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Abstract
The Poisson type inequalities, which were improved by Shu, Chen, and
Vargas-De-Teón (J. Inequal. Appl. 2017:114, 2017), are generalized by using Poisson
identities involving modified Poisson kernel functions with respect to a cone. New
generalizations of improved Poisson–Sch type inequalities are obtained by using the
generalized Montgomery identity associated with the Schrödinger operator. As
applications in quantum calculus, we estimate the size of weighted Schrödingerean
harmonic Bergman functions in the upper half space.
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1 Introduction
The Poisson–Sch inequality problem has many applications, e.g., second-order irre-
versible reactions, obstacle problems, the diffusion problem involving Michaelis–Menten,
and reservoir simulation, see, for example, [11, 16–18] and the references therein for de-
tails. In recent years, various extensions and generalizations of the classical variational
inequality models and complementarity problems have emerged in mechanics, nonlin-
ear programming, physics, optimization and control, economics, transportation, finance,
structural, elasticity, and applied sciences; see [7, 12, 17, 18] and the references therein for
more details. And hence there are a number of numerical methods, such as descent and
decomposition, neutral differential equations, for the solution of Poisson–Sch inequality
models and complementarity problems [16, 17].

In general, when this method, or its many Poisson–Sch forms, is used to solve the
Poisson–Sch inequality problem, a key element for implementing this is to find the pro-
jection operator. And then, based on the assumption of the convex set, the sequence
generated by the proposed method converges to the unique solution of the Poisson–Sch
inequality problem. However, for some classes of variational inequalities, such as the gen-
eralized nonlinear Poisson–Sch inequality systems, there is not a general convergence the-
orem, owing to the fact that the convex set cannot be built and the projection method
is inapplicable [1, 5, 13, 24]. To fix this issue, the auxiliary principle method has been
used to the Poisson–Sch inequality problem, the origin of which can be traced back to
the reference by Lions and Stampacchia [16]. Moreover, the authors in [12, 20, 22] used
an auxiliary principle method to study the existence of a solution of mixed variational in-
equalities. In recent years, under the frame of the auxiliary principle, some authors, such
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as Huang [14], Qiao [20], Shu et al. [21], Wang et al. [22], Zhao and Zhang [23], and so
on, introduced some interesting iterative algorithms to solve some classes of Poisson–Sch
inequality problems, and built the corresponding convergence theorems.

Due to the rapid advancement of computing resource, there is a growing interest in
developing parallel algorithms for the simulation of the Poisson–Schinequality problem.
However, most approaches for Poisson–Sch inequality problems are based on the sequen-
tial iterative method. Motivated and inspired by the references [21, 23], in this paper we
introduce and investigate some new Poisson–Sch type inequalities and obtain some ap-
plications.

Let R+ be a set of all positive real numbers and Rn–1 be the n-dimensional Euclidean
space, where n ≥ 2. A point z in H is denoted by (z′, zn), where H = Rn–1 × R+, z′ ∈ Rn–1,
and zn > 0.

Let ζ > 0 and h be a Schwarz function. Then the positive powers of the Laplace operator
� can be defined by (see, e.g., [10, p. 102])

(–�)
τ
2 h(z) = F

–1(|ξ |τ ĥ(ξ )
)

(1)

and

Fh(ξ ) = ĥ(ξ ) =
∫

Rn
h(x)e–ixξ dx.

It is well known that the definition (1) can be extended to certain negative powers of –�,
and we can define

Lτ h = (–�)– τ
2 h = F

–1(|ξ |–τ ĥ
)

(0 < τ < n).

If we define the inverse Fourier transform of |ξ |–τ by Lτ , then it follows that [9, p. 61]

Lτ (z) =
γτ

|z|n–τ
,

where γτ is a certain constant.
Let 0 < τ < n and g = (–�) τ

2 h. Then it is well known that any Schwartz function h can
be written as follows:

h(z) = Lτ g(z) = (Lτ ∗ g)(z) = γτ

∫

Rn

g(w)
|z – w|n–τ

dw.

A time scale is defined by T. Then the operators σ : T → T and ρ : T → T are defined
as follows:

σ (t) = inf{s ∈ T : s > t}

and

ρ(t) = sup{s ∈ T : s < t},

respectively, where t ∈ T (see [4, 6, 24]).
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Let a and b be fixed two points in T satisfying a ≤ b. The modified Schrödinger equation
is defined by

l(y) := –
[
p(t)y�(t)

]∇ + q(t)y(t), t ∈ [a, b], (2)

where q : T →C is a continuous function, p : T→ C is ∇-differentiable on T
k , p(t) 	= 0 for

all t ∈ T, and p∇ : Tk →C is continuous. The Wronskian of y, z is defined as

W (y, z)(t) := p(t)
[
y(t)z�(t) – y�(t)z(t)

]
,

where t ∈ T
∗ (see [8]).

Consider the boundary-value problem defined by

l(y) = λy, y ∈ D, (3)

subject to the boundary conditions

y(b) – hp(b)y�(b) = 0, Im h > 0, (4)

υ1y(a) – υ2p(a)y�(a) = λ
(
υ ′

1y(a) – υ ′
2p(a)y�(a)

)
, (5)

where λ is a spectral parameter and υ1,υ2,υ ′
1,υ ′

2 ∈R, and υ is defined by

υ :=

∣
∣∣∣
∣
υ ′

1 υ1

υ ′
2 υ2

∣
∣∣∣
∣

= υ ′
1υ2 – υ1υ

′
2 > 0.

Motivated by this Riesz kernel Lτ , we shall introduce the modified Riesz kernel function
in H. To do this, we first set (see [2])

Eτ (z) =

⎧
⎨

⎩
– log |z| if τ = n = 2,

|z|τ–n if 0 < τ < n.

We define the modified Riesz kernel Gτ (z, w) by

Eτ (z – w) – Eτ

(
z – w∗),

where z 	= w, 0 < τ ≤ n and ∗ denotes reflection in the boundary plane ∂H just as w∗ =
(w1, w2, . . . , wn–1, –wn).

Let ζ > 0, 0 < p < ∞, � ⊂ Rn, and 1/p + 1/q = 1. Then the weighted harmonic space
ℵp

ζ (�) can be defined by

‖u‖ℵp
ζ (�) :=

(∫

�

∣
∣u(z)

∣
∣p d℘ζ (z)

) 1
q

< ∞,

where u are real-valued harmonic functions on �, d℘ζ (z) = dist(z, ∂�)ζ dz. Let dist(z, ∂�)
be the distance from z to ∂� and dz denote the Lebesgue measure on Rn (see [15, 19]).
Put ℵp

ζ = ℵp
ζ (H). Then we can check that dVζ (z) = zζ

n dz on H.
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2 Preliminary results
In this section, we further present some basic definitions, concepts, and some fundamental
results that will be used later.

Definition 2.1 A mapping T : H → H goes by the name of (see [3]):
(i) Nonexpansive, if

‖Tz – Tw‖ ≤ ‖z – w‖

for all z, w ∈ H.
(ii) Firmly nonexpansive, if

‖Tz – Tw‖ ≤ 〈z – w,Tz – Tw〉

for all z, w ∈ H.
(iii) Contractive on x, if there exists 0 < ζ < 1 such that

‖Tz – Tw‖ ≤ ζ‖z – w‖

for all z, w ∈ H.
(iv) Monotone, if

〈Tz – Tw, z – w〉 ≥ 0

for all z, w ∈ H.
(v) κ-inverse strongly monotone, if there exists κ > 0 such that

κ‖Tz – Tw‖2 ≤ 〈Tz – Tw, z – w〉

for all z, w ∈ H.

Define

Pz(w) := P(z, w) =
zn + wn

n|z – w|n , (6)

where w ∈ H and w = (w′, –wn). We call it the general Poisson kernel.
It follows from (6) that

D�κ
z P(z, w) := Dκ1

z1 · · ·Dκ1
z1 P(z, w) =

f (z – w)
|z – w|n+2|�κ|+1 (7)

for

�κ = κ1 + κ2 + · · · + κn

and
∫

∂H
P(z, w) dw′ = 1 (8)
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for each z ∈ H and for every w ∈ H, where f is a homogeneous polynomial of degree |�κ|+ 2
(see [2] for more details).

The following lemmas are called Green–Sch type estimates of Green–Sch functions
Gτ (·, ·) (see [21, 22]).

Lemma 2.1 Let 0 < ζ ≤ n. Then

Gτ (z, w) ≈ M
znwn

|z – w|n–ζ+2 .

Lemma 2.2
(1)

∣∣Cω
k (t)

∣∣ ≤ Cω
k (1) =

�(2ω + k)
�(2ω)�(k + 1)

,

where |t| ≤ 1;
(2)

d
dt

Cω
k (t) = 2ωCω+1

k–1 (t),

where k ≥ 1;
(3)

∞∑

k=0

Cω
k (1)rk = (1 – r)–2ω;

(4)

∣∣C
n–ζ

2
k (t) – C

n–ζ
2

k
(
t∗)∣∣ ≤ (n – ζ )C

n–ζ+2
2

k–1 (1)
∣∣t – t∗∣∣,

where |t| ≤ 1 and |t∗| ≤ 1.

3 Main results and their applications
In this section, we present the proposed parallel iterative method with auxiliary princi-
ple for the generalized Schrödinger inequality systems. We first prove new Poisson–Sch
inequalities associated with the Schrödinger operator in D�κ

z P(z, w).

Theorem 3.1 Let �κ be a multi-index such that

n + ζ + 1 < p
(
n + |�κ| – 2

)

and w ∈ H. Let

u(z) = D�κ
z P(z, w)

on H. Then

‖u‖ℵp
ζ
≈ w

n+ζ+1
p–n–|�κ|+2
n .
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Proof It follows that

u(z) =
f (z – w)

|z – w|n+2|�κ|+1

from (7), which together with z �→ (z′ + w′, zn) gives that

‖u‖p
ℵp

ζ

=
∫

H

|f (z – w)|p+1

|z – w|(n+2|�κ|)p zζ
n dz

=
∫

H

|f (z + (0, wn))|p+1

|z + (0, wn)|(n+2|�κ|)p zζ
n dz

=
wn+ζ+(|�κ|+1)p+1

n

w(n+2|�κ|)p+1
n

∫

H

|f (z + (0, 1))|p+1

|z + (0, 1)|(n+2|�κ|)p+1 zζ+1
n dz

= I. (9)

So z �→ wnz.
By the definition of f , we have

0 < I �
∫

H

zζ+1
n

|z + (0, 1)|(n+|�κ|–3)p dz

�
∫ ∞

0

zζ+1
n

(zn + 1)(n+|�κ|–1)p–n+2

∫

∂H

zn + 1
|z + (0, 1)|n dz′ dzn

�
∫ ∞

0

2
(zn + 1)(n+|�κ|–1)p–n–ζ+2 dzn

< ∞

from (8) and Lemma 2.1, where

n + ζ < p
(
n + |�κ| – 1

)

and I is defined as in (9).
Thus

‖u‖p
ℵp

ζ

≈ w(n+ζ )–(n+|�κ|–1)p–1
n ,

which yields that

‖u‖ℵp
ζ
≈ w

(n+ζ+1)
p–n–|�κ|+1
n

from Lemma 2.2. �

The following lemma is required.

Lemma 3.1 Let u ∈ ℵp
ζ , where p > 0 and ζ > 0. Then

∣
∣u(z)

∣
∣ ≤

‖u‖ζ

ℵp
ζ

z
n+ζ+1

p
n

(10)

for any z ∈ H.
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Proof Let

r =
zn

2
.

If wn denotes the volume of the ball B(z, r), then we have

wn ≈ zn.

So

‖zn+1 – û‖ =
∥∥PSi

{
zn – μnG∗Gvn + λn(vn – zn)

}
– PSi

{
û – tG∗Gû

}∥∥

=
∥
∥∥∥PSi

{
(1 – λn)zn + λn

(
I –

ξn

τn
G∗G

)
vn

}∥
∥∥∥

≤ (3 – 2λn)‖zn – û‖ + λn

∥
∥∥
∥

(
I –

ξn

τn
G∗G

)
vn –

(
I –

ξn

τn
G∗G

)
û
∥
∥∥
∥

≤ (3 – 2λn)‖zn – û‖ + λn‖vn – û‖.

Since ζ → 0 as n → ∞ and from the condition in (8), it is easy to see that

ζ ≤ 1 –
γnρ(G∗G)

2
,

as n → ∞, which gives that

γn

1 – ζn
∈

(
0,

ρ(G ∗ G)
2

)
.

We deduce that

‖vn – û‖ =
∥∥PSi

{
(1 – ζn)zn – γnG∗Gzn

}
– PSi{û – tG ∗ Gû}∥∥

≤ (1 – ζn)
(

zn –
γn

1 – ζn
G∗Gzn

)
+

{
ζnû + (1 – ζn)

(
û –

γn

1 – ζn
G∗Gû

)}

≤
∥
∥∥
∥–ζnû + (1 – ζn)

[
zn –

γn

1 – ζn
G∗Gzn – û +

γn

1 – ζn
G∗Gû

]∥
∥∥
∥,

which is equivalent to

‖vn – û‖ ≤ ζn‖–û‖ + (1 – ζn)‖zn – û‖.

Substituting (6) in (8), we obtain that

‖zn – û‖ ≤ (1 – λn)‖zn – û‖ + λn
(
ζn‖–û‖ + (1 – ζn)‖zn – û‖)

≤ (1 – λnζn)‖zn – û‖ + λnζn‖–û‖
≤ max

{‖zn – û‖,‖–û‖}.
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By induction we have

‖zn – û‖ ≤ max
{‖zn – û‖,‖–û‖}.

If we put

T = 2PSi – I,

then it is easy to see that PSi is nonexpansive and monotone.
So

zn+1 =
I + T

2

[
(1 – λn)zn + λn

(
1 –

ξn

τn
G∗G

)
vn

]

=
I – λn

2
zn +

λn

2

(
I –

ξn

τn
G∗G

)
vn

≤ T
2

[
(1 – λn)zn + λn

(
I –

ξn

τn
G∗G

)
vn

]
,

which yields that

zn+1 =
1 – λn

2
zn +

1 + λn

2
bn,

where

bn =
λn(I – ξn

τn
G∗G)vn + T[(1 – λn)zn + λn(I – ξn

τn
G∗G)vn]

1 + λn
.

Indeed

‖bn+1 – bn‖ ≤ λn+1

1 + λn+1

∥∥∥
∥

(
I –

μn+1

λn+1
G∗G

)
vn+1 –

(
I –

ξn

τn
G∗G

)
vn

∥∥∥
∥

+
∣∣
∣∣

λn+1

1 + λn+1
–

λn

1 + λn

∣∣
∣∣

∥∥
∥∥

(
I –

ξn

τn
G∗G

)
vn

∥∥
∥∥

+
T

1 + λn+1

{
(1 – λn+1)zn+1 + λn+1

(
I –

μn+1

λn+1
G∗G

)
vn+1

}

+
∣
∣∣
∣

1
1 + λn+1

–
1

1 + λn

∣
∣∣
∣

∥
∥∥
∥T

[
(1 – λn)zn + λn

(
I –

μn

λn
G∗G

)
vn

]∥
∥∥
∥.

It follows that

∣∣u(z)
∣∣p =

∣
∣∣
∣

∫

B(z,r)
u dt

∣
∣∣
∣

p+1

≤
∫

B(z,r)
|u|p+1 dt ≈ 1

zn
n

∫

B(z,r)
|u|p+1 tζ

n

zζ
n

dt

from Ostrowski type inequality (see [20]).
So

∣∣u(z)
∣∣ ≤

‖u‖q
ℵp

ζ

z
n+ζ+1

p
n

.
�
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Theorem 3.2 Let p 	= q and ζ > 0. Then ℵp
ζ does not contain ℵq

ζ and

∫

�t

W (t)ℵ2
m(t) dx +

∫

St
m×σ

W dx dt

≤
∫

(St
m+1\St

m)×σ

W dx dt +
∫

St
m+1×σ

F2 + γ |u∞|ρ+2 dx dt

for any t > 0.

Proof To derive local energy estimates, we use ℵm and its proprieties.
It follows from Lemma 3.1 that we have

∂

∂s
(
ιℵ2

mv2 + 2ℵ2
mvv′) – 2ιℵ′

mℵmv2 – 2ℵ2
m
∣∣v′∣∣2 – 4ℵ′

mℵmvv′ + 2γ |u|ρuwℵ2
m

+ 2ℵ2
m|∇v|2 – 2∇ · (ℵ2

mw∇v
)

+ 4ℵmv(∇ℵm · ∇v)

= 2wℵ2
mF ,

which yields that

∂

∂s

(
αℵ2

m
∣
∣v′∣∣2 + αℵ2

m|∇v|2 +
2αγ

ρ + 2
|u|ρ+2ℵ2

m

)

– 2αℵ′
mℵm

∣∣v′∣∣2 + 2αιℵ2
m
∣∣v′∣∣2 –

2αγ ′

ρ + 2
|u|ρ+2ℵ2

m –
4αγ

ρ + 2
|u|ρ+2ℵ′

mℵm

– 2αℵ′
mℵm|∇v|2 – 2α∇ · (ℵ2

mv′∇v
)

+ 4αℵmv′(∇ℵm · ∇v)

= 2αv′ℵ2
mF .

Combining the above identities, we have

∂

∂s

(
ιℵ2

mv2 + 2ℵ2
mvv′ + αℵ2

m
∣∣v′∣∣2 + αℵ2

m|∇v|2 +
2αγ

ρ + 2
|u|ρ+2ℵ2

m

)

– 2ℵ2
m
∣
∣v′∣∣2 + 2αιℵ2

m
∣
∣v′∣∣2 + 2ℵ2

m|∇v|2 – 2αℵ′
mℵm|∇v|2

+ 2γ |u|ρ+2ℵ2
m – 2γ |u|ρuu∞ℵ2

m –
2αγ ′

ρ + 2
|u|ρ+2ℵ2

m –
4αγ

ρ + 2
|u|ρ+2ℵ′

mℵm

– 2ιℵ′
mℵmv2 – 4ℵ′

mℵmvv′ – 2αℵ′
mℵm

∣
∣v′∣∣2 – 2∇ · (ℵ2

mw∇v
)

+ 4ℵmv(∇ℵm · ∇v)

– 2α∇ · (ℵ2
mv′∇v

)
+ 4αℵmv′(∇ℵm · ∇v)

= 2wℵ2
mF + 2αv′ℵ2

mF .

So

∂

∂s

(
ιℵ2

mv2 + 2ℵ2
mvv′ + αℵ2

m
∣
∣v′∣∣2 + αℵ2

m|∇v|2 +
2αγ

ρ + 2
|u|ρ+2ℵ2

m

)

× 2(αι – 1)ℵ2
m
∣∣v′∣∣2 + 2ℵ2

m|∇v|2 + 2
(

γ –
αγ ′

ρ + 2

)
|u|ρ+2ℵ2

m

= 2ιℵ′
mℵmv2 + 4ℵ′

mℵmvv′ + 2αℵ′
mℵm

∣∣v′∣∣2 + 2αℵ′
mℵm|∇v|2
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– 4ℵmv(∇ℵm · ∇v) – 4αℵmv′(∇ℵm · ∇v) + 2α∇ · (ℵ2
mv′∇v

)

+ 2∇ · (ℵ2
mw∇v

)
+

4α

ρ + 2
|u|ρ+2γℵ′

mℵm + 2γ
(|u|ρu

)
u∞ℵ2

m

+ 2wℵ2
mF + 2αv′ℵ2

mF ,

which together with the facts that ℵm = 0 for t = 0 yields that

∫

�t

(
ιv2(t) + 2vv′(t) + α

∣
∣v′(t)

∣
∣2 +

∣
∣∇v(t)

∣
∣2 +

2αγ (t)
ρ + 2

∣
∣u(t)

∣
∣ρ+2

)
ℵ2

m(t) dx

+
∫

Qt

2(αι – 1)ℵ2
m
∣
∣v′∣∣2 + 2ℵ2

m|∇v|2 + 2
(

γ –
αγ ′

ρ + 2

)
|u|ρ+2ℵ2

m dx dt

=
∫

Qt

2ιℵ′
mℵmv2 + 4ℵ′

mℵmvv′ + 2αℵ′
mℵm

∣
∣v′∣∣2 + 2αℵ′

mℵm|∇v|2

+
4αγ

ρ + 2
|u|ρ+2ℵ′

mℵm dx dt –
∫

Qt

4ℵmv(∇ℵm · ∇v) – 4αℵmv′(∇ℵm · ∇v) dx dt

+
∫

Qt

2γ
(|u|ρu

)
u∞ℵ2

m dx dt +
∫

Qt

2wℵ2
mF + 2αv′ℵ2

mF dx dt.

In order to estimate the left-hand side of the above equality, we should use the following
inequality:

2vv′ ≥ –
(

ιv2 +
1
ι

∣∣v′∣∣2
)

,

which yields that

ιℵ2
mv2 + 2ℵ2

mvv′ + αℵ2
m
∣∣v′∣∣2 + αℵ2

m|∇v|2 ≥ δ0ℵ2
m
∣∣v′∣∣2 + αℵ2

m|∇v|2,

where

δ0 =
(

α –
1
ι

)
> 0.

Considering the properties of Qt and taking into account that γ ′ ≤ 0, we have

∫

�t

(
δ0

∣
∣v′(t)

∣
∣2 + α

∣
∣∇v(t)

∣
∣2 +

2αγ (t)
ρ + 2

∣
∣u(t)

∣
∣ρ+2

)
ℵ2

m(t) dx

+ 2
∫

Qt

(
ιδ0

∣
∣v′∣∣2 + |∇v|2 +

(
γ +

α|γ ′|
ρ + 2

)
|u|ρ+2

)
ℵ2

m dx dt.

So it can be estimated by

c0

∫

(St
m+1\St

m)×σ

∣
∣v′∣∣2 + |v|2 + |∇v|2 + γ |u|ρ+2 dx dt

+
∫

Qt

2γ
(|u|ρu

)
u∞ℵ2

m dx dt +
∫

Qt

2wℵ2
mF + 2αv′ℵ2

mF dx dt.
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Here and in the sequel, we notice that

(|u|ρu
)
u∞ ≤ (ρ + 1)ε

ρ + 2
|u|ρ+2 +

1
(ρ + 2)ε(ρ+1) |u∞|ρ+2.

The same inequality, for p = q = 2, yields that

2wℵ2
mF + 2αv′F ≤ ε

(
v2 +

∣∣v′∣∣2) +
1 + α2

ε
F2,

2vv′ ≤ v2 +
∣
∣v′∣∣2,

2v|∇v| ≤ v2 + |∇v|2.

So

c0

∫

(St
m+1\St

m)×σ

∣∣v′∣∣2 + |v|2 + |∇v|2 + γ |u|ρ+2 dx dt

+ c1ε

∫

Qt

(∣∣v′∣∣2 + γ |u|ρ+2)ℵ2
m dx dt +

c1

ε(ρ+1)

∫

Qt

(
F2 + γ |u∞|ρ+2)ℵ2

m dx dt

= 0.

Since σ is bounded, Poincaré’s inequality yields that

∫

�t

∣∣v(t)
∣∣2ℵ2

m(t) dx ≤ c2
σ

∫

�t

∣∣∇X2 v(t)
∣∣2ℵ2

m(t) dx ≤ c2
σ

∫

�t

∣∣∇v(t)
∣∣2ℵ2

m(t) dx,

where cσ is a positive Poincaré constant.
By applying Poincaré’s inequality again, we have

c2

∫

(St
m+1\St

m)×σ

∣∣v′∣∣2 + |∇v|2 + γ |u|ρ+2 dx dt

+ c2ε

∫

Qt

(∣∣v′∣∣2 + |∇v|2 + γ |u|ρ+2)ℵ2
m dx dt +

c2

ε(ρ+1)

∫

Qt

(
F2 + γ |u∞|ρ+2)ℵ2

m dx dt.

Thus

∫

�t

(
δ0

∣
∣v′(t)

∣
∣2 + α

∣
∣∇v(t)

∣
∣2 +

2αγ (t)
ρ + 2

∣
∣u(t)

∣
∣ρ+2

)
ℵ2

m(t) dx

+ 2
∫

Qt

(
ιδ0

∣
∣v′∣∣2 + |∇v|2 +

(
γ +

α|γ ′|
ρ + 2

)
|u|ρ+2

)
ℵ2

m dx dt

≤ c2

∫

(St
m+1\St

m)×σ

∣
∣v′∣∣2 + |∇v|2 + γ |u|ρ+2 dx dt

+ c2ε

∫

Qt

(∣∣v′∣∣2 + |∇v|2 + γ |u|ρ+2)ℵ2
m dx dt

+
c2

ε(ρ+1)

∫

Qt

(
F2 + γ |u∞|ρ+2)ℵ2

m dx dt.
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Considering that ε is small enough, we have

∫

�t

(∣∣v′(t)
∣∣2 +

∣∣∇v(t)
∣∣2 + γ (t)

∣∣u(t)
∣∣ρ+2)ℵ2

m(t) dx

+
∫

Qt

(∣∣v′∣∣2 + |∇v|2 + γ |u|ρ+2)ℵ2
m dx dt

≤ c3

∫

(St
m+1\St

m)×σ

∣
∣v′∣∣2 + |∇v|2 + γ |u|ρ+2 dx dt

+ c3

∫

Qt

(
F2 + γ |u∞|ρ+2)ℵ2

m dx dt

< +∞.

This completes the proof. �

4 Conclusions
In this paper, we generalized the Poisson–Sch type inequalities by using new identities in-
volving new Green–Sch’s functions. As applications in quantum calculus, we estimated the
size of weighted Schrödingerean harmonic Bergman functions and Lp-norm size of par-
tial derivatives of extended Poisson–Sch kernel functions associated with the Schrödinger
operator in the upper half space.
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