ R

m, z0 ∈ R
n. For k = 0, 1, . . . , until yk and zk converge,

compute yk+1 and zk+1 from yk and zk by the following procedure:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yk+1 = yk – ω(2 – ω)(A–1Bzk + yk – A–1p)
+ ωτ (2–τ )

(1– τ
2 )2 A–1BQ–1(q – BT yk)

+ ω2τ (2–τ )
(1– τ

2 )2 A–1BQ–1BT (A–1Bzk + yk – A–1p),

zk+1 = zk + τ (2–τ )
(1– τ

2 )2 Q–1(BT yk – q)

– ωτ (2–τ )
(1– τ

2 )2 Q–1BT (A–1Bzk + yk – A–1p),

where ω > 0 and τ > 0 are given parameters.

3 Convergence analysis
In the section, we give a convergence analysis of these methods. We need the following
lemmas.

Lemma 3.1 (see [24]) For the real quadratic equation x2 – bx + c = 0, both roots are less
than one in modulus if and only if |c| < 1 and |b| < 1 + c.

Lemma 3.2 Let R be the iteration matrix of the GNSOR-like method, and let λ be an
eigenvalue of the matrix R. Then λ �= 1.

Proof Suppose on the contrary that λ = 1 is an eigenvalue of the iteration matrix R and
that the corresponding eigenvector is (yT , zT )T . Then we have

R
(

y
z

)
=

(
y
z

)
,

or (
1
α

A 0
–τBT (1 – τβ)Q

)(
y
z

)
=

(
( 1
α

– ω)A –ωB
0 (1 – τβ)Q

)(
y
z

)
.
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From this equation we can deduce that

BT y = 0, Ay + Bz = 0.

Thus y = –A–1Bz and BT A–1Bz = 0. Since the matrix BT A–1B is symmetric positive defi-
nite, we have z = 0. Hence we get y = 0, a contradiction! �

Theorem 3.3 Let the matrix A be symmetric positive definite for the saddle-point problem
(1.2), and let the matrix B be of full column rank. Let R be the iteration matrix of the
GNSOR-like method. Then the GNSOR-like method is convergent if the parameters α, β ,
ω, and τ satisfy

0 < ω, τ < 2, 0 < α <
2
ω

, 0 <
αρωτ

1 – βτ
< 2(2 – αω),

where ρ denotes the spectral radius of the matrix Q–1BT A–1B.

Proof Evidently, we can see that the eigenvalues of the matrix Q–1BT A–1B are all real and
positive. Let λ be a nonzero eigenvalue of the iteration matrix R, and let

( y
z
)

be the corre-
sponding eigenvector. Then we have

R
(

y
z

)
= λ

(
y
z

)

or, equivalently,

λ

(
1
α

A 0
–τBT (1 – τβ)Q

)(
y
z

)
=

(
( 1
α

– ω)A –ωB
0 (1 – τβ)Q

)(
y
z

)
.

Computations show that

{
(1 – λ – αω)Ay = αωBz,
(λ – 1)(1 – τβ)Qz = λτBT y.

(3.1)

We get (1 – λ – αω)y = αωA–1Bz from the first equality in (3.1), and hence λτ (1 – λ –
αω)BT y = λταωBT A–1Bz when λ �= 1 – αω. From this equality and the second equality in
(3.1) it follows that

λταωQ–1BT A–1Bz = (λ – 1)(1 – τβ)(1 – λ – αω)z.

If λ = 1 – αω �= 0, then Bz = 0 and –αω(1 – τβ)Qz = λτBT y. It then follows that z = 0 and
y ∈ null(BT ), where null(BT ) is the null space of the matrix BT . Hence λ = 1 – αω is an
eigenvalue of the matrix R with the corresponding eigenvector (yT , 0)T with y ∈ null(BT ).

Therefore, except for λ = 1 – αω, the rest of the eigenvalues λ of the matrix R and all
the eigenvalues μ of the matrix Q–1BT A–1B are of the functional relationship

λαωτμ = (λ – 1)(1 – τβ)(1 – λ – αω),



Wen et al. Journal of Inequalities and Applications  (2018) 2018:145 Page 7 of 12

that is, λ satisfies the quadratic equation

λ2 –
(

2 – αω –
αμωτ

1 – τβ

)
λ + 1 – αω = 0. (3.2)

By Lemma 3.1 we know that λ = 1 – αω and both roots λ of Eq. (3.2) satisfy |λ| < 1 if and
only if

|1 – αω| < 1,
∣∣∣∣2 – αω –

αμωτ

1 – βτ

∣∣∣∣ < 2 – αω.

Thus we can deduce that

0 < α <
2
ω

, 0 <
αρωτ

1 – βτ
< 2(2 – αω),

where ρ denotes the spectral radius of the matrix Q–1BT A–1B.
The proof of the theorem has been completed. �

Lemma 3.4 Let T be the iteration matrix of the GNSSOR-like method. Then we have:
(i) λ = (1–ω+ωα)–ωα(2–ω)

1–ω+ωα
is an eigenvalue of the matrix T with multiplicity m – n at least.

(ii) A real number λ �= (1–ω+ωα)–ωα(2–ω)
1–ω+ωα

is an eigenvalue of the matrix T if and only if
there exists a real eigenvalue μ of the matrix Q–1BT A–1B such that λ is a zero point of

(λ – 1)(1 – τ + βτ )(1 – βτ )
[(

1
α

– ω

)
(1 – ω) – λ

(
1
α

+ ω –
ω

α

)]

– λωτ (2 – ω)(2 – τ )μ. (3.3)

Proof Let λ �= 0 be an eigenvalue of the matrix T , and let u =
( y

z
)

be the corresponding
eigenvector. Then we have

T u = λu

or, equivalently,

(1 – λ)(D – �U )u = (2I – �)D(D – �L)–1�Au.

Computations show that

[
(1 – λ)(1 – ω + ωα) – ωα(2 – ω)

]
Ay = ωα(λ + 1 – ω)Bz, (3.4)

and we obtain that

(1 –λ)(1 – τ +βτ )(1 –βτ )z –ωατ (2 – τ )Q–1BT A–1Bz = τ (2 – τ )(αω – 1)Q–1BT y. (3.5)

Let λ = (1–ω+ωα)–ωα(2–ω)
1–ω+ωα

. From (3.4) we have A–1Bz = 0.
We get BT y = 0 and z = 0 since the matrix A is symmetric positive definite and the matrix

B is of full column rank. Note that rank(BT ) = n, and then there exist m – n independent
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nonzero solutions of BT y = 0, that is, there exist m – n corresponding eigenvectors of λ =
(1–ω+ωα)–ωα(2–ω)

1–ω+ωα
.

When λ �= (1–ω+ωα)–ωα(2–ω)
1–ω+ωα

, from (3.4) we have

y =
αω(λ + 1 – ω)

(1 – λ)(1 – ω + αω) – αω(2 – ω)
A–1Bz.

Substituting y into (3.5), we get

(1 – λ)(1 – τ + βτ )(1 – βτ )
1
α

z

=
[
ωτ (2 – τ ) –

ωτ (2 – τ )(1 – αω)(1 – ω + λ)
(1 – λ)(1 – ω + αω) – αω(2 – ω)

]
Q–1BT A–1Bz

or, equivalently,

(1 – λ)(1 – τ + βτ )(1 – βτ )
1
α

[
(1 – λ)

(
(1 – ω)

1
α

+ ω

)
– ω(2 – ω)

]
z

= ωτ (2 – τ )
{[

(1 – λ)
(

(1 – ω)
1
α

+ ω

)
– ω(2 – ω)

]
–

(
ω –

1
α

)
(ω – λ – 1)

}

× Q–1BT A–1Bz.

Since μ is an eigenvalue of the matrix Q–1BT A–1B, we have

(1 – λ)(1 – τ + βτ )(1 – βτ )
1
α

[
(1 – λ)

(
(1 – ω)

1
α

+ ω

)
– ω(2 – ω)

]

= ωτ (2 – τ )
{[

(1 – λ)
(

(1 – ω)
1
α

+ ω

)
– ω(2 – ω)

]
–

(
ω –

1
α

)
(ω – λ – 1)

}
μ;

simply,

(λ – 1)(1 – τ + βτ )(1 – βτ )
[(

1
α

– ω

)
(1 – ω) – λ

(
1
α

+ ω –
ω

α

)]

= λωτ (2 – ω)(2 – τ )μ.

Conversely, we can also trivially prove the following: �

Theorem 3.5 Let the matrix A be symmetric positive definite, and let the matrix B be of full
column rank in Eq. (1.2). Assume that α, β , and ω satisfy (1–βτ )(1–τ +βτ )(1–ω+ωα) �= 0.
We choose a nonsingular matrix Q such that all eigenvalues of the matrix Q–1BT A–1B are
real. Let μmax, μmin be the largest and the smallest eigenvalues of the matrix Q–1BT A–1B,
respectively. Then:

(i) If μmin > 0, then the GNSSOR-like method is convergent if and only if

0 < ω < 2; 0 < τ < 2;{
1
α

> ω2

2(ω–1) , if 0 < ω < 1,
1
α

< ω2

2(ω–1) , if 1 < ω < 2;
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(1 – τ + βτ )(1 – βτ ) > 0;

αωτ (2 – ω)(2 – τ )μmax

(1 – τ + βτ )(1 – βτ )(1 – ω + ωα)
< 2

[
1 +

(1 – αω)(1 – ω)
1 + αω – ω

]
.

(ii) If μmax < 0, then the GNSSOR-like method is convergent if and only if

0 < ω < 2; 0 < τ < 2;{
1
α

> ω2

2(ω–1) , if 0 < ω < 1,
1
α

< ω2

2(ω–1) , if 1 < ω < 2;

(1 – τ + βτ )(1 – βτ ) < 0;

αωτ (2 – ω)(2 – τ )μmin

(1 – τ + βτ )(1 – βτ )(1 – ω + ωα)
< 2

[
1 +

(1 – αω)(1 – ω)
1 + αω – ω

]
.

Proof From (3.3) we get that

λ2 – λ

[
2 –

ωα(2 – ω)
1 + αω – ω

–
αωτ (2 – ω)(2 – τ )μ

(1 – τ + βτ )(1 – βτ )(1 – ω + ωα)

]
+

(
1 –

ωα(2 – ω)
1 + αω – ω

)
= 0.

By Lemma 3.1, |λ| < 1 if and only if

∣∣∣∣ (1 – αω)(1 – ω)
1 + αω – ω

∣∣∣∣ < 1 (3.6)

and ∣∣∣∣ (1 – αω)(1 – ω)
1 + αω – ω

+ 1 –
αωτ (2 – ω)(2 – τ )μ

(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

∣∣∣∣ < 1 +
(1 – αω)(1 – ω)

1 + αω – ω
.

Computations show that

αωτ (2 – ω)(2 – τ )μ
(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

> 0,

αωτ (2 – ω)(2 – τ )μ
(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

< 2 +
(1 – αω)(1 – ω)

1 + αω – ω
;

if μmin > 0, then we have

(1 – τ + βτ )(1 – βτ )(1 + αω – ω) > 0,

0 <
αωτ (2 – ω)(2 – τ )μ

(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

≤ αωτ (2 – ω)(2 – τ )μmax

(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

< 2 +
2(1 – αω)(1 – ω)

1 + αω – ω
;

if μmax < 0, then we have

(1 – τ + βτ )(1 – βτ )(1 + αω – ω) < 0,
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0 <
αωτ (2 – ω)(2 – τ )μ

(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

≤ αωτ (2 – ω)(2 – τ )μmin

(1 – τ + βτ )(1 – βτ )(1 + αω – ω)

< 2 +
2(1 – αω)(1 – ω)

1 + αω – ω
.

From (3.6) we have

1
α

>
ω2

2(ω – 1)
, if 0 < ω < 1,

1
α

<
ω2

2(ω – 1)
, if 1 < ω < 2.

Cosidering 1 + αω – ω > 0, we obtain

{
1
α

> ω2

2(ω–1) , if 0 < ω < 1,
1
α

< ω2

2(ω–1) , if 1 < ω < 2. �

4 Numerical experiments
In this section, we test several experiments to show the effectiveness of the GNSOR-like
method and compare it with the SOR-like method in [13], MSOR-like method in [19],
and MSOR-like method in [15]. We present computational results in terms of the num-
bers of iterations (denoted by IT) and computing time (denoted by CPU). We denote the
choices of parameters α, β , ω, τ by αexp, βexp, ωexp, τexp in our test, respectively. In our
implementations, all iterations are run in MATLAB R2015a on a personal computer and
are terminated when the current iterate satisfies RES < 10–6 or the number of iterations is
more than 1000. In our experiments, the residue is defined to be

RES :=
√

‖Ayk + Bzk – p‖2 +
∥∥BT yk – q

∥∥2 < 10–6,

the right-hand-side vector (pT , qT )T = Ae with e = (1, 1, . . . , 1)T , and the initial vectors are
set to be y0 = (0, 0, . . . , 0)T and z0 = (0, 0, . . . , 0)T .

Example 4.1 ([4]) Consider the saddle-point problem (1.1) in which

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈R

2l2×2l2 , B =

(
I ⊗ F
F ⊗ I

)
∈R

2l2×l2 ,

and

T =
1
h2 tridiag(–1, 2, –1) ∈R

l×l, F =
1
h

tridiag(–1, 1, 0) ∈R
l×l,

where h = 1
l+1 is the mesh size, and ⊗ be the Kronecker product.

In the test, we set m = 2l2 and n = l2. The choices of the matrix Q are listed in Table 1
for Example 4.1. We have the following computational results summarized in Table 2.
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Table 1 Choices of matrix Q for Example 4.1

Matrix Q Description

Case I BT Â–1B Â = diag(A)
Case II BT Â–1B Â = tridiag(A)

Table 2 ITs and CPUs of SOR-like, MSOR-like [15], NSOR-like [14], GNSOR-like, and NSSOR-like for
Example 4.1

m 128 512 1152 2048 8192
n 64 256 576 1024 4096
m + n 192 768 1728 3072 12,288

Case I SOR-like ωexp 0.4644 0.2720 0.1886 0.1386 0.0741
IT 73 202 221 315 657
CPU 0.0284 0.1321 0.3670 0.9262 9.0859

MSOR-like [15] αexp 1.7212 1.8256 1.8737 1.9136 1.9201
ωexp 0.3159 0.1873 0.1328 0.1020 0.0541
IT 67 140 183 223 462
CPU 0.0313 0.1171 0.2937 0.6137 6.3687

NSOR-like [14] αexp 1.7212 1.8256 1.8689 1.9699 1.9219
βexp 0.3700 0.3655 0.3492 0.2399 0.2148
ωexp 0.3159 0.1873 0.1328 0.1001 0.0545
IT 55 105 160 212 457
CPU 0.0250 0.1031 0.2624 0.5687 6.2634

GNSOR-like αexp 1.7212 1.8256 1.8689 1.9699 1.9219
βexp 0.3700 0.3655 0.3492 0.2399 0.2148
ωexp 0.3250 0.1923 0.1361 0.1029 0.0555
τexp 0.3130 0.1830 0.1282 0.0985 0.0534
IT 50 101 155 211 447
CPU 0.0154 0.1019 0.2561 0.5663 6.1488

Case II SOR-like ωexp 0.5958 0.3657 0.2215 0.1961 0.0945
IT 56 103 183 216 509
CPU 0.0310 0.1343 0.5855 1.4298 16.1417

MSOR-like [15] αexp 1.6599 1.7732 1.8315 1.8753 1.9200
ωexp 0.3996 0.2498 0.1806 0.1257 0.0745
IT 45 94 167 175 330
CPU 0.0306 0.1194 0.6196 1.2068 10.4589

NSOR-like [14] αexp 1.6469 1.7582 1.8318 1.8750 1.9100
βexp 0.3397 0.3438 0.3640 0.3541 0.4001
ωexp 0.3986 0.2513 0.1812 0.1420 0.0758
IT 39 77 116 155 320
CPU 0.0164 0.0916 0.4162 1.0173 9.4823

GNSOR-like αexp 1.6469 1.7582 1.8318 1.8750 1.9100
βexp 0.3397 0.3438 0.3640 0.3541 0.4001
ωexp 0.4030 0.2513 0.1825 0.1402 0.0758
τexp 0.4210 0.2581 0.1823 0.1443 0.0755
IT 37 75 115 154 319
CPU 0.0134 0.0871 0.3219 1.0129 9.4803

From Table 2 we can see that the GNSOR-like method requires much less iteration num-
ber than NSOR-like [14], SOR-like, MSOR-like [15], so that it costs less CPU time than the
others. So, the GNSOR-like method is effective for solving the saddle-point problem (1.1).

5 Concluding remark
In this paper, we first presented several iteration methods for solving the saddle-point
problem (1.1) and then give their convergence results. The GNSOR-like method is faster
and requires much less iteration steps than the other methods mentioned in the paper.
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